[go: up one dir, main page]

JP2921137B2 - Method of forming insulating film - Google Patents

Method of forming insulating film

Info

Publication number
JP2921137B2
JP2921137B2 JP1813791A JP1813791A JP2921137B2 JP 2921137 B2 JP2921137 B2 JP 2921137B2 JP 1813791 A JP1813791 A JP 1813791A JP 1813791 A JP1813791 A JP 1813791A JP 2921137 B2 JP2921137 B2 JP 2921137B2
Authority
JP
Japan
Prior art keywords
insulating film
plasma
microwave
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1813791A
Other languages
Japanese (ja)
Other versions
JPH04257224A (en
Inventor
光夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1813791A priority Critical patent/JP2921137B2/en
Publication of JPH04257224A publication Critical patent/JPH04257224A/en
Application granted granted Critical
Publication of JP2921137B2 publication Critical patent/JP2921137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、絶縁膜を備えた半導
体装置の製造方法に関し、特に、ECR (電子サイクロ
トロン) プラズマCVD法により半導体装置基板上の段
差部、例えば電極や配線等の上に絶縁膜を形成する技術
に関するものである。ECRプラズマCVD法が適用さ
れるECRプラズマCVD装置を、この発明では、軸線
上にマイクロ波透過窓を備え導入されたガスをプラズマ
化する軸対称のプラズマ生成室と、プラズマ生成室を同
軸に囲んでプラズマ生成室内にマイクロ波との電子サイ
クロトロン共鳴磁場領域面を形成するコイルと、プラズ
マ生成室のマイクロ波透過窓と対面する側に設けられた
プラズマ引出し窓を介してプラズマ生成室と連通し内部
に被成膜基板が配される反応室とを備えた装置としてい
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having an insulating film, and more particularly to a method for manufacturing a semiconductor device having an insulating film on a step portion, for example, an electrode or a wiring, on a semiconductor device substrate by ECR (Electron Cyclotron) plasma CVD. The present invention relates to a technique for forming an insulating film. According to the present invention, an ECR plasma CVD apparatus to which an ECR plasma CVD method is applied is provided with a microwave generation window on an axis, an axially symmetric plasma generation chamber for converting introduced gas into plasma, and a coaxial surrounding of the plasma generation chamber. A coil that forms an electron cyclotron resonance magnetic field region with microwaves in the plasma generation chamber and a plasma extraction window provided on the side of the plasma generation chamber facing the microwave transmission window and communicates with the plasma generation chamber. And a reaction chamber in which a film formation substrate is disposed.

【0002】[0002]

【従来の技術】半導体集積回路の層間絶縁膜やパッシベ
ーション膜 (表面保護膜) としては、通常、絶縁膜の原
料となるガス分子の励起に熱エネルギーを用いる熱CV
D法や、高周波電圧印加によるプラズマ放電によりガス
分子を励起する高周波プラズマCVD法により形成され
た酸化膜, 窒化膜等が用いられている。しかし、近年、
半導体装置の集積化および高密度化が進み、配線間隔や
配線幅等の構造寸法がサブミクロン領域に移行するのに
伴って絶縁膜の高品質化が要求されるようになり、上記
の成膜方法以外の手法が種々試みられている。そのうち
の1つとして、低温成膜が可能で、耐酸性, 緻密性に優
れた絶縁膜を形成できるECRプラズマCVD法が開発
されている。
2. Description of the Related Art As an interlayer insulating film or a passivation film (surface protective film) of a semiconductor integrated circuit, a thermal CV which uses heat energy to excite gas molecules as a raw material of an insulating film is usually used.
An oxide film, a nitride film, and the like formed by the D method or a high frequency plasma CVD method in which gas molecules are excited by plasma discharge by applying a high frequency voltage are used. However, in recent years,
As the integration and densification of semiconductor devices advance and the structural dimensions such as wiring spacing and wiring width shift to the submicron region, high quality insulating films are required, and the above-mentioned film formation is required. Various approaches other than the method have been attempted. As one of them, an ECR plasma CVD method capable of forming a low-temperature film and forming an insulating film excellent in acid resistance and denseness has been developed.

【0003】このECRプラズマCVD法は、所定強度
の磁場中にガスを導入し、ここに磁場強度に対応した周
波数のマイクロ波を入射することによって、マイクロ波
のエネルギーを偶存電子に共鳴吸収させ、エネルギーを
得た偶存電子の衝突によってガス分子が電離することに
より増殖する電子にもエネルギーを吸収させることによ
り高密度に生成されたプラズマを、反応ガスとともに基
板上に導き成膜するものである。
In this ECR plasma CVD method, a gas is introduced into a magnetic field having a predetermined intensity, and a microwave having a frequency corresponding to the magnetic field intensity is incident on the gas, whereby the energy of the microwave is resonantly absorbed by accidental electrons. The plasma generated at high density by absorbing energy even to electrons that multiply by ionization of gas molecules due to collision of accidental electrons that have gained energy, is introduced on the substrate together with the reaction gas to form a film. is there.

【0004】ここで、基板上の段差 (例えば、基板上に
形成された電極や配線等による凹凸面) の上に絶縁膜を
形成する場合には、絶縁特性を向上させ、あるいは、多
層構造を形成可能とするためには、平坦化処理を施す必
要がある。この平坦化処理を特別に必要とすることなく
平坦化が可能であり、かつ、基板上の段差被覆が良好で
ある絶縁膜の形成方法として、基板に高周波バイアスを
印加し、基板の自己バイアス効果によって基板表面に負
電位を生じさせ、エッチングとデポジションとを同時に
行うバイアススパッタリング法が知られている。この高
周波バイアスの印加は、ECRプラズマCVD法におい
ても施すことが可能であり、これにより、絶縁膜の段差
被覆性の改善と、膜質の改善とが期待されている。
Here, when an insulating film is formed on a step on a substrate (for example, an uneven surface formed by electrodes or wirings formed on the substrate), the insulating characteristics are improved or a multilayer structure is formed. In order to be able to form, it is necessary to perform a flattening process. As a method for forming an insulating film that can be flattened without special need for this flattening process and has good step coverage on the substrate, a high-frequency bias is applied to the substrate, and the self-bias effect of the substrate is applied. There is known a bias sputtering method in which a negative potential is generated on the surface of a substrate to perform etching and deposition simultaneously. The application of the high-frequency bias can be performed also in the ECR plasma CVD method, and thereby, improvement in step coverage of the insulating film and improvement in film quality are expected.

【0005】このECRプラズマCVD法を適用する装
置として、本発明が対象とするECRプラズマCVD装
置の構造例を図5に示す。図5の装置による絶縁膜の形
成は、絶縁膜が例えばSiO2 膜である場合、軸対称に形
成されたプラズマ生成室を同軸に囲むコイル4によ
り、プラズマ生成室内にマイクロ波周波数との電子サ
イクロトロン共鳴磁場領域面 (以下ECR領域面もしく
はECR面と略記する)を形成した後、プラズマ生成室
内に第1ガス導入系3からO2 ガスを導入するととも
に、図示されないマイクロ波源で発振されたマイクロ波
を導波管1を通し、マイクロ波透過窓2を透過させてプ
ラズマ生成室内へ導入することにより、ECR領域面
近傍でO2 ガスを電離度高く電離してO2 ガスプラズマ
を生成し、このプラズマをコイル4が形成する発散磁界
に沿って反応室内へ導くとともに、第2ガス導入系7
から反応ガスとしてSiH4 ガスを反応室内へ導入して
2ガスプラズマにより分解,活性化し、基板上にSiO2
分子を堆積させることにより行われる。
FIG. 5 shows a structural example of an ECR plasma CVD apparatus to which the present invention is applied as an apparatus to which the ECR plasma CVD method is applied. Forming the insulating film by the apparatus of FIG. 5, when the insulating film is, for example, a SiO 2 film, by a coil 4 surrounding the plasma generation chamber 5 formed axisymmetrically coaxially, a microwave frequency plasma generating chamber 5 After forming an electron cyclotron resonance magnetic field area surface (hereinafter abbreviated as ECR area surface or ECR surface) of the plasma generation chamber
Within 5 while O 2 gas is introduced from the first gas introduction system 3, the microwave oscillated by the microwave source (not shown) through the waveguide 1, by transmitting microwave transmission window 2 plasma generating chamber 5 by introducing into, and ionization degree of ionization higher O 2 gas in the ECR region the vicinity generate O 2 gas plasma, and guides into the reaction chamber 6 along a divergent magnetic field to the plasma coil 4 is formed, Second gas introduction system 7
The SiH 4 gas as a reactive gas is introduced into the reaction chamber 6 from the O 2 gas plasma by decomposing and activating, SiO 2 on the substrate
This is done by depositing molecules.

【0006】[0006]

【発明が解決しようとする課題】ECRプラズマCVD
法により形成された絶縁膜は、成膜時に基板に到達する
プラズマの密度やエネルギー等に偏りが存在することか
ら、この方法で形成した絶縁膜には、膜厚および膜質の
均一性が悪いという欠点があり、半導体装置の高集積化
に伴う微細構造への適応性や絶縁特性の安定性に欠ける
という問題点と配線等の段差部の被覆性にも欠けるとい
う問題点を有していた。
SUMMARY OF THE INVENTION ECR plasma CVD
Since the insulating film formed by the method has a bias in the density and energy of the plasma reaching the substrate at the time of film formation, the insulating film formed by this method has poor uniformity of film thickness and film quality. There are drawbacks, such as a lack of adaptability to a fine structure and a stability of insulation characteristics due to the high integration of the semiconductor device, and a lack of coverage of steps such as wiring.

【0007】この発明の目的は、ECRプラズマCVD
装置の実質的な構造変更やコスト上昇を伴うことなく、
膜厚と膜質とが均一な絶縁膜を形成可能な絶縁膜の形成
方法を提供することである。
An object of the present invention is to provide an ECR plasma CVD.
Without any substantial structural changes or cost increases,
An object of the present invention is to provide a method for forming an insulating film capable of forming an insulating film having a uniform thickness and film quality.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、軸線上にマイクロ波透過窓を備
え導入されたガスをプラズマ化する軸対称のプラズマ生
成室と、プラズマ生成室を同軸に囲んでプラズマ生成室
内にマイクロ波との電子サイクロトロン共鳴磁場領域面
を形成するコイルと、プラズマ生成室と連通し内部に被
成膜基板が配される反応室とを備えたECRプラズマC
VD装置を用いて被成膜基板に絶縁膜を形成する際の絶
縁膜形成方法であって、前記コイルの幾何学的中心が、
マイクロ波透過窓のプラズマ生成室内部空間側の面のプ
ラズマ生成室内部空間と反対側に位置するようにコイル
を配置するとともに、コイルによる電子サイクロトロン
共鳴磁場領域面を、マイクロ波透過窓を透過したマイク
ロ波の電界強度の波高値位置に形成し、かつ被成膜基板
に高周波バイアスを印加して絶縁膜を形成する絶縁膜の
形成方法において、被成膜基板の温度を室温〜150
℃,ガス圧力を1×10-4〜5×10-3torr,プラ
ズマ生成室に入射されるマイクロ波電力を250〜45
0W,被成膜基板に印加する高周波バイアス電力を60
0〜1000Wとして絶縁膜を形成することとする。こ
こで、電子サイクロトロン共鳴磁場領域面が形成される
マイクロ波の電界強度波高値の位置を、マイクロ波透過
窓を透過したマイクロ波の最初の波高値位置とすること
が好適である。
According to the present invention, there is provided, in accordance with the present invention, an axially symmetric plasma generation chamber having a microwave transmission window on an axis for converting introduced gas into plasma, An ECR including a coil for forming an electron cyclotron resonance magnetic field region surface with microwaves in a plasma generation chamber coaxially surrounding the generation chamber, and a reaction chamber in communication with the plasma generation chamber and in which a substrate on which a film is to be formed is disposed. Plasma C
An insulating film forming method for forming an insulating film on a film formation substrate using a VD apparatus, wherein a geometric center of the coil is
The coil was arranged so that the surface of the microwave transmission window on the side of the plasma generation chamber inside space was on the opposite side of the plasma generation chamber interior space, and the coil passed through the microwave transmission window through the electron cyclotron resonance magnetic field area. In the method for forming an insulating film, in which the insulating film is formed by applying a high-frequency bias to a substrate on which the film is to be formed at a peak value position of the electric field strength of the microwave,
° C, gas pressure of 1 × 10 -4 to 5 × 10 -3 torr, and microwave power incident on the plasma generation chamber of 250 to 45.
0 W, the high frequency bias power applied to the film formation substrate is 60
An insulating film is formed at 0 to 1000 W. Here, it is preferable that the position of the peak value of the electric field intensity of the microwave on which the electron cyclotron resonance magnetic field region surface is formed be the first peak position of the microwave transmitted through the microwave transmission window.

【0009】[0009]

【作用】プラズマ生成室内に発生したプラズマは、軸対
称なプラズマ生成室を同軸に囲むコイルが形成する発散
磁界の磁界強度勾配により、磁力線に沿って基板上へと
流れ、基板中央部で厚く周縁側で薄くなる膜厚分布を形
成しようとする。一方、基板には高周波バイアスが印加
され、基板表面に負のバイアス電位が生じており、この
電位による電界は反応室の周壁へ向かうから、電界強度
は基板の中央部より周縁側で大きくなり、基板へ向かう
プラズマ中のイオンを周縁側でより強く吸引しようとす
る。これにより、基板表面には膜厚のより均一な絶縁膜
が形成されるとともに、基板表面の負電位によりイオン
が加速されるので、イオンの衝突により、成膜された膜
をスパッタリングし、同時に成膜することにより緻密な
膜が形成されると考えられる。
The plasma generated in the plasma generation chamber flows onto the substrate along the lines of magnetic force due to the magnetic field intensity gradient of the divergent magnetic field formed by the coil surrounding the plasma generation chamber which is symmetrical with respect to the axis. An attempt is made to form a thin film thickness distribution on the edge side. On the other hand, a high-frequency bias is applied to the substrate, and a negative bias potential is generated on the surface of the substrate, and the electric field due to this potential is directed toward the peripheral wall of the reaction chamber. Attempts to attract ions in the plasma toward the substrate more strongly at the peripheral edge. As a result, an insulating film having a more uniform thickness is formed on the surface of the substrate, and ions are accelerated by the negative potential on the surface of the substrate. It is considered that a dense film is formed by forming the film.

【0010】また、コイルによるECR領域面を、マイ
クロ波を透過したマイクロ波の電界強度の波高値位置に
形成することにより、ガス分子を電離する電子に吸収さ
せるマイクロ波のエネルギーが大きくなり、この領域面
近傍で高密度のプラズマが生成され、また、マイクロ波
の波高値近傍では、波高値に近い電界領域の軸方向の幅
が広いことから、ECR領域面が多少湾曲している場合
にも、ECR領域面はこの幅内に存在し、プラズマ生成
室の半径方向にプラズマが均一に形成され、高周波バイ
アスの印加とあいまって、基板に到達するプラズマ密度
を基板の半径方向に均一化することができる。また、コ
イルの幾何学的中心がマイクロ波透過窓のプラズマ生成
室内部空間側の面よりプラズマ生成室内部空間と反対側
にあるため、コイルが形成する磁界は、プラズマ生成室
内のいずれの位置でもプラズマ引出し窓方向へ発散して
おり、プラズマ生成室内のプラズマがマイクロ波透過窓
へ向かうことはなく、マイクロ波透過窓の破損が防止さ
れ、安定した装置運転が可能になる。
Further, by forming the ECR region surface of the coil at the peak value of the electric field intensity of the microwave transmitted through the microwave, the energy of the microwave for absorbing gas molecules into the ionizing electrons increases. High-density plasma is generated near the surface of the region, and near the peak value of the microwave, the width of the electric field region close to the peak value is large in the axial direction. The ECR area surface exists within this width, and the plasma is uniformly formed in the radial direction of the plasma generation chamber, and the application of the high frequency bias makes the plasma density reaching the substrate uniform in the radial direction of the substrate. Can be. In addition, since the geometric center of the coil is located on the opposite side of the plasma transmission chamber interior space from the surface of the microwave transmission window on the plasma generation chamber interior space side, the magnetic field formed by the coil is generated at any position in the plasma generation chamber. Since the plasma diverges in the direction of the plasma extraction window, the plasma in the plasma generation chamber does not go to the microwave transmission window, the damage of the microwave transmission window is prevented, and stable operation of the apparatus becomes possible.

【0011】以上により、基板上に形成される絶縁膜の
膜厚および膜質の面内均一性が向上する。高周波バイア
スを制御することにより、電極や配線等の段差被覆性や
平坦度の向上も可能になる。なお、ECR領域面を、マ
イクロ波透過窓を透過したマイクロ波の電界強度の最初
の波高値位置に形成する場合の作用、ならびに、基板温
度, ガス圧力などの成膜条件を上述のように設定する場
合の作用については、上記絶縁膜形成方法が適用される
ECRプラズマCVD装置の一実施例による構造と合わ
せ、実施例の項で説明する。
As described above, the in-plane uniformity of the film thickness and quality of the insulating film formed on the substrate is improved. By controlling the high frequency bias, it is possible to improve the step coverage and flatness of the electrodes and wirings. The operation when the ECR region surface is formed at the first peak value of the electric field intensity of the microwave transmitted through the microwave transmission window, and the film forming conditions such as the substrate temperature and the gas pressure are set as described above. The operation in this case will be described in the embodiment section together with the structure of one embodiment of the ECR plasma CVD apparatus to which the above-described insulating film forming method is applied.

【0012】[0012]

【実施例】まず、図1に、本発明による絶縁膜形成方法
を適用するECRプラズマCVD装置構造の一実施例を
示す。図において、図5と同一の部材には同一符号が付
されている。この装置が図5の装置と異なる所は、図2
に詳細を示すように、コイル4の幾何学的中心が、マイ
クロ波透過窓2のプラズマ生成室内部空間側の面のプラ
ズマ生成室内部空間と反対側へ十分離れた位置に位置す
るように、かつコイルの下端面が、マイクロ波透過窓2
を透過したマイクロ波の電界強度の最初の波高値位置近
傍に位置するようにコイルが配置され、かつ基板9が載
置される基板台10に高周波電源11が接続されている点で
ある。
FIG. 1 shows an embodiment of an ECR plasma CVD apparatus to which an insulating film forming method according to the present invention is applied. In the drawing, the same members as those in FIG. 5 are denoted by the same reference numerals. This device differs from the device of FIG.
As described in detail below, the geometric center of the coil 4 is located at a position sufficiently away from the surface of the microwave transmission window 2 on the side of the space inside the plasma generation chamber toward the side opposite to the space inside the plasma generation chamber. And the lower end surface of the coil is the microwave transmitting window 2
The point is that the coil is arranged so as to be located near the first peak value position of the electric field strength of the microwave transmitted through the substrate, and the high frequency power supply 11 is connected to the substrate table 10 on which the substrate 9 is mounted.

【0013】装置をこのように形成し、コイル4に流す
電流を調整して、ECR領域面を前記マイクロ波の電界
強度の最初の波高値位置であるコイル下端面近傍に形成
すると、ECR領域面を比較的平坦な面に形成すること
ができ、従って、マイクロ波電界強度の波高値近傍領域
の軸方向幅内にECR領域面を存在させることができ
る。また、マイクロ波の電界強度波高値は、プラズマ生
成室内で一旦プラズマが形成されると、マイクロ波の進
行方向に減衰するから、本実施例のように、マイクロ波
透過窓を透過したマイクロ波の電界強度が最初に波高値
に達する位置にECR領域面を形成するのが、成膜速度
を高めるためにも有効である。
When the device is formed in this manner and the current flowing through the coil 4 is adjusted to form the ECR region surface near the lower end surface of the coil, which is the first peak value position of the electric field intensity of the microwave, the ECR region surface Can be formed on a relatively flat surface, so that the ECR region surface can exist within the axial width of the region near the peak value of the microwave electric field intensity. Further, once the plasma is formed in the plasma generation chamber, the peak value of the electric field intensity of the microwave attenuates in the traveling direction of the microwave. Forming the ECR region surface at a position where the electric field intensity reaches the peak value first is also effective for increasing the film forming speed.

【0014】そこで、図1に示すECRプラズマCVD
装置を用いてSiO2 膜を形成する場合の成膜条件を表1
のように設定したときのSiO2 膜の諸特性を以下に説明
する。なお、この成膜条件は、従来の通常の成膜条件と
比べ、プラズマ生成室内に投入されるマイクロ波電力よ
りも基板に印加される高周波バイアス電力 (RF電力)
を大きくしている点が特徴である。すなわち、この成膜
条件では、マイクロ波電力と高周波バイアス電力との差
異を、それぞれパルス状に印加される電力のパルス幅と
パルス周期との比、すなわちデューティの差によって生
じさせており、高周波バイアス電力のデューティを大き
くすることにより、緻密な膜を形成することができる。
また、絶縁膜がSiN膜である場合には、SiH4 ガスに対
するN2ガスの流量比をこの表のガス流量比と変えて絶
縁膜を形成する。
Therefore, the ECR plasma CVD shown in FIG.
Table 1 shows the film forming conditions when forming an SiO 2 film using the apparatus.
Various characteristics of the SiO 2 film when set as described below will be described below. Note that, compared to the conventional normal film forming conditions, the film forming conditions are higher in the high frequency bias power (RF power) applied to the substrate than the microwave power input into the plasma generation chamber.
The feature is that is increased. That is, under these film forming conditions, the difference between the microwave power and the high frequency bias power is caused by the ratio between the pulse width and the pulse period of the power applied in a pulse shape, that is, the difference in the duty. By increasing the duty of power, a dense film can be formed.
When the insulating film is a SiN film, the insulating film is formed by changing the flow ratio of the N 2 gas to the SiH 4 gas from the gas flow ratio shown in this table.

【0015】[0015]

【表1】 [Table 1]

【0016】膜厚分布を示す図3に見られるように、従
来の発散磁場により形成されたSiO 2 膜の膜厚は、基板
の半径方向外側に向かって薄くなっている。これは、プ
ラズマ生成室3内で発生するプラズマ密度の偏りを反映
していると考えられるが、本実施例により形成されたSi
2 膜においては、基板外周縁に到るまで均一な膜厚を
有している。基板8に高周波バイアスを印加することに
より、プラズマ密度が均一化し、また、スパッタリング
効果により平坦化され、従来よりも凹凸が緩和されるこ
とによるものと思われる。
As can be seen from FIG.
Formed by the incoming divergent magnetic field TwoThe film thickness depends on the substrate
Radially outwardly. This is
Reflects bias of plasma density generated in plasma generation chamber 3
It is considered that the Si formed according to the present embodiment
OTwoIn the film, a uniform film thickness is reached up to the outer periphery of the substrate.
Have. To apply a high frequency bias to the substrate 8
More uniform plasma density and sputtering
The surface is flattened by the effect, and unevenness is reduced
It seems to be due to.

【0017】図4は、SiO2 膜をBHF (バッファ弗
酸, 50%弗酸を水で希釈した溶液) にてエッチングした
ときのエッチング速度の分布を示したものである。本実
施例の成膜条件により形成されたSiO2 膜のエッチング
速度の面内均一性は、従来の発散磁場で形成した場合に
較べて極めて優れている。また、全面的に、従来よりエ
ッチング速度が遅くなっており、全体としても膜質が向
上している。これは、本実施例の成膜条件の高周波バイ
アス印加によりプラズマ中のイオンが基板上に衝突する
ことにより、従来より緻密な膜が形成されることによる
ものと考えられる。
FIG. 4 shows the distribution of the etching rate when the SiO 2 film is etched with BHF (buffer hydrofluoric acid, a solution obtained by diluting 50% hydrofluoric acid with water). The in-plane uniformity of the etching rate of the SiO 2 film formed under the film forming conditions of the present embodiment is extremely excellent as compared with the case where the SiO 2 film is formed by the conventional divergent magnetic field. In addition, the etching rate is slower than before, and the film quality is improved as a whole. This is considered to be due to the fact that ions in the plasma collide with the substrate due to the application of the high-frequency bias under the film forming conditions of the present embodiment, thereby forming a denser film than before.

【0018】以上、説明したように、膜厚と膜質双方の
面内均一性を向上させることができ、また、膜質自体も
従来よりも向上させることができた。
As described above, the in-plane uniformity of both the film thickness and the film quality can be improved, and the film quality itself can be improved as compared with the prior art.

【0019】[0019]

【発明の効果】本発明においては、ECRプラズマCV
D法による絶縁膜の形成方法を上述のような方法とした
ので、以下に記載する効果が奏せられる。
According to the present invention, the ECR plasma CV
Since the method of forming the insulating film by the method D is the method described above, the following effects can be obtained.

【0020】請求項1の方法では、プラズマ生成室内で
ECR領域面の位置とマイクロ波電界強度の波高値位置
とが一致し、かつ、マイクロ波電界強度の波高値近傍領
域の軸方向幅が広くECR領域面に多少の湾曲があって
もECR領域面がこの幅内に存在するようになるため、
高密度プラズマが半径方向に均一に形成され、このプラ
ズマが発散磁界と基板に印加された高周波バイアスによ
る基板表面の負のバイアス電位とにより、均一な密度で
基板に到達するため、膜厚,膜質の均一性が向上すると
ともに、基板表面の負のバイアス電位によるイオン衝撃
効果により膜質自体も向上する。
According to the first aspect of the present invention, the position of the ECR region surface coincides with the peak value position of the microwave electric field intensity in the plasma generation chamber, and the axial width of the region near the peak value of the microwave electric field intensity is wide. Even if the ECR area surface has some curvature, the ECR area surface will be present within this width,
High-density plasma is uniformly formed in the radial direction, and this plasma reaches the substrate with uniform density by the divergent magnetic field and the negative bias potential on the substrate surface due to the high frequency bias applied to the substrate. And the film quality itself is also improved by the ion bombardment effect of the negative bias potential on the substrate surface.

【0021】さらに、プラズマ生成室に投入されるマイ
クロ波電力が小さく、基板に印加される高周波バイアス
電力が大きいため、この設定範囲内で両電力を調整する
ことにより、膜厚と膜質との半径方向の傾きを、傾きを
無くする方向に制御しつつ膜質の向上を図ることが可能
になる。
Furthermore, since the microwave power applied to the plasma generation chamber is small and the high frequency bias power applied to the substrate is large, adjusting both powers within this set range allows the radius of the film thickness and film quality to be adjusted. It is possible to improve the film quality while controlling the inclination of the direction to eliminate the inclination.

【0022】請求項2の方法では、ECR領域面が、マ
イクロ波電界強度の波高値のうち、マイクロ波透過窓に
最も近い最大波高値位置に形成されるため、生成される
プラズマの密度が最大となり、成膜速度がさらに向上す
る。
According to the second aspect of the present invention, the surface of the ECR region is formed at the maximum peak value position closest to the microwave transmission window among the peak values of the microwave electric field intensity. And the film forming speed is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による絶縁膜形成方法を適用するECR
プラズマCVD装置構造の一実施例を示す縦断面図
FIG. 1 shows an ECR to which an insulating film forming method according to the present invention is applied.
Longitudinal sectional view showing one embodiment of a plasma CVD apparatus structure

【図2】本発明による絶縁膜形成方法を示す説明図FIG. 2 is an explanatory view showing an insulating film forming method according to the present invention.

【図3】本発明による絶縁膜形成方法のもとで成膜条件
の一実施例によりSiO2 膜を形成したときの膜厚分布
を、従来技術によりSiO2 膜を形成した場合と対比して
示す線図
FIG. 3 shows a film thickness distribution when an SiO 2 film is formed according to an embodiment of the film forming conditions under the method of forming an insulating film according to the present invention, in comparison with a case where an SiO 2 film is formed according to a conventional technique. Diagram showing

【図4】本発明による絶縁膜形成方法のもとで図3と同
一成膜条件によりSiO2 膜を形成したときのエッチング
レートを、従来技術によりSiO2 膜を形成した場合と対
比して示す線図
FIG. 4 shows an etching rate when an SiO 2 film is formed under the same film forming conditions as in FIG. 3 under the insulating film forming method according to the present invention, as compared with a case where an SiO 2 film is formed by a conventional technique. Diagram

【図5】従来の絶縁膜形成方法が適用されるECRプラ
ズマCVD装置の構造例を示す縦断面図
FIG. 5 is a longitudinal sectional view showing a structural example of an ECR plasma CVD apparatus to which a conventional insulating film forming method is applied.

【符号の説明】[Explanation of symbols]

2 マイクロ波透過窓 4 コイル プラズマ生成室 反応室 8 プラズマ引出し窓 9 基板(被成膜基板) 11 高周波電源2 Microwave transmission window 4 Coil 5 Plasma generation chamber 6 Reaction chamber 8 Plasma extraction window 9 Substrate (deposition target substrate) 11 High frequency power supply

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軸線上にマイクロ波透過窓を備え導入され
たガスをプラズマ化する軸対称のプラズマ生成室と、プ
ラズマ生成室を同軸に囲んでプラズマ生成室内にマイク
ロ波との電子サイクロトロン共鳴磁場領域面を形成する
コイルと、プラズマ生成室と連通し内部に被成膜基板が
配される反応室とを備えたECRプラズマCVD装置を
用いて被成膜基板に絶縁膜を形成する際の絶縁膜形成方
法であって、前記コイルの幾何学的中心が、マイクロ波
透過窓のプラズマ生成室内部空間側の面のプラズマ生成
室内部空間と反対側に位置するようにコイルを配置する
とともに、コイルによる電子サイクロトロン共鳴磁場領
域面を、マイクロ波透過窓を透過したマイクロ波の電界
強度の波高値位置に形成し、かつ被成膜基板に高周波バ
イアスを印加して絶縁膜を形成する絶縁膜の形成方法に
おいて、被成膜基板の温度を室温〜150℃,ガス圧力
を1×10-4〜5×10-3torr,プラズマ生成室に
入射されるマイクロ波電力を250〜450W,被成膜
基板に印加する高周波バイアス電力を600〜1000
Wとして絶縁膜を形成することを特徴とする絶縁膜の形
成方法。
1. An axially symmetric plasma generation chamber having a microwave transmission window on an axis for converting introduced gas into plasma, and an electron cyclotron resonance magnetic field of microwaves in the plasma generation chamber surrounding the plasma generation chamber coaxially. Insulation when an insulating film is formed on a deposition target substrate using an ECR plasma CVD apparatus including a coil forming a region surface and a reaction chamber communicating with a plasma generation chamber and having a deposition target substrate disposed therein. A film forming method, comprising: arranging a coil so that a geometric center of the coil is located on a side opposite to a plasma generation chamber interior space on a surface of the microwave transmission window on a side of the plasma generation chamber interior space; The electron cyclotron resonance magnetic field region surface is formed at the peak position of the electric field intensity of the microwave transmitted through the microwave transmission window, and a high frequency bias is applied to the substrate on which the film is to be formed. In the method of forming the insulating film forming the Enmaku, room temperature to 150 DEG ° C. The temperature of the deposition substrate, the microwave power entering the gas pressure 1 × 10 -4 ~5 × 10 -3 torr, the plasma generating chamber From 250 to 450 W, and the high frequency bias power applied to the film formation substrate from 600 to 1000 W
A method for forming an insulating film, wherein an insulating film is formed as W.
【請求項2】請求項1に記載の絶縁膜の形成方法におい
て、電子サイクロトロン共鳴磁場領域面が形成されるマ
イクロ波の電界強度波高値の位置を、マイクロ波透過窓
を透過したマイクロ波の最初の波高値位置とすることを
特徴とする絶縁膜の形成方法。
2. The method for forming an insulating film according to claim 1, wherein the position of the peak value of the electric field intensity of the microwave on which the electron cyclotron resonance magnetic field region surface is formed is determined by the initial position of the microwave transmitted through the microwave transmission window. A method of forming an insulating film, wherein the peak value is set at a peak value.
JP1813791A 1991-02-12 1991-02-12 Method of forming insulating film Expired - Fee Related JP2921137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1813791A JP2921137B2 (en) 1991-02-12 1991-02-12 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1813791A JP2921137B2 (en) 1991-02-12 1991-02-12 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH04257224A JPH04257224A (en) 1992-09-11
JP2921137B2 true JP2921137B2 (en) 1999-07-19

Family

ID=11963219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1813791A Expired - Fee Related JP2921137B2 (en) 1991-02-12 1991-02-12 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP2921137B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007111092A1 (en) 2006-03-24 2009-08-06 コニカミノルタエムジー株式会社 Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111074A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111098A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing same
WO2007111075A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
EP2000298A1 (en) 2006-03-24 2008-12-10 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet

Also Published As

Publication number Publication date
JPH04257224A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
KR100377582B1 (en) Plasma processing method
JP3408093B2 (en) Negative ion source for etching high aspect ratio structures
US5181986A (en) Plasma processing apparatus
JP2543642B2 (en) System and method for treating a workpiece having high frequency alternating current electrical energy and relatively low frequency alternating current electrical energy
US5916820A (en) Thin film forming method and apparatus
JPH09232292A (en) Plasma treatment apparatus for manufacture of semiconductor wafer
US20220319841A1 (en) Deposition of low-stress carbon-containing layers
JP2921137B2 (en) Method of forming insulating film
WO2012043250A1 (en) Method and device for forming insulation film
JPH10134995A (en) Plasma processing device and processing method for plasma
JP3973283B2 (en) Plasma processing apparatus and plasma processing method
JP3907444B2 (en) Plasma processing apparatus and structure manufacturing method
JP3042208B2 (en) Microwave plasma processing equipment
JP4478352B2 (en) Plasma processing apparatus, plasma processing method, and structure manufacturing method
JP4577328B2 (en) Manufacturing method of semiconductor device
JP4141021B2 (en) Plasma deposition method
JP3530788B2 (en) Microwave supplier, plasma processing apparatus and processing method
JPH08195379A (en) Plasma processing method and device
JP2819774B2 (en) Method of forming insulating film
JP3516741B2 (en) Plasma processing method
JP2750430B2 (en) Plasma control method
JPH11214383A (en) Plasma film formation method
JPH05144773A (en) Plasma etching device
JPH10199863A (en) Plasma processing method, plasma processing apparatus, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees