[go: up one dir, main page]

JPS63239876A - Thermal persistent current switch - Google Patents

Thermal persistent current switch

Info

Publication number
JPS63239876A
JPS63239876A JP62071603A JP7160387A JPS63239876A JP S63239876 A JPS63239876 A JP S63239876A JP 62071603 A JP62071603 A JP 62071603A JP 7160387 A JP7160387 A JP 7160387A JP S63239876 A JPS63239876 A JP S63239876A
Authority
JP
Japan
Prior art keywords
persistent current
switch
current switch
winding
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071603A
Other languages
Japanese (ja)
Inventor
Masami Urata
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62071603A priority Critical patent/JPS63239876A/en
Publication of JPS63239876A publication Critical patent/JPS63239876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PURPOSE:To reduce a heater power and to shorten a switching time from ON to OFF or vice versa by connecting a plurality of layer cylinders having low thermal conduction over the winding of a superconductor at narrow gap therebetween in series with the gap formed between the cylinders. CONSTITUTION:Heat generated at a heater wire 43 is used effectively for normally conducting a winding 42, and a switch 22 is rapidly switched to an OFF state. In order to switch it from the OFF state to an ON state, when the energization of the wire 32 is stopped, pressures in gaps 46, 29 decrease. Thus, refrigerant liquid is fed through an opening 47, holes 31, 32 into the gaps 46, 29 to condense the gap in the gaps 46, 29. Thus, the winding 42 is rapidly cooled to critical temperature or lower, and the switch 22 is switched to the ON state. Accordingly, the switching time from ON to OFF, and vice versa can be shortened with less power.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導コイルを永久電流モードで運転すると
きなどに使用される熱式永久電流スイッチに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thermal persistent current switch used when operating a superconducting coil in persistent current mode.

(従来の技術) 周知のように、磁気浮上列車、MRl、単結晶引き上げ
装置等に組み込まれた超電導コイルは永久電流モードで
運転される場合が多い。このように超電導コイルを永久
電流モードで運転する場合には、超電導コイルの両端を
抵抗値零の状態で短絡する永久電流スイッチを必要とす
る。この永久電流スイッチとしては1通常、母材抵抗値
の大きい超電導線を無誘導に巻回するとともに上記超電
導線に熱的に接続させてヒータ線を設けてなる熱式永久
電流スイッチが用いられている。
(Prior Art) As is well known, superconducting coils incorporated in magnetic levitation trains, MRl, single crystal pulling devices, etc. are often operated in persistent current mode. When operating a superconducting coil in persistent current mode as described above, a persistent current switch is required to short-circuit both ends of the superconducting coil in a state where the resistance value is zero. As this persistent current switch, a thermal persistent current switch is usually used, in which a superconducting wire with a large base material resistance is wound without induction, and a heater wire is provided thermally connected to the superconducting wire. There is.

第3図は従来の熱式永久電流スイッチを示している。こ
の熱式永久電流スイッチは、繊維強化プラスチックなど
のように熱伝導の低い部材で形成された巻枠1にスイッ
チ部2を装着したものとなっている。巻枠1は、軸部3
およびこの軸部3の一端に一体に形成された鍔部4から
なる巻枠片5と、この巻枠片5の前記軸部3の他端に前
記鍔部4に対向して装着される鍔体6とで構成されてい
る。一方、スイッチ部2は、母材抵抗値の大きい超電導
線7を無誘導に巻回して巻回部8を形成するとともに上
記巻回部8の内部あるいは表面にヒータ線9を沿わせ、
これらにエポキシ樹脂で代表される樹脂10を含浸し、
モールドしたものとなっている。そして、上記のように
構成されたスイッチ部2を巻枠片5の軸部3に装着し、
この状態で鍔体6を装着するとともに超電導線7の両端
およびヒータ線9の両端を外部に突出させている。
FIG. 3 shows a conventional thermal persistent current switch. This thermal persistent current switch has a switch section 2 attached to a winding frame 1 made of a material with low thermal conductivity, such as fiber-reinforced plastic. The winding frame 1 has a shaft portion 3
and a winding frame piece 5 consisting of a flange 4 integrally formed on one end of this shaft 3, and a flange attached to the other end of the shaft 3 of this winding frame piece 5 so as to face the flange 4. It is composed of a body 6. On the other hand, in the switch section 2, a superconducting wire 7 having a large base material resistance value is non-inductively wound to form a winding section 8, and a heater wire 9 is placed along the inside or surface of the winding section 8.
These are impregnated with resin 10 represented by epoxy resin,
It is molded. Then, the switch section 2 configured as described above is attached to the shaft section 3 of the winding frame piece 5,
In this state, the collar body 6 is attached, and both ends of the superconducting wire 7 and both ends of the heater wire 9 are made to protrude outside.

このように構成された熱式永久電流スイッチは。The thermal persistent current switch constructed in this way.

超電導線7の両端が超電導コイルの両端に接続され、超
電導コイルと一緒に液体ヘリウムで代表される冷媒液中
に浸漬されて使用される。すなわち。
Both ends of the superconducting wire 7 are connected to both ends of the superconducting coil, and the superconducting wire 7 is used by being immersed together with the superconducting coil in a coolant liquid represented by liquid helium. Namely.

冷媒液中に浸漬されると1巻回部8を構成している超電
導線7が臨界温度以下に冷却されて抵抗値が零となり、
超電導コイルの両端を短絡する。つまり、スイッチ部2
がオン状態となる。一方、ヒータ線9に通電すると1巻
回部8が臨界温度以上に加熱され、この結果、゛巻回部
8が常電導状態に転移して抵抗値が増大する。つまり、
スイッチ部2がオフ状態となる。したがって、ヒータ線
9への通電を制御することによって、スイッチ部2をオ
ン、オフ制御できることになる。
When immersed in the refrigerant liquid, the superconducting wire 7 constituting the first turn 8 is cooled to below the critical temperature and its resistance value becomes zero.
Short-circuit both ends of the superconducting coil. In other words, switch section 2
turns on. On the other hand, when the heater wire 9 is energized, the first winding portion 8 is heated to a temperature higher than the critical temperature, and as a result, the winding portion 8 transitions to a normal conducting state and the resistance value increases. In other words,
The switch section 2 is turned off. Therefore, by controlling the energization to the heater wire 9, the switch section 2 can be controlled on and off.

しかしながら、上記のように構成された従来の熱式永久
電流スイッチにあっては次のような問題があった。すな
わち、上述した動作から判かるように、ヒータ線9に通
電してオンからオフに切換えるとき、速やかにオフ状態
に切換えるにはヒータ線9で発生した熱を効率良く巻回
部8へ伝える必要がある。このためには1巻回部8と冷
媒液との間の熱抵抗を大きくする必要がある。一方、ヒ
ータ線9への通電を停止してオフからオンに切換えると
き、速やかにオン状態に切換えるには冷媒液によって巻
回部8を効率良く冷却する必要がある。このためには1
巻回部8と冷媒液との間の熱抵抗を小さくする必要があ
る。このように、オンからオフに切換えるときに望まれ
る条件と、オフからオンに切換えるときに望まれる条件
とは相反している。このため、従来の熱式永久電流スイ
ッチにあっては9巻回部8の外周面を覆う樹脂層11の
厚みを5履以上と厚くすることによって。
However, the conventional thermal persistent current switch configured as described above has the following problems. That is, as can be seen from the above-mentioned operation, when the heater wire 9 is energized and switched from on to off, it is necessary to efficiently transfer the heat generated in the heater wire 9 to the winding portion 8 in order to quickly switch it to the off state. There is. For this purpose, it is necessary to increase the thermal resistance between the first turn 8 and the refrigerant liquid. On the other hand, when the heater wire 9 is turned off and switched from OFF to ON, it is necessary to efficiently cool the winding portion 8 with the refrigerant liquid in order to quickly switch the heater wire 9 to the ON state. For this purpose 1
It is necessary to reduce the thermal resistance between the winding portion 8 and the refrigerant liquid. Thus, the conditions desired when switching from on to off and the conditions desired when switching from off to on are contradictory. For this reason, in the conventional thermal persistent current switch, the thickness of the resin layer 11 covering the outer peripheral surface of the nine-turn portion 8 is increased to five or more.

この樹脂層11の熱抵抗を大きクシ、これによって専ら
ヒータ電力を少なくするとともにオンからオフへの切換
え時間を短縮する構成を採用している。しかし、このよ
うに巻回部8と冷媒液との間の熱抵抗を大きくすると、
前述の如く、オフからオンへ切換えるとき長時間を必要
とすることになる。
A configuration is adopted in which the thermal resistance of the resin layer 11 is increased, thereby exclusively reducing the heater power and shortening the switching time from on to off. However, if the thermal resistance between the winding part 8 and the refrigerant liquid is increased in this way,
As mentioned above, a long time is required when switching from off to on.

(発明が解決しようとする問題点) 上述の如く、従来の熱式永久電流スイッチにあっては、
ヒータ電力を少なりシ、なおかつオンからオフへの切換
え時間の短縮化と、オフからオンへの切換え時間の短縮
化と・の両方を満足させることができない問題があった
(Problems to be Solved by the Invention) As mentioned above, in the conventional thermal persistent current switch,
There has been a problem in that it is not possible to satisfy both of the requirements of reducing the heater power, shortening the switching time from on to off, and shortening the switching time from off to on.

そこで本発明は、ヒータ電力を少なくでき、しかもオン
からオフへの切換え時間の短縮化と、オフからオンへの
切換え時間の短縮化との両方を満足させることができる
熱式永久電流スイッチを提供することを目的としている
SUMMARY OF THE INVENTION Therefore, the present invention provides a thermal persistent current switch that can reduce the heater power and satisfy both of the requirements of shortening the switching time from on to off and shortening the switching time from off to on. It is intended to.

(問題点を解決するための手段) 本発明によれば、母材抵抗値の大きい超電導線を無誘導
に1巻回するとともに上記超電導線に熱的に接続させて
ヒータ線を設けてなる熱式永久電流スイッチにおいて、
前記超電導線の巻回部を覆い、かつ互いの間に狭い隙間
を設けて複数層設けられた熱伝導の低い筒体と、これら
筒体間に形成された前記隙間を直列に接続する手段とを
設けている。
(Means for Solving the Problems) According to the present invention, a superconducting wire having a large base material resistance value is wound once without induction, and a heater wire is provided by thermally connecting the superconducting wire to the heating wire. In the type persistent current switch,
A cylindrical body with low thermal conductivity that covers the winding portion of the superconducting wire and is provided with a plurality of layers with narrow gaps between them, and means for connecting in series the gaps formed between these cylindrical bodies. has been established.

(作用) この熱式永久電流スイッチを冷媒液中に浸漬すると、筒
体間に存在している隙間に冷媒液が侵入する。この冷媒
液は巻回部の極近傍まで侵入する。このため、オンのと
きには巻回部と冷媒液との間の熱抵抗が充分小さい状態
となる。このことは、オフからオンに切換えるとき9巻
回部と冷媒液との間の熱抵抗を充分小さくできることに
なる。
(Function) When this thermal persistent current switch is immersed in refrigerant liquid, the refrigerant liquid enters the gap existing between the cylinders. This refrigerant liquid penetrates very close to the winding portion. Therefore, when it is on, the thermal resistance between the winding portion and the refrigerant liquid is sufficiently small. This means that the thermal resistance between the nine turns and the refrigerant liquid can be made sufficiently small when switching from off to on.

一方、オンからオフに切換えるためにヒータ線に通電す
ると6巻回部が加熱される。このとき、ヒータ線で発生
した熱の一部が巻回部に隣接して存在している隙間内の
冷媒液を加熱する。このため。
On the other hand, when the heater wire is energized to switch from on to off, the 6th turn is heated. At this time, part of the heat generated by the heater wire heats the refrigerant liquid in the gap existing adjacent to the winding portion. For this reason.

隙間内の冷媒液はガス化する。各隙間は直列に接続され
ているので、これら隙間内の冷媒液は冷媒ガスによって
外に押し出され、各隙間内は冷媒ガスによって満たされ
る。ガス状態の冷媒は熱伝導が極めて低い。加えて、各
筒体は熱伝導の低い部材で形成されている。このため、
ヒータ線に通電しているときには9巻回部と冷媒液との
間の熱抵抗が充分大きい状態に保たれることになり、ヒ
ータ線で発生した熱を巻回部の加熱に有効に利用できる
ことになる。
The refrigerant liquid in the gap is gasified. Since the gaps are connected in series, the refrigerant liquid in these gaps is pushed out by the refrigerant gas, and each gap is filled with the refrigerant gas. Gaseous refrigerants have extremely low heat conductivity. In addition, each cylinder is made of a material with low thermal conductivity. For this reason,
When the heater wire is energized, the thermal resistance between the 9th turn and the refrigerant liquid is kept sufficiently large, and the heat generated by the heater wire can be effectively used to heat the winding. become.

(実施例) 以下1図面を参照しながら実施例を説明する。(Example) An embodiment will be described below with reference to one drawing.

第1図は本発明の一実施例に係る熱式永久電流スイッチ
の縦断面図である。
FIG. 1 is a longitudinal sectional view of a thermal persistent current switch according to an embodiment of the present invention.

この熱式永久電流スイッチも、ill!強化プラスチッ
クなどのように熱伝導の低い部材で形成された巻枠21
にスイッチ部22を装着したものとなっている。
This thermal persistent current switch is also ill! Winding frame 21 made of a material with low thermal conductivity such as reinforced plastic
A switch section 22 is attached to the switch section 22.

巻枠21は2巻枠片23と、これに組み合わさる巻枠片
24とで構成されている。巻枠片23は。
The winding frame 21 is composed of two winding frame pieces 23 and a winding frame piece 24 combined therewith. The winding frame piece 23 is.

軸部25と、この軸部25の一端側に一体に形成された
鍔部26と、この鍔部26の周縁部から軸部25を覆う
ように軸部25と同心的に延びた薄肉の筒状部27とで
構成されている。巻枠片24は2巻枠片23の前記軸部
25の他端側に前記鍔部26に対向して嵌合装着される
鍔部28と、この鍔528の周縁部から前記筒状部27
を覆い。
A shank portion 25, a flange portion 26 integrally formed on one end side of this shank portion 25, and a thin-walled cylinder extending concentrically with the shank portion 25 so as to cover the shank portion 25 from the peripheral edge of the flange portion 26. It is composed of a shaped portion 27. The winding frame piece 24 has a flange 28 fitted to the other end side of the shaft 25 of the second winding frame piece 23 facing the flange 26, and a flange 28 that extends from the peripheral edge of the flange 528 to the cylindrical part 27.
cover.

かつ筒状部27との間に環状の1間29を設けて鍔部2
6側へと延びる薄肉の筒状部30とで構成されている。
And an annular space 29 is provided between the cylindrical part 27 and the flange part 2.
It is composed of a thin cylindrical portion 30 extending toward the 6th side.

なお、筒状部30の基端部内側は筒状部27の先端との
間に隙間を設けるため後退したものとなっている。また
、筒状部27の基端部内側および筒状部30の基端部内
側には第2図に示すように、これら筒状部27.30で
囲まれた部分と外部とを通じさせる小径の孔31.32
が周方向に複数形成されている。
Note that the inner side of the base end of the cylindrical portion 30 is set back to provide a gap between it and the tip of the cylindrical portion 27. Furthermore, as shown in FIG. 2, there are small diameter holes on the inside of the base end of the cylindrical part 27 and on the inside of the base end of the cylindrical part 30, which allow the part surrounded by the cylindrical part 27, 30 to communicate with the outside. hole 31.32
A plurality of are formed in the circumferential direction.

一方、スイッチ部22は、Nb1Snで代表される母材
抵抗値の大きい超電導!!41を無誘導に巻回して巻回
部42を形成するとともに巻回部42の内部あるいは表
面にヒータ線43を沿わせ。
On the other hand, the switch part 22 is a superconducting material with a high base material resistance represented by Nb1Sn! ! 41 is wound without induction to form a wound portion 42, and a heater wire 43 is placed along the inside or surface of the wound portion 42.

これらにエポキシ樹脂で代表される樹脂44を含浸し、
モールドしたものとなっている。この場合。
These are impregnated with resin 44 represented by epoxy resin,
It is molded. in this case.

巻回部42の外周面を覆う樹脂層45の厚みは1履程度
以下に設定され、さらに樹脂層45を含む巻回部42の
外1は筒状部27の内径より所定だけ小さくなるように
設定されている。そして、上記のように構成されたスイ
ッチ部22を巻枠片23の軸部25に装着し、この状態
で第1図に示すように巻枠片23に巻枠片24を装着す
るとともに超電導線41の両端およびヒータ線43の両
端を外部に突出させている。したがって、前記関係によ
り、樹脂層45と筒状部27との間には環状の隙間46
が存在し、この隙間46は隙間29に直列に通じている
ことになる。
The thickness of the resin layer 45 covering the outer circumferential surface of the winding part 42 is set to about one shoe or less, and the outer part 1 of the winding part 42 including the resin layer 45 is set to be smaller than the inner diameter of the cylindrical part 27 by a predetermined amount. It is set. Then, the switch section 22 configured as described above is attached to the shaft section 25 of the winding frame piece 23, and in this state, the winding frame piece 24 is attached to the winding frame piece 23 as shown in FIG. Both ends of the heater wire 41 and both ends of the heater wire 43 are made to protrude outside. Therefore, due to the above relationship, there is an annular gap 46 between the resin layer 45 and the cylindrical part 27.
exists, and this gap 46 communicates in series with the gap 29.

このように構成された熱式永久電流スイッチは。The thermal persistent current switch constructed in this way.

従来のスイッチと同様に超電導線41の両端が超電導コ
イルの両端に接続され、超電導コイルと一緒に液体ヘリ
ウムで代表される冷媒液中に浸漬され、この状態でオフ
に切換えるときにはヒータ線43に通電し、またオンに
切換えるときにはヒータ線43への通電を停止すること
によってオン。
Like conventional switches, both ends of the superconducting wire 41 are connected to both ends of the superconducting coil, and are immersed together with the superconducting coil in a refrigerant liquid represented by liquid helium. In this state, when switched off, the heater wire 43 is energized. When turning on the heater wire 43, the heater wire 43 is turned on by stopping the current supply to the heater wire 43.

オフ制御される。Controlled off.

上記構成であると、冷媒液は隙間29の図中下部開口4
7および孔31.32から隙間29゜46内に入り込む
、前述の如く樹脂層45の厚みは充分薄く設定されてい
るので、結局1巻回部42と冷媒液との間の熱抵抗は充
分小さい値に保持される。したがって、このスイッチを
冷媒液中に浸漬すると、極めて短時間に巻回部42が臨
界温度以下に冷却され、この結果、スイッチ部22がオ
ン状態となる。
With the above configuration, the refrigerant liquid flows through the lower opening 4 of the gap 29 in the figure.
As mentioned above, the thickness of the resin layer 45 that enters the gap 29° 46 from the holes 31 and 31 and 32 is set to be sufficiently thin, so that the thermal resistance between the first turn 42 and the refrigerant liquid is sufficiently small. held in value. Therefore, when this switch is immersed in the refrigerant liquid, the winding portion 42 is cooled to below the critical temperature in an extremely short time, and as a result, the switch portion 22 is turned on.

このようなオン状態のとき、オフ状態に切換えるために
ヒータ線43に通電すると2巻回部42が加熱される。
In such an on state, when the heater wire 43 is energized to switch to the off state, the second winding portion 42 is heated.

このとき、ヒータ線43で発生した熱の一部が樹脂層4
5を介して111間46内の冷媒液を加熱する。このた
め、隙間46内の冷媒液はガス化する。隙間46.29
は直列に接続されているので、これら隙間46.29内
の冷媒液は冷媒ガスの圧力で開口47.孔31.32を
介して外に押し出される。したがって、隙間46゜29
内は冷媒ガスによって満たされる。ガス状態の冷媒は熱
伝導が極めて低い。また、各筒状部27.30は熱伝導
の低い部材で形成されている。
At this time, part of the heat generated by the heater wire 43 is transferred to the resin layer 4.
5 to heat the refrigerant liquid in 46 between 111 and 111. Therefore, the refrigerant liquid within the gap 46 is gasified. Gap 46.29
are connected in series, so the refrigerant liquid in these gaps 46.29 flows through the openings 47.29 under the pressure of the refrigerant gas. It is forced out through holes 31,32. Therefore, the gap is 46°29
The interior is filled with refrigerant gas. Gaseous refrigerants have extremely low heat conductivity. Further, each cylindrical portion 27, 30 is formed of a material with low thermal conductivity.

このため、ヒータ143に通電しているときには。Therefore, when the heater 143 is energized.

巻回部42と冷媒液との間の熱抵抗が充分大きい状態に
保たれる。このため、ヒータ線43で発生した熱は巻回
部42を常電導化するために有効に使用されることにな
り、この結果、スイッチ部22は速やかにオフ状態に切
換ねる。
The thermal resistance between the winding portion 42 and the refrigerant liquid is maintained in a sufficiently large state. Therefore, the heat generated by the heater wire 43 is effectively used to make the winding part 42 normally conductive, and as a result, the switch part 22 is quickly switched to the OFF state.

また、オフ状態からオン状態に切換えるためにヒータ線
43への通電を停止すると、隙間46゜29内の圧力が
低下するため、この隙間46゜29内に開口47.孔3
1.32を介して冷媒液が流れ込み、隙間46.29内
のガスを凝縮させる。このため1巻回部42は速やかに
臨界温度以下に冷却され、この結果、スイッチ部22は
オン状態に切換ねる。したがって、少ない電力で、しか
もオンからオフへの切換え時間の短縮化およびオフから
オンへの切換え時間の短縮化を実現できることになる。
Further, when the power supply to the heater wire 43 is stopped in order to switch from the off state to the on state, the pressure within the gap 46°29 decreases, so the opening 47. Hole 3
1.32, the refrigerant liquid flows in and condenses the gas in the gap 46.29. Therefore, the first turn portion 42 is quickly cooled to below the critical temperature, and as a result, the switch portion 22 is not turned on. Therefore, it is possible to shorten the switching time from on to off and from off to on with less power.

なお1本発明は、上述した実施例に限定されるものでは
ない。すなわち、隙間29.46を確実に確保するため
に筒状部27の内外面や筒状部30の内面に突起を複数
設けるようにしてもよい。
Note that the present invention is not limited to the embodiments described above. That is, a plurality of protrusions may be provided on the inner and outer surfaces of the cylindrical portion 27 and the inner surface of the cylindrical portion 30 in order to ensure the gap 29.46.

また、上述した実施例では隙間を2層設けているが、3
層以上設けるようにしてもよい。また2巻枠と筒状部、
つまり固体とを別体に構成してもよい、さらに孔31.
32を省略することもできる。
In addition, in the above-mentioned embodiment, two layers of gaps are provided, but three layers are provided.
More than one layer may be provided. In addition, the second winding frame and cylindrical part,
In other words, the holes 31. may be constructed separately from the solid body.
32 can also be omitted.

[発明の効果] 以上述べたように1本発明によれば、少ないヒータ電力
で、しかもオン、オフ切換え時間の短縮化を図れる熱式
永久電流スイッチを提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a thermal persistent current switch that requires less heater power and can shorten the on/off switching time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る熱式永久電流スイッチ
の縦断面図、第2図は同スイッチの局部的縦断面図、第
3図は従来の熱式永久電流スイッチの縦断面図である。 21・・・巻枠、22・・・スイッチ部、27.30・
・・筒状部、29.48・・・1li1.41・・・超
電導線。 42・・・巻回部、43・・・ヒータ線、45・・・樹
脂層。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is a vertical cross-sectional view of a thermal persistent current switch according to an embodiment of the present invention, FIG. 2 is a partial vertical cross-sectional view of the same switch, and FIG. 3 is a vertical cross-sectional view of a conventional thermal persistent current switch. It is. 21... Winding frame, 22... Switch section, 27.30.
...Cylindrical part, 29.48...1li1.41...Superconducting wire. 42... Winding portion, 43... Heater wire, 45... Resin layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)母材抵抗値の大きい超電導線を無誘導に巻回する
とともに上記超電導線に熱的に接続させてヒータ線を設
けてなる熱式永久電流スイッチにおいて、前記超電導線
の巻回部を覆い、かつ互いの間に狭い隙間を設けて複数
層設けられた熱伝導の低い筒体と、これら筒体間に形成
された前記隙間を直列に接続する手段とを具備してなる
ことを特徴とする熱式永久電流スイッチ。
(1) In a thermal persistent current switch in which a superconducting wire having a large base material resistance value is wound non-inductively and a heater wire is provided by thermally connecting the superconducting wire, the winding portion of the superconducting wire is It is characterized by comprising: a cylindrical body with low thermal conductivity that is covered with a plurality of layers with narrow gaps between them; and means for connecting the gaps formed between these cylindrical bodies in series. A thermal persistent current switch.
(2)前記巻回部に隣接した隙間は、軸方向の一端部が
閉じられていることを特徴とする特許請求の範囲第1項
記載の熱式永久電流スイッチ。
(2) The thermal persistent current switch according to claim 1, wherein the gap adjacent to the winding portion is closed at one end in the axial direction.
(3)前記巻回部に隣接した隙間は、軸方向の一端部が
狭い通路を介して外部に通じていることを特徴とする特
許請求の範囲第1項記載の熱式永久電流スイッチ。
(3) The thermal persistent current switch according to claim 1, wherein one axial end of the gap adjacent to the winding portion communicates with the outside through a narrow passage.
(4)前記筒体は、内面または外面に前記隙間を確保す
る突起を有したものであることを特徴とする特許請求の
範囲第1項記載の熱式永久電流スイッチ。
(4) The thermal persistent current switch according to claim 1, wherein the cylindrical body has a protrusion on its inner or outer surface to ensure the gap.
JP62071603A 1987-03-27 1987-03-27 Thermal persistent current switch Pending JPS63239876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071603A JPS63239876A (en) 1987-03-27 1987-03-27 Thermal persistent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071603A JPS63239876A (en) 1987-03-27 1987-03-27 Thermal persistent current switch

Publications (1)

Publication Number Publication Date
JPS63239876A true JPS63239876A (en) 1988-10-05

Family

ID=13465396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071603A Pending JPS63239876A (en) 1987-03-27 1987-03-27 Thermal persistent current switch

Country Status (1)

Country Link
JP (1) JPS63239876A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101926A (en) * 1988-10-07 1990-04-13 Toshiba Corp Current limiting apparatus
JPH02202320A (en) * 1989-01-27 1990-08-10 Toshiba Corp Superconducting current limiter
WO2010073146A3 (en) * 2008-12-22 2010-09-02 Koninklijke Philips Electronics, N.V. Superconducting switch cooled by means of internal cavity filled with liquid or gaseous coolant
JP2014209543A (en) * 2013-03-28 2014-11-06 株式会社神戸製鋼所 Permanent current switch and superconducting device including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101926A (en) * 1988-10-07 1990-04-13 Toshiba Corp Current limiting apparatus
JPH02202320A (en) * 1989-01-27 1990-08-10 Toshiba Corp Superconducting current limiter
WO2010073146A3 (en) * 2008-12-22 2010-09-02 Koninklijke Philips Electronics, N.V. Superconducting switch cooled by means of internal cavity filled with liquid or gaseous coolant
JP2012513670A (en) * 2008-12-22 2012-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Superconducting switch cooled by internal cavity filled with liquid or gaseous refrigerant
US8885329B2 (en) 2008-12-22 2014-11-11 Koninklijke Philips N.V. Superconducting switch cooled by means of internal cavity filled with liquid or gaseous coolant
JP2014209543A (en) * 2013-03-28 2014-11-06 株式会社神戸製鋼所 Permanent current switch and superconducting device including the same

Similar Documents

Publication Publication Date Title
US9741480B2 (en) Mechanical superconducting switch
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
CN102651265B (en) Superconducting electromagnet comprising coils bonded to a heated support structure
US4085343A (en) Rotor for a rotary electrical machine having a superconductive field winding
US5955120A (en) Heating device, in particular for use in injection molds for the processing of thermoplastic materials
US4764837A (en) Superconductive circuit for controlling quench events
JPH07142237A (en) Superconducting magnet device
JPH0523485B2 (en)
JP2004505440A (en) Superconducting device with inductive current limiter unit utilizing high Tc superconducting material
JPS63239876A (en) Thermal persistent current switch
US4803456A (en) Superconductive switch
JP7040730B2 (en) Permanent current switch
JPS6213010A (en) Superconductive electromagnet
KR101996388B1 (en) Superconducting switch of superconducting magnet for magnetic levitation
CN103647541B (en) Superconducting switch with radiation shielding cylinder
JPH11176629A (en) Superconducting magnet device
JPH09102413A (en) Superconductive magnetic device
JP2000068567A (en) Conduction-cooled permanent current switch
JPH06151984A (en) Thermal type permanent current switch
JP7575743B2 (en) Magnetic field generator
JPS624382A (en) Superconductive switch
JPS5998572A (en) Thermal switch for superconductive magnet device
JPH10335712A (en) Superconducting switch
JPS6381874A (en) Persistent current switch
JP3181345B2 (en) Superconducting current lead