[go: up one dir, main page]

JP2911107B2 - Regenerator for absorption refrigerator - Google Patents

Regenerator for absorption refrigerator

Info

Publication number
JP2911107B2
JP2911107B2 JP31836895A JP31836895A JP2911107B2 JP 2911107 B2 JP2911107 B2 JP 2911107B2 JP 31836895 A JP31836895 A JP 31836895A JP 31836895 A JP31836895 A JP 31836895A JP 2911107 B2 JP2911107 B2 JP 2911107B2
Authority
JP
Japan
Prior art keywords
heat transfer
absorption
solution
regenerator
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31836895A
Other languages
Japanese (ja)
Other versions
JPH09159307A (en
Inventor
泰道 郡
敦 設楽
正俊 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP31836895A priority Critical patent/JP2911107B2/en
Publication of JPH09159307A publication Critical patent/JPH09159307A/en
Application granted granted Critical
Publication of JP2911107B2 publication Critical patent/JP2911107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸収式冷凍機用再生
器に関し、特に、水等の冷媒の吸収溶液として臭化リチ
ウム水溶液のような吸湿性の高い物質を用い、該吸収溶
液を再生器と吸収器との間で循環させるようにした吸収
式冷凍機に用いられる改良された再生器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerator for an absorption refrigerator, and more particularly to a regenerator using a highly hygroscopic substance such as an aqueous solution of lithium bromide as an absorption solution for a refrigerant such as water. The present invention relates to an improved regenerator used in an absorption refrigerator in which circulation is performed between a regenerator and an absorber.

【0002】[0002]

【従来の技術】上記の形式の吸収式冷凍機は、主に、吸
収器、溶液ポンプ、再生器、凝縮器、蒸発器から構成さ
れる。図4は二重効用吸収式冷凍機の作動原理を説明す
るシステムフロー図であり、蒸発器Eで発生した冷媒蒸
気は吸収器Aにおいて吸収溶液(例えば臭化リチウム水
溶液)に吸収され、冷媒の吸収により低濃度となった吸
収溶液は溶液ポンプSPにより高温再生器HGに送られ
る。高温再生器HGはバーナーBを有しており、該低濃
度の吸収溶液はバーナーBからの熱により冷媒を蒸発し
て濃縮される。濃縮された吸収溶液は高温再生器HGか
ら低温再生器LGに流入し、そこで高温再生器HGから
の冷媒蒸気と熱交換をして再度濃縮された後に吸収器A
へ流入する。蒸発した冷媒は凝縮器Cで凝縮され蒸発器
Eに送られる。図中、RPは冷媒循環用ポンプであり、
蒸発器E内の冷媒を循環させている。再生器を一個のみ
用い、当該再生器からの吸収溶液を吸収器Aを直接送り
出すようにした単効用吸収式冷凍機も知られている。
2. Description of the Related Art An absorption refrigerator of the above-mentioned type mainly comprises an absorber, a solution pump, a regenerator, a condenser and an evaporator. FIG. 4 is a system flow chart for explaining the operation principle of the double effect absorption refrigerator. The refrigerant vapor generated in the evaporator E is absorbed by the absorption solution (for example, lithium bromide aqueous solution) in the absorber A, The absorption solution having a low concentration due to absorption is sent to the high-temperature regenerator HG by the solution pump SP. The high-temperature regenerator HG has a burner B, and the low concentration absorbing solution evaporates the refrigerant by the heat from the burner B and is concentrated. The concentrated absorption solution flows from the high-temperature regenerator HG to the low-temperature regenerator LG, where it exchanges heat with the refrigerant vapor from the high-temperature regenerator HG and is concentrated again.
Flows into The evaporated refrigerant is condensed in the condenser C and sent to the evaporator E. In the figure, RP is a refrigerant circulation pump,
The refrigerant in the evaporator E is circulated. There is also known a single-effect absorption refrigerator in which only one regenerator is used and the absorption solution from the regenerator is directly sent out to the absorber A.

【0003】図5は、上記のような吸収式冷凍機で用い
られる再生器(高温再生器HG)の一例を示す断面図で
あり、本体ケーシング1は内部に伝熱室2を有し、伝熱
室2の一方の側端部には加熱源としてのバーナーBが火
炎をほぼ水平方向に伝熱室2内に噴射するように取り付
けられており、伝熱室2の他方側端部には燃焼ガス排気
用の煙突4が配置される。伝熱室2の4周は、伝熱室の
下部に位置する下部吸収溶液溜まり5、上部に位置する
上部吸収溶液溜まり6、及び伝熱室の側部において上部
吸収溶液溜まり6と下部吸収溶液溜まり5とを連通する
連通部(図5には現れない)とで形成される吸収溶液室
10とされている。そして、上下の吸収溶液溜まり5、
6は、前記した連通部に加えて、バーナーBの火炎に接
しない位置において伝熱室2内にほぼ垂直方向に配置さ
れた複数本の伝熱管7により連通されている。また、下
部吸収溶液溜まり5は管路8及び前記溶液ポンプSPを
介して吸収器Aに連通しており、冷媒を吸収して低濃度
となった吸収溶液が吸収器Aから下部吸収溶液溜まり5
に送給される(特開平5−187740号公報等参
照)。
FIG. 5 is a cross-sectional view showing an example of a regenerator (high-temperature regenerator HG) used in the above absorption refrigerator. The main body casing 1 has a heat transfer chamber 2 inside, A burner B as a heating source is attached to one side end of the heat chamber 2 so as to inject a flame into the heat transfer chamber 2 in a substantially horizontal direction. A chimney 4 for exhausting combustion gas is arranged. The four circumferences of the heat transfer chamber 2 include a lower absorption solution reservoir 5 located at a lower portion of the heat transfer chamber, an upper absorption solution reservoir 6 located at an upper portion, and an upper absorption solution reservoir 6 and a lower absorption solution at a side portion of the heat transfer chamber. An absorption solution chamber 10 is formed by a communication part (not shown in FIG. 5) communicating with the reservoir 5. And the upper and lower absorbent solution pools 5,
Numeral 6 communicates with a plurality of heat transfer tubes 7 arranged in a substantially vertical direction in the heat transfer chamber 2 at a position not in contact with the flame of the burner B in addition to the above-described communication portion. The lower absorbing solution reservoir 5 is connected to the absorber A via the pipe 8 and the solution pump SP, and the absorbing solution which has absorbed the refrigerant and has a low concentration is transferred from the absorber A to the lower absorbing solution reservoir 5.
(See JP-A-5-187740).

【0004】溶液ポンプSPにより送給された吸収溶液
は送給圧及びバーナーBの火炎と燃焼ガスによる加熱に
よる対流(自然対流)により、下部吸収溶液溜まり5か
ら複数の伝熱管7内を上昇して上部吸収溶液溜まり6に
達し、上部吸収溶液溜まり6に滞留した吸収溶液は該連
通部を通って下部吸収溶液溜まり5に流下し、再び、伝
熱管7を通って上昇する。吸収溶液に吸収された冷媒
(水)はバーナーBの加熱によって蒸気化し、気化した
冷媒は前記のように低温再生器LG又は凝縮器Cに送ら
れ液化した後に蒸発器Eへ送られる。また、冷媒の蒸発
により濃縮された吸収溶液は吸収器Aに送られ、再び冷
媒の吸収を行う。
The absorbing solution sent by the solution pump SP rises from the lower absorbing solution reservoir 5 to the inside of the plurality of heat transfer tubes 7 by the feeding pressure and the convection (natural convection) caused by the flame of the burner B and the heating by the combustion gas. The upper absorbent solution reservoir 6 reaches the upper absorbent solution reservoir 6, and the absorbent solution retained in the upper absorbent solution reservoir 6 flows down to the lower absorbent solution reservoir 5 through the communicating portion, and rises again through the heat transfer tube 7. The refrigerant (water) absorbed by the absorbing solution is vaporized by heating the burner B, and the vaporized refrigerant is sent to the low-temperature regenerator LG or the condenser C and liquefied as described above, and then sent to the evaporator E. Further, the absorbing solution concentrated by evaporation of the refrigerant is sent to the absorber A to absorb the refrigerant again.

【0005】図6は吸収式冷凍機用再生器の他の例を示
す水平断面図であり、伝熱室2aの一方側端部にはほぼ
水平方向に火炎を含む燃焼ガスを噴射するバーナーBが
配置され、伝熱室2a内にはバーナーBの燃焼ガスと交
叉するように比較的配置密度を密にして多数のほぼ垂直
状の伝熱管7aが配置されている。そして、該伝熱管7
aの少なくとも上流側の伝熱管7a’群は燃焼火炎部に
配置され、順次下流に行くに従い伝熱管の伝熱面密度を
高めるようされている(実開平7−22371号公報参
照)。この構成により、サーマルNOx の発生が効果的
に抑制され、また、燃焼ガスの温度が徐々に低下してい
くためCOの発生も効果的に抑制されるというものであ
る。
FIG. 6 is a horizontal sectional view showing another example of a regenerator for an absorption refrigerator. A burner B for injecting a combustion gas containing a flame in a substantially horizontal direction at one end of a heat transfer chamber 2a. Are arranged in the heat transfer chamber 2a, and a number of substantially vertical heat transfer tubes 7a are arranged in the heat transfer chamber 2a at a relatively high density so as to cross the combustion gas of the burner B. And the heat transfer tube 7
The group of heat transfer tubes 7a 'at least on the upstream side of a is arranged in the combustion flame portion, and the heat transfer surface density of the heat transfer tubes is increased as going downstream (see Japanese Utility Model Laid-Open No. 7-22371). With this configuration, the generation of thermal NO x is effectively suppressed, and the generation of CO is also effectively suppressed since the temperature of the combustion gas gradually decreases.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、吸収式
冷凍機用再生器についての研究と実験を継続して行って
きているが、その過程において、吸収溶液の濃度が低い
場合には格別の不都合は生じないが、冷媒の蒸発が進み
すぎて吸収溶液の濃度が高くなった場合に、特にバーナ
ーに近接する側に位置する伝熱管内に腐食及び晶析(水
等の溶媒が過剰蒸発して溶質(吸収溶液)の量が当該溶
媒に対する溶解度を越えてしまい、溶質が結晶となって
析出する現象)が生じることを経験した。その現象は図
6に示すバーナーの火炎に直接接する位置に伝熱管7
a’を配置した形式の再生器の場合、特に顕著であっ
た。これは、吸収溶液中に吸収されている水(冷媒)の
量が減少することにより、バーナーに近接して位置する
伝熱管群では、そこでの高い熱流束を吸収溶液が十分に
吸収できないことによると考えられる。腐食や晶析の発
生は伝熱管の有効寿命を短縮させ、結果として再生器そ
のものの有効使用期間を短くするので、このような晶析
及び腐食は発生は回避されねばならない。本発明の目的
は、簡単な構成の付加により、上記した従来の吸収式冷
凍機に用いられている再生器に生じている不都合、すな
わち、伝熱管内に晶析や腐食が起こる不都合を解消した
改良された再生器を得ることにある。
The present inventors have been conducting continuous research and experiments on regenerators for absorption refrigerators. In the process, if the concentration of the absorption solution is low, Although no particular inconvenience occurs, if the concentration of the absorbing solution becomes too high due to excessive evaporation of the coolant, corrosion and crystallization (especially when the solvent such as water (The phenomenon that the solute (absorbing solution) evaporates and the amount of the solute exceeds the solubility in the solvent, and the solute crystallizes and precipitates). The phenomenon is that the heat transfer tube 7 is located directly in contact with the burner flame shown in FIG.
This was particularly noticeable in the case of a regenerator in which a 'was arranged. This is due to the fact that the amount of water (refrigerant) absorbed in the absorbing solution is reduced, so that the absorbing solution cannot sufficiently absorb the high heat flux there in the heat transfer tube group located close to the burner. it is conceivable that. Such crystallization and corrosion must be avoided because the occurrence of corrosion and crystallization shortens the useful life of the heat transfer tube and consequently shortens the useful life of the regenerator itself. An object of the present invention is to solve the above-described disadvantages occurring in the regenerator used in the conventional absorption refrigerator, that is, the disadvantage that crystallization or corrosion occurs in the heat transfer tube by adding a simple configuration. It is to obtain an improved regenerator.

【0007】[0007]

【課題を解決するための手段】上記の課題は、本発明に
よれば、吸収溶液室と伝熱室とを有し、該吸収溶液室内
に流入する吸収溶液を該伝熱室内に配置した伝熱管群を
通過させることにより加熱濃縮する形式の吸収式冷凍機
用再生器であって、該吸収溶液室には収容される吸収溶
液の上流側と下流側との移動を制限するための隔壁が設
けられており、かつ、冷媒蒸気を吸収して低濃度となっ
た吸収溶液は前記隔壁よりも上流側において前記吸収溶
液室内に流入するようにされていることを特徴とする吸
収式冷凍機用再生器、により解決される。
SUMMARY OF THE INVENTION According to the present invention, there is provided an absorption solution chamber and a heat transfer chamber, wherein an absorption solution flowing into the absorption solution chamber is disposed in the heat transfer chamber. A regenerator for an absorption type refrigerator for heating and concentrating by passing through a group of heat tubes, wherein the absorption solution chamber has a partition wall for restricting the movement of the contained absorption solution between the upstream side and the downstream side. For the absorption refrigerator, wherein the absorption solution is provided, and the absorption solution having a low concentration by absorbing the refrigerant vapor is made to flow into the absorption solution chamber on the upstream side of the partition wall. A regenerator.

【0008】本発明の好ましい態様においては、前記伝
熱管群はバーナーに近接する第1の伝熱管群とそれより
後流側の第2の伝熱管群とに区分けされており、前記隔
壁は前記第1の伝熱管群と第2の伝熱管群との間におい
て該吸収溶液室に配置され、かつ、冷媒蒸気を吸収して
低濃度となった吸収溶液は前記第1の伝熱管群に近接す
る位置において前記吸収溶液室内に流入するようにされ
ている。
[0008] In a preferred aspect of the present invention, the heat transfer tube group is divided into a first heat transfer tube group close to the burner and a second heat transfer tube group downstream of the first heat transfer tube group. The absorbing solution, which is disposed in the absorbing solution chamber between the first heat transfer tube group and the second heat transfer tube group and has a low concentration by absorbing the refrigerant vapor, is close to the first heat transfer tube group. At the position where the absorption solution flows.

【0009】このような構成とすることにより、再生器
内の吸収溶液室に流入する冷媒蒸気を吸収して低濃度と
なった吸収溶液は、前記隔壁により区画される上流側の
吸収溶液室とそこに位置する伝熱管群とを先ず循環す
る。該上流側の吸収溶液室には順次低濃度の吸収溶液が
流入することにより、上流側に位置する伝熱管群を通過
する吸収溶液の濃度は、常時、低い濃度に維持される。
冷媒の蒸発により濃縮された吸収溶液は吸収溶液室の上
部側のみにおいて隔壁を超えて下流側の吸収溶液室に移
動し、そこにおいて、再度、伝熱管群を通過して循環
し、冷媒はさらに蒸発され濃縮される。
[0009] With this configuration, the absorption solution which has absorbed the refrigerant vapor flowing into the absorption solution chamber in the regenerator and has a low concentration is mixed with the upstream absorption solution chamber partitioned by the partition walls. First circulate through the heat transfer tube group located there. The absorption solution having a low concentration sequentially flows into the absorption solution chamber on the upstream side, so that the concentration of the absorption solution passing through the heat transfer tube group located on the upstream side is always maintained at a low concentration.
The absorption solution concentrated by the evaporation of the refrigerant moves to the downstream absorption solution chamber beyond the partition only at the upper side of the absorption solution chamber, where it is circulated again through the heat transfer tube group, and the refrigerant is further Evaporate and concentrate.

【0010】上記のように、本発明による再生器では、
吸収溶液が循環する吸収溶液室は、隔壁によりバーナー
に近接する側すなわち上流側の吸収溶液室と、それより
も下流側の吸収溶液室とに実質的に区分され、上流側の
吸収溶液室では常に低濃度の吸収溶液が循環し、下流側
の吸収溶液室では濃縮され高濃度とされた吸収溶液が循
環する。それにより、熱流束の高い上流側伝熱管群での
晶析、腐食の発生は阻止することが可能となり、一方、
後流側伝熱管群では熱流束がそれほど高くないために高
濃度の吸収溶液が循環しても晶析、腐食は発生しない。
[0010] As described above, in the regenerator according to the present invention,
The absorption solution chamber in which the absorption solution circulates is substantially divided into a side adjacent to the burner by the partition wall, that is, an absorption solution chamber on the upstream side, and an absorption solution chamber on the downstream side thereof. The absorption solution having a low concentration is circulated at all times, and the absorption solution having a high concentration is circulated in the absorption solution chamber on the downstream side. As a result, it is possible to prevent crystallization and corrosion from occurring in the upstream heat transfer tube bank having a high heat flux.
Since the heat flux in the downstream heat transfer tube bank is not so high, crystallization and corrosion do not occur even if a high concentration of the absorbing solution circulates.

【0011】本発明のさらに好ましい態様においては、
前記隔壁の下端部近傍、すなわち、下部吸収溶液溜まり
に位置する部分に、複数の小孔が形成される。この態様
の再生器においては、隔壁の上流側と下流側とに差圧が
生じた場合に、小孔を通して一方から他方に吸収溶液が
移動することができる。それにより、吸収式冷凍機の起
動時あるいは部分負荷運転時等に、運転制御の都合か
ら、バーナーBは着火した状態で溶液ポンプSPを停止
させる場合が起こりうるが、その場合にも、吸収溶液の
自然対流による循環に必要な量の吸収溶液は、該小孔を
通して後流側の吸収溶液室から移動することができ、バ
ーナーに近接した伝熱各群の高い熱流束は相当程度に吸
収され、晶析や腐食は発生はほぼ抑制される。
In a further preferred embodiment of the present invention,
A plurality of small holes are formed in the vicinity of the lower end of the partition wall, that is, in a portion located in the lower absorbent solution reservoir. In the regenerator of this aspect, when a pressure difference is generated between the upstream side and the downstream side of the partition, the absorbing solution can move from one side to the other through the small holes. Thus, when the absorption refrigerator is started up or at the time of partial load operation, the burner B may stop the solution pump SP in the ignited state for the sake of operation control. The amount of absorbing solution required for natural convection circulation can move from the absorbing solution chamber on the downstream side through the small holes, and the high heat flux of each group of heat transfer close to the burner is considerably absorbed. The generation of crystallization and corrosion is almost suppressed.

【0012】また、吸収式冷凍機の運転停止時には、通
常、バーナーを止めた状態で溶液ポンプを作動して吸収
溶液を循環させ、濃度の均一化を図るが、その際にも、
該小孔を通して吸収溶液は移動できることから、より短
時間で均一化処理を終えることが可能となる。
When the operation of the absorption refrigerator is stopped, the solution pump is normally operated with the burner stopped to circulate the absorption solution to make the concentration uniform.
Since the absorbing solution can move through the small holes, the homogenizing process can be completed in a shorter time.

【0013】[0013]

【発明の実施の形態】以下、好ましい実施の態様を図面
と共に説明することにより、本発明をより詳細に説明す
る。図1は本発明による吸収式冷凍機用再生器の一実施
例の断面図、図2は図1のII-II 線による断面図、図3
は一部を破断した斜視図であり、以下、この再生器を二
重効用吸収式冷凍機の高温再生器HGとして用いる場合
を例として説明する。この吸収式冷凍機用再生器HG
は、図5に基づき先に説明した従来知られた再生器と、
次に説明する吸収溶液の強制循環及び自然対流による循
環のための構成を除き他の構成は同じである。従って、
以下の説明において、同じ機能を奏する部材には同じ符
合を付するにとどめ詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a sectional view of an embodiment of a regenerator for an absorption refrigerator according to the present invention, FIG. 2 is a sectional view taken along line II-II of FIG.
Is a partially broken perspective view. Hereinafter, a case where this regenerator is used as a high-temperature regenerator HG of a double effect absorption refrigerator will be described as an example. This regenerator HG for absorption refrigerator
Is a conventionally known regenerator described above with reference to FIG.
Other configurations are the same except for a configuration for forced circulation of the absorbing solution and a natural convection circulation described below. Therefore,
In the following description, members having the same function are denoted by the same reference numerals, and detailed description is omitted.

【0014】すなわち、再生器HGは、本体ケーシング
1の内部に本体ケーシング1を貫通する伝熱室2を有
し、該伝熱室2の4周には、伝熱室2の下方に位置する
下部吸収溶液溜まり5と、伝熱室2の上方に位置する上
部吸収溶液溜まり6と、伝熱室の側部において上部吸収
溶液溜まり6と下部吸収溶液溜まり5とを連通する連通
部5aとで形成される吸収溶液室10が形成されてい
る。また、伝熱室2の内部にはバーナーBに近接する位
置に第1の伝熱管群71が、その後流側には第2の伝熱
管群72が、それぞれ、下方の開放端を下部吸収溶液溜
まり5に、上方の開放端を上部吸収溶液溜まり6にそれ
ぞれ連通した状態で垂直方向に取り付けられている。ま
た、濃縮された吸収溶液を低温再生器LGに送るための
管路9は、バーナーBが位置する側とは反対側の端部に
設けられている。
That is, the regenerator HG has a heat transfer chamber 2 penetrating the main body casing 1 inside the main body casing 1, and is located below the heat transfer chamber 2 on four turns of the heat transfer chamber 2. A lower absorbent solution reservoir 5, an upper absorbent solution reservoir 6 located above the heat transfer chamber 2, and a communication portion 5a that communicates the upper absorbent solution reservoir 6 and the lower absorbent solution reservoir 5 on the side of the heat transfer chamber. An absorption solution chamber 10 to be formed is formed. In the heat transfer chamber 2, a first heat transfer tube group 71 is provided at a position close to the burner B, and a second heat transfer tube group 72 is provided on the downstream side thereof. The reservoir 5 is attached vertically with the upper open end communicating with the upper absorbent solution reservoir 6, respectively. A pipe 9 for sending the concentrated absorption solution to the low-temperature regenerator LG is provided at an end opposite to the side where the burner B is located.

【0015】前記第1と第2の伝熱管群71と72との
間における吸収溶液室10には隔壁11が配置される。
この隔壁は好ましくは再生器と同じ素材で構成され、そ
の大きさは、図示されるように、下部吸収溶液溜まり5
と左右の連通部5aの全面を閉鎖すると共に、その上端
が、上部吸収溶液溜まり6における通常の運転状態での
吸収溶液のレベルLよりもやや低い位置まで達するよう
にされる。また、隔壁11の下端部近傍、すなわち、下
部吸収溶液溜まり5を閉鎖している部位には多数の小孔
12が穿設されている。
A partition 11 is disposed in the absorbing solution chamber 10 between the first and second heat transfer tube groups 71 and 72.
This partition is preferably made of the same material as the regenerator, and its size, as shown, is
And the left and right communication portions 5a are closed, and the upper end thereof is set to a position slightly lower than the level L of the absorbing solution in the upper absorbing solution reservoir 6 in a normal operation state. In addition, a number of small holes 12 are formed near the lower end of the partition wall 11, that is, in a portion that closes the lower absorbent solution reservoir 5.

【0016】さらに、吸収溶液室5、5aの前記隔壁1
1よりも上流側、すなわち、第1の伝熱管群71が位置
する側の吸収溶液室には、吸収器Aに接続した管路8が
接続しており、好ましくはこの管路8は、図示されるよ
うに、第1の伝熱管群71の下方位置にその開放端が位
置するように配置される。また、上部吸収溶液溜まり6
の上方部位であって該第1の伝熱管群71の上方位置に
は遮蔽板36が固設され、第1の伝熱管群71の上方開
口から噴出する吸収溶液の上方への飛散を遮蔽する。
Further, the partition walls 1 of the absorption solution chambers 5 and 5a are provided.
A line 8 connected to the absorber A is connected to the absorption solution chamber on the upstream side of the first heat transfer tube group 71, that is, on the side where the first heat transfer tube group 71 is located. So that the open end thereof is located below the first heat transfer tube group 71. In addition, the upper absorbent solution pool 6
A shielding plate 36 is fixedly provided above the first heat transfer tube group 71 at a position above the first heat transfer tube group 71, and shields the upward scattering of the absorbing solution spouting from the upper opening of the first heat transfer tube group 71. .

【0017】次に、この吸収式冷凍機用再生器HGの作
用を説明する。再生器HGは図4、図5に基づき説明し
た従来知られた再生器と同様にして用いられる。すなわ
ち、運転時において、冷媒蒸気を吸収して低濃度となっ
た吸収器Aからの吸収溶液は、ポンプSPにより、隔壁
11よりも上流側において、好ましくは第1の伝熱管群
71の直下位置において、管路8から下部吸収溶液溜ま
り5内に送り込まれる。送り込まれた低濃度の吸収溶液
は、第1の伝熱管群71を通って上部吸収溶液溜まり6
に送給される。その時に、より下流側とは隔壁11によ
り実質的に仕切られていることから、下流側(第2の伝
熱管群72側)に滞留する濃縮された吸収溶液が混流す
ることはない。
Next, the operation of the regenerator HG for an absorption refrigerator will be described. The regenerator HG is used in the same manner as the conventionally known regenerator described with reference to FIGS. That is, during operation, the absorption solution from the absorber A, which has absorbed the refrigerant vapor and has become low in concentration, is pumped by the pump SP and located upstream of the partition wall 11, preferably immediately below the first heat transfer tube group 71. In, the solution is sent into the lower absorbent solution reservoir 5 from the pipe line 8. The low-concentration absorbing solution sent in passes through the first heat transfer tube group 71 and the upper absorbing solution pool 6
Sent to At this time, the concentrated absorption solution staying downstream (on the side of the second heat transfer tube group 72) does not mix with the downstream side (substantially separated by the partition 11).

【0018】第1の伝熱管群71を上昇した吸収溶液
は、左右の連通部5aを通って下降して下部吸収溶液溜
まり5に至り、再度第1の伝熱管群71を上昇する循環
を行なうか、隔壁11を乗り越えて下流側の吸収溶液室
に至り、そこで循環を行なう。管路8から濃度の低い吸
収溶液が常時圧送されてくるので、一旦第1の伝熱管群
71を上昇して冷媒を蒸発し濃縮された吸収溶液は下流
側の吸収溶液室に移動することとなり、第1の伝熱管群
71内は低濃度の吸収溶液が通常循環する。
The absorption solution that has risen in the first heat transfer tube group 71 descends through the left and right communication portions 5a to reach the lower absorption solution reservoir 5, and then circulates up the first heat transfer tube group 71 again. Alternatively, it passes over the partition 11 to reach the absorption solution chamber on the downstream side, where circulation is performed. Since the low-concentration absorbing solution is always sent under pressure from the pipe 8, the absorbing solution concentrated once by ascending the first heat transfer tube group 71 to evaporate the refrigerant moves to the absorbing solution chamber on the downstream side. In the first heat transfer tube group 71, a low concentration absorbing solution normally circulates.

【0019】そのために、バーナーBに近接して位置す
る第1の伝熱管群71内に生じる高い熱流束は確実に低
濃度の吸収溶液により吸収され、第1の伝熱管群71に
腐食や晶析を発生するのは回避される。また、第2の伝
熱管群72内は高濃度となった吸収溶液が循環すること
となるが、熱流束が比較的低いため、そこでも腐食や晶
析を発生するのは回避される。濃縮された吸収溶液は管
路9から低温再生器LGに送られ、さらに吸収器Aに送
給されて、再び冷媒の吸収を行う。一方、冷媒蒸気は凝
縮器Cに送られる。
Therefore, the high heat flux generated in the first heat transfer tube group 71 located close to the burner B is surely absorbed by the low-concentration absorbing solution, and the first heat transfer tube group 71 has corrosion and crystal growth. The occurrence of precipitation is avoided. Although the highly concentrated absorbing solution circulates in the second heat transfer tube group 72, since the heat flux is relatively low, corrosion and crystallization are also avoided there. The concentrated absorbing solution is sent from the pipe 9 to the low-temperature regenerator LG, and further sent to the absorber A to absorb the refrigerant again. On the other hand, the refrigerant vapor is sent to the condenser C.

【0020】前記したように、吸収式冷凍機の起動時あ
るいは部分負荷運転時等に、運転制御の都合から、バー
ナーBは着火した状態で溶液ポンプSPを停止させる場
合が起こりうる。その場合には、管路8から低濃度の吸
収溶液が供給されないために第1の伝熱管群71を通過
する吸収溶液量が不足し熱流束を吸収できなくなり晶
析、腐食が発生しやすくなる。隔壁11の下端部近傍に
穿設した小孔12はそのような事態に対処するために形
成されている。すなわち、加熱により生じる自然対流の
循環に必要な量の吸収溶液が不足する場合は、差圧によ
り、該小孔を通して後流側の吸収溶液室の吸収溶液が上
流側の吸収溶液室に容易に移動することができ、バーナ
ーBに近接した伝熱管群71の高い熱流束は相当程度に
吸収され、晶析や腐食は発生はほぼ抑制される。
As described above, at the time of starting the absorption refrigerator or at the time of partial load operation, there may be a case where the solution pump SP is stopped while the burner B is ignited for the sake of operation control. In this case, since the low-concentration absorbing solution is not supplied from the pipe line 8, the amount of the absorbing solution passing through the first heat transfer tube group 71 is insufficient, so that the heat flux cannot be absorbed, and crystallization and corrosion are likely to occur. . A small hole 12 formed near the lower end of the partition 11 is formed to cope with such a situation. In other words, when the amount of the absorbing solution necessary for circulation of natural convection generated by heating is insufficient, the absorbing solution in the downstream absorbing solution chamber easily flows into the upstream absorbing solution chamber through the small holes due to the differential pressure. It can move, and the high heat flux of the heat transfer tube group 71 close to the burner B is absorbed to a considerable extent, and crystallization and corrosion are almost suppressed.

【0021】上記の通りであり、本発明による吸収式冷
凍機用再生器によれば、伝熱室2の内部のほぼ全域に伝
熱管71、72を配置しても、従来の再生器のようにバ
ーナーに近接した伝熱管71に腐食や晶析が発生するこ
とは回避される。従って、同じ能力を持つ再生器全体
を、従来よりもコンパクトに設計することが可能とな
り、寿命の短縮傾向も生じない。また、高温再生器HG
のバーナーBのガス燃焼量と溶液ポンプSPでの吸収溶
液の流量(循環量)との間の制御も直接制御による精緻
さを必要とせず、従来通りの制御方法でもって吸収式冷
凍機の運転を支承なく行なうことができる。さらに、火
炎温度の低下及び燃焼ガスの高温場における滞留時間の
低下から低NOx 燃焼が可能となり、また、未燃分の発
生も抑制される。
As described above, according to the regenerator for an absorption refrigerator according to the present invention, even if the heat transfer tubes 71 and 72 are arranged in almost the entire area inside the heat transfer chamber 2, the regenerator is the same as the conventional regenerator. Corrosion and crystallization of the heat transfer tube 71 close to the burner are avoided. Therefore, the entire regenerator having the same capacity can be designed to be more compact than before, and there is no tendency to shorten the life. In addition, high temperature regenerator HG
The control between the amount of gas burned by the burner B and the flow rate (circulation amount) of the absorbing solution by the solution pump SP does not require direct control, and the operation of the absorption refrigerator is controlled by a conventional control method. Can be performed without support. Furthermore, the decrease in the residence time in the high temperature field decreases and the combustion gases of the flame temperature enables low NO x combustion, also, the generation of unburnt also suppressed.

【0022】なお、図示のものでは、低濃度の吸収溶液
を吸収溶液室10内に送給する管路8の先端は本体ケー
シング1の底面に開放しているものとしたが、管路8の
先端を下部吸収溶液だまり5内まで延出させて、第1の
伝熱管群71の下方開口端の直下に位置させるようにし
てもよい。その場合には、溶液ポンプSPより圧送され
てくる低濃度の吸収溶液が第1の伝熱管群71へ効率的
に流れることが一層確実となり、第1の伝熱管群71内
での晶析や腐食の発生をさらに有効に阻止することがで
きる。また、その際に、管路8の先端をノズル形状して
もよく、この場合には、配管8のノズル先端から低濃度
吸収溶液が噴出する際にエゼクター効果が生起され、さ
らに安定した状態でかつ量的にも多量に吸収溶液を第1
の伝熱管群71内を通過させることができ、晶析や腐食
の発生はさらに確実に阻止される。
In the drawing, the end of the pipe 8 for feeding the low concentration absorbing solution into the absorbing solution chamber 10 is open to the bottom of the main casing 1. The distal end may be extended into the lower absorbing solution reservoir 5 so as to be located immediately below the lower opening end of the first heat transfer tube group 71. In this case, it becomes more certain that the low-concentration absorbing solution pumped from the solution pump SP efficiently flows to the first heat transfer tube group 71, and the crystallization in the first heat transfer tube group 71 can be prevented. Corrosion can be prevented more effectively. At this time, the end of the pipe 8 may be formed in a nozzle shape. In this case, when the low-concentration absorbing solution is ejected from the nozzle end of the pipe 8, an ejector effect is generated, and in a more stable state. First, use a large amount of absorbing solution
Can be passed through the heat transfer tube group 71, and crystallization and corrosion are more reliably prevented.

【0023】また、第1の伝熱管群71を何本とする
か、その総流路面積をどの程度にするか、第1の伝熱管
群71をどの程度バーナーB側に接近させるか等は、実
機の設計条件に応じて最適な値が設定されるべきもので
あり、図示の例はあくまでも一例にすぎない。さらに、
本発明による技術手段は、図5に基づいて説明した従来
用いられている吸収式冷凍機用再生器にも等しく適用で
きることは容易に理解されよう。
The number of the first heat transfer tube group 71, the total flow passage area thereof, and the degree to which the first heat transfer tube group 71 is brought closer to the burner B side are determined. The optimal value should be set according to the design conditions of the actual machine, and the example shown in the figure is merely an example. further,
It will be easily understood that the technical means according to the present invention can be equally applied to the conventional regenerator for an absorption refrigerator described with reference to FIG.

【0024】[0024]

【発明の効果】本発明によれば、従来の再生器と同じ能
力を持つ再生器を、寿命の短縮をもたらすことなく、従
来のものよりもコンパクトに設計することが可能とな
る。さらに、バーナーの低NOx 燃焼が可能となり、ま
た未燃分の発生も抑制できる。
According to the present invention, a regenerator having the same capability as a conventional regenerator can be designed to be more compact than the conventional regenerator without shortening the life. Furthermore, it is possible to lower NO x combustion of the burner, also occurrence of unburned can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による吸収式冷凍機用再生器の一例を示
す断面図。
FIG. 1 is a sectional view showing an example of a regenerator for an absorption refrigerator according to the present invention.

【図2】図1のII-II 線による断面図。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1に示す吸収式冷凍機用再生器の一部破断し
た斜視図。
FIG. 3 is a partially broken perspective view of the regenerator for the absorption refrigerator shown in FIG.

【図4】吸収式冷凍機の作動原理を説明するシステムフ
ロー図。
FIG. 4 is a system flow chart for explaining the operation principle of the absorption refrigerator.

【図5】従来の吸収式冷凍機用再生器の一例を示す断面
図。
FIG. 5 is a sectional view showing an example of a conventional regenerator for an absorption refrigerator.

【図6】従来の吸収式冷凍機用再生器の他の例を示す断
面図。
FIG. 6 is a sectional view showing another example of a conventional regenerator for an absorption refrigerator.

【符合の説明】[Description of sign]

1…本体ケーシング、2…伝熱室、4…煙突、5…下部
吸収溶液溜まり、6…上部吸収溶液溜まり、11…隔
壁、12…隔壁に設けた小孔、71…第1の伝熱管群、
72…第2の伝熱管群、B…バーナー
DESCRIPTION OF SYMBOLS 1 ... Main body casing, 2 ... Heat transfer chamber, 4 ... Chimney, 5 ... Lower absorption solution pool, 6 ... Upper absorption solution pool, 11 ... Partition wall, 12 ... Small hole provided in partition wall, 71 ... First heat transfer tube group ,
72: second heat transfer tube group, B: burner

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸収溶液室と伝熱室とを有し、該吸収溶
液室内に流入する吸収溶液を該伝熱室内に配置した伝熱
管群を通過させることにより加熱濃縮する形式の吸収式
冷凍機用再生器であって、該吸収溶液室には収容される
吸収溶液の上流側と下流側との移動を制限するための隔
壁が設けられており、かつ、冷媒蒸気を吸収して低濃度
となった吸収溶液は前記隔壁よりも上流側において前記
吸収溶液室内に流入するようにされている吸収式冷凍機
用再生器において、前記伝熱管群はバーナーに近接する第1の伝熱管群とそ
れより後流側の第2の伝熱管群とに区分けされていて、
前記隔壁は前記第1の伝熱管群と第2の伝熱管群との間
において該吸収溶液室に配置され、かつ、冷媒蒸気を吸
収して低濃度となった吸収溶液は前記第1の伝熱管群に
近接する位置において前記吸収溶液室内に流入するよう
にされていることを特徴とする 吸収式冷凍機用再生器。
An absorption refrigeration system having an absorption solution chamber and a heat transfer chamber, wherein the absorption solution flowing into the absorption solution chamber is heated and concentrated by passing through a group of heat transfer tubes arranged in the heat transfer chamber. A regenerator for the machine, wherein the absorbing solution chamber is provided with a partition wall for restricting the movement of the contained absorbing solution between the upstream side and the downstream side, and absorbs refrigerant vapor to reduce the concentration of the absorbing solution. In the regenerator for an absorption-type refrigerator in which the absorption solution is adapted to flow into the absorption solution chamber on the upstream side of the partition wall, the heat transfer tube group includes a first heat transfer tube group close to a burner. So
It is divided into a second heat transfer tube group on the downstream side of the
The partition wall is located between the first heat transfer tube group and the second heat transfer tube group.
In the absorption solution chamber, and absorbs refrigerant vapor.
The absorbed solution having a low concentration is collected by the first heat transfer tube group.
So as to flow into the absorption solution chamber at a close position
A regenerator for an absorption refrigerator , characterized in that:
【請求項2】 前記隔壁の下端部近傍には小孔が形成さ
れていることを特徴とする請求項記載の吸収式冷凍機
用再生器。
Wherein an absorption refrigerating machine regenerator according to claim 1, characterized in that it is formed a small hole near the lower end of the partition wall.
JP31836895A 1995-12-06 1995-12-06 Regenerator for absorption refrigerator Expired - Fee Related JP2911107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31836895A JP2911107B2 (en) 1995-12-06 1995-12-06 Regenerator for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31836895A JP2911107B2 (en) 1995-12-06 1995-12-06 Regenerator for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH09159307A JPH09159307A (en) 1997-06-20
JP2911107B2 true JP2911107B2 (en) 1999-06-23

Family

ID=18098377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31836895A Expired - Fee Related JP2911107B2 (en) 1995-12-06 1995-12-06 Regenerator for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2911107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414267B1 (en) * 2013-02-25 2014-07-02 조선대학교산학협력단 High temperature generator

Also Published As

Publication number Publication date
JPH09159307A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JP2911107B2 (en) Regenerator for absorption refrigerator
US5832742A (en) Absorption type refrigerator
US6145338A (en) High-temperature regenerator
JP2872083B2 (en) Regenerator for absorption refrigerator
JP2548789Y2 (en) Cooler structure in absorption refrigeration cycle
JP3837196B2 (en) High temperature regenerator
JPH09273832A (en) Absorption type refrigerating machine
US5704225A (en) Regenerator
JP2911106B2 (en) Regenerator for absorption refrigerator
JP2911104B2 (en) Regenerator for absorption refrigerator
JP2911103B2 (en) Regenerator for absorption refrigerator
JPS6133483Y2 (en)
JP3030235B2 (en) Absorption chiller and method of operation at startup
JP3759549B2 (en) Liquid tube convection combustion furnace
ITMI981999A1 (en) ABSORPTION REFRIGERATOR
JP3865327B2 (en) Direct high temperature regenerator
KR200143514Y1 (en) Absorption air conditioner
JP2872084B2 (en) Regenerator for absorption chiller and absorption refrigeration system having the regenerator
JP2000257819A (en) Surface combustion burner
JPH0355743B2 (en)
KR200149062Y1 (en) Generator of absorption air conditioner
JPH10238705A (en) Liquid tube convection type combustion heating furnace
JP3996793B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JPS5846341Y2 (en) Solution heating boiler
JPS60599Y2 (en) low temperature generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees