[go: up one dir, main page]

JP2893859B2 - Evaluation method of silicon crystal - Google Patents

Evaluation method of silicon crystal

Info

Publication number
JP2893859B2
JP2893859B2 JP12499190A JP12499190A JP2893859B2 JP 2893859 B2 JP2893859 B2 JP 2893859B2 JP 12499190 A JP12499190 A JP 12499190A JP 12499190 A JP12499190 A JP 12499190A JP 2893859 B2 JP2893859 B2 JP 2893859B2
Authority
JP
Japan
Prior art keywords
silicon crystal
sample
concentration
infrared absorption
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12499190A
Other languages
Japanese (ja)
Other versions
JPH0424939A (en
Inventor
千穗子 金田
寛 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12499190A priority Critical patent/JP2893859B2/en
Publication of JPH0424939A publication Critical patent/JPH0424939A/en
Application granted granted Critical
Publication of JP2893859B2 publication Critical patent/JP2893859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔概要〕 シリコン結晶の評価方法に係り,特にシリコン結晶中
の酸素濃度の測定方法に関し, ドーパントの濃度が0.1ppm以上の低抵抗のシリコン結
晶に対して,格子間酸素の濃度測定が可能な方法を提供
することを目的とし, 1)シリコン結晶の格子間型酸素の濃度を赤外吸収ピー
ク強度の測定により求める際に,被測定シリコン結晶の
試料をドーパント濃度が0.01ppm以下で格子間型酸素濃
度が1016cm-3以下のフローティングゾーン(FZ)シリコ
ン結晶に張り合わせ,該試料を薄膜化する工程と,該試
料を水素原子雰囲気中で100〜250℃の温度範囲で加熱し
て水素原子を該試料中に導入する工程とを有するように
構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for evaluating a silicon crystal, and more particularly to a method for measuring the oxygen concentration in a silicon crystal. It is an object of the present invention to provide a method capable of measuring the concentration of silicon. 1) When determining the concentration of interstitial oxygen in a silicon crystal by measuring the infrared absorption peak intensity, the sample of the silicon crystal to be measured has a dopant concentration of 0.01. Laminating the sample to a floating zone (FZ) silicon crystal with an interstitial oxygen concentration of 10 16 cm -3 or less at ppm or less and thinning the sample, and subjecting the sample to a temperature range of 100 to 250 ° C in a hydrogen atom atmosphere. And heating to introduce hydrogen atoms into the sample.

2)該試料の薄膜化後の膜厚が1〜100μmであるよう
に構成する。
2) The thickness of the sample after thinning is 1 to 100 μm.

〔産業上の利用分野〕[Industrial applications]

本発明はシリコン結晶の評価方法に係り,特にシリコ
ン結晶中の酸素濃度の測定方法に関する。
The present invention relates to a method for evaluating a silicon crystal, and particularly to a method for measuring an oxygen concentration in a silicon crystal.

半導体基板として広く用いられているシリコン結晶中
には通常1018cm-3程度の酸素が含まれている。
A silicon crystal widely used as a semiconductor substrate usually contains about 10 18 cm −3 of oxygen.

この酸素は通常格子間型酸素として存在するが,デバ
イス製造中の熱処理により析出し,デバイス特性に種々
の影響を及ぼすので,その濃度を知ることが重要であ
る。
This oxygen is usually present as interstitial oxygen, but is precipitated by heat treatment during device manufacture and has various effects on device characteristics. Therefore, it is important to know its concentration.

このために、シリコン結晶中の格子間型酸素の濃度測
定を赤外吸収法を用いて,酸素原子の不純物振動による
赤外吸収ピークの強度を測定することにより行われてい
る。
For this purpose, the concentration of interstitial oxygen in the silicon crystal is measured by using an infrared absorption method and measuring the intensity of an infrared absorption peak due to impurity vibration of oxygen atoms.

しかし、硼素(B),燐(P),砒素(As)等の電気
的に活性なドーパントを中〜高濃度(0.1ppm以上)含む
低抵抗のシリコン結晶では,ドーパントに起因する赤外
吸収が起こり,測定しようとする酸素の吸収ピークに重
なってしまうため,赤外吸収法による正確な酸素濃度測
定が困難であった。
However, in a low-resistance silicon crystal containing a medium to high concentration (0.1 ppm or more) of electrically active dopants such as boron (B), phosphorus (P), and arsenic (As), infrared absorption due to the dopants is low. As a result, it is difficult to accurately measure the oxygen concentration by the infrared absorption method because it overlaps with the absorption peak of oxygen to be measured.

このため,低抵抗のシリコン結晶に対しても,ドーパ
ントに起因する赤外吸収の影響を受けることなく格子間
型酸素の濃度測定を行える方法が要望されており,この
要望に対して本発明を利用することができる。
For this reason, there is a demand for a method capable of measuring the concentration of interstitial oxygen without being affected by the infrared absorption caused by the dopant, even for a low-resistance silicon crystal. Can be used.

〔従来の技術〕[Conventional technology]

第3図は赤外吸収法によるシリコン結晶の格子間型酸
素の濃度測定方法の説明図である。
FIG. 3 is an explanatory diagram of a method of measuring the concentration of interstitial oxygen in a silicon crystal by an infrared absorption method.

この図は,フーリエ型赤外分光器を用いた例である。 This figure is an example using a Fourier-type infrared spectrometer.

シリコン結晶試料1は通常厚さが2mm程度であり,図
示しないホルダによって保持されている。
The silicon crystal sample 1 usually has a thickness of about 2 mm and is held by a holder (not shown).

赤外線光源7からの光線は臭化カリウム(KBr)から
なるビームスプリッタ6で2等分され,一方は固定ミラ
ー9で,他方は可動ミラー8で反射される。これらの光
線は再び重なって,試料1に入射する。透過光はビーム
スプリッタ6で重ね合わされるまでの光路差に依存した
干渉パターンを生ずる。
The light beam from the infrared light source 7 is bisected by a beam splitter 6 made of potassium bromide (KBr). One is reflected by a fixed mirror 9 and the other is reflected by a movable mirror 8. These rays overlap again and enter the sample 1. The transmitted light produces an interference pattern depending on the optical path difference before being superimposed by the beam splitter 6.

この干渉パターンを赤外線検出器10で測定し,計算機
12でフーリエ変換することにより,波数/吸収強度関係
を示す通常の赤外スペクトルが得られる。
This interference pattern is measured by the infrared detector 10,
By performing the Fourier transform at 12, a normal infrared spectrum showing the wave number / absorption intensity relationship is obtained.

この装置を用いて,シリコン結晶試料1中に含まれる
格子間型酸素の不純物振動による赤外ピークを,記録計
11により第4図に示される赤外線の波数と吸収強度の関
係を示すスペクトルとして表示させ,波数1136cm-1の位
置にある吸収ピークの強度から不純物濃度を求めてい
る。
Using this device, the infrared peak due to the impurity vibration of interstitial oxygen contained in the silicon crystal sample 1 was measured by a recorder.
11 is displayed as a spectrum showing the relationship between the infrared wave number and the absorption intensity shown in FIG. 4, and the impurity concentration is determined from the intensity of the absorption peak at the wave number of 1136 cm -1 .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の酸素濃度測定方法では,電気的に活性なドーパ
ントの含有量の少ない場合は問題がないが,ドーパント
を0.1ppm以上含む低抵抗シリコン結晶においては,室温
でドーパントに起因するフリーキャリアが多数発生し,
これらのフリーキャリアによる強い赤外吸収が濃度測定
の対象となる格子間型酸素の振動による赤外吸収に重な
ってしまう。
The conventional oxygen concentration measurement method has no problem when the content of electrically active dopant is small, but a large number of free carriers due to the dopant are generated at room temperature in low-resistance silicon crystals containing 0.1 ppm or more of the dopant. And
The strong infrared absorption by these free carriers overlaps with the infrared absorption due to the vibration of interstitial oxygen which is the object of concentration measurement.

また,低温の場合でもレベル間遷移による強い赤外吸
収が起こり,これがやはり測定対象の赤外吸収と重なっ
てしまう。
In addition, even at low temperatures, strong infrared absorption due to transition between levels occurs, which also overlaps with the infrared absorption of the measurement target.

特に,ドーパントの濃度が高い場合は,ドーパントに
起因する赤外吸収が測定対象の赤外吸収ピークを完全に
隠してしまうという問題があった。
In particular, when the concentration of the dopant is high, there is a problem that the infrared absorption caused by the dopant completely hides the infrared absorption peak to be measured.

本発明はドーパントの濃度が0.1ppm以上の低抵抗のシ
リコン結晶に対して,格子間酸素の濃度測定が可能な方
法を提供することを目的とする。
An object of the present invention is to provide a method capable of measuring the interstitial oxygen concentration in a low-resistance silicon crystal having a dopant concentration of 0.1 ppm or more.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題の解決は, 1)シリコン結晶の格子間型酸素の濃度を赤外吸収ピー
ク強度の測定により求める際に,被測定シリコン結晶の
試料をドーパント濃度が0.01ppm以下で格子間型酸素濃
度が1016cm-3以下のFZシリコン結晶に張り合わせ,該試
料を薄膜化する工程と,該試料を水素原子雰囲気中で10
0〜250℃の温度範囲で加熱して水素原子を該試料中に導
入する工程とを有するシリコン結晶の評価方法,あるい
は,2)該試料の薄膜化後の膜厚が1〜100μmである上
記1)記載のシリコン結晶の評価方法により達成され
る。
To solve the above problems: 1) When determining the concentration of interstitial oxygen in a silicon crystal by measuring the infrared absorption peak intensity, a sample of the silicon crystal to be measured should have a dopant concentration of 0.01 ppm or less and an interstitial oxygen concentration of less than 0.01 ppm. Bonding the sample to an FZ silicon crystal of 10 16 cm −3 or less to thin the sample;
A method of evaluating a silicon crystal having a step of introducing hydrogen atoms into the sample by heating in a temperature range of 0 to 250 ° C., or 2) the method in which the film thickness of the sample after thinning is 1 to 100 μm. This is achieved by the silicon crystal evaluation method described in 1).

〔作用〕[Action]

水素はそれ自身がシリコン結晶中で不活性であるが,
シリコン結晶中に存在するアクセプタ及びドナーと結合
してこれを不活性化する作用を持つので,酸素濃度の測
定を行おうとするCZシリコン結晶(引き上げ法により成
長した結晶で,坩堝等からの酸素の混入は免れない)の
厚み全体にわって水素が導入された場合には,ドーパン
トによる赤外吸収への影響が抑えられ,赤外吸収法によ
るシリコン結晶中の格子間型酸素濃度の測定は可能(本
出願人より既出願)となるが,本発明はこの際の試料作
製方法に関するのである。
Hydrogen itself is inert in the silicon crystal,
It has the effect of combining and inactivating the acceptors and donors present in the silicon crystal, so that the CZ silicon crystal whose oxygen concentration is to be measured (crystal grown by the pulling method, oxygen from the crucible, etc.) When hydrogen is introduced over the entire thickness of the silicon crystal, the effect of dopant on infrared absorption is suppressed, and the interstitial oxygen concentration in silicon crystals can be measured by infrared absorption. The present invention relates to a method for preparing a sample in this case.

シリコン結晶中における水素原子の拡散係数は,第2
1)に示すように900〜1400℃の高温領域では10-6〜10
-7cm2sec-1と非常に大きいが,100℃付近では3×10-9cm
2sec-1となる。従って,水素をシリコン結晶中に速く拡
散させるためにはシリコン結晶をできるだけ高温で加熱
することが望ましい。
The diffusion coefficient of hydrogen atoms in silicon crystal
As shown in Fig. 1) , in the high temperature range of 900 to 1400 ° C, 10 -6 to 10
-7 cm 2 sec -1 very large, but around 100 ° C 3 × 10 -9 cm
2 sec -1 . Therefore, it is desirable to heat the silicon crystal as high as possible in order to diffuse hydrogen into the silicon crystal quickly.

しかし,濃度測定を行おうとする酸素は450℃程度で
析出する。さらに250℃以上では一度不活性化されたド
ーパントが水素と解離して再び活性化してしまう。
However, the oxygen whose concentration is to be measured precipitates at about 450 ° C. Further, at 250 ° C. or higher, the dopant once inactivated dissociates with hydrogen and is activated again.

このため,試料の加熱温度は100〜250℃の範囲が適当
である。
For this reason, the heating temperature of the sample is suitably in the range of 100 to 250 ° C.

しかし,この温度範囲では試料のCZシリコン結晶の厚
み全体にわって水素を導入しようとすると,その厚さが
通常のシリコンウエハと同程度の500〜600μmである場
合は加熱時間が数10時間と長時間に及ぷため,赤外吸収
測定が可能な範囲でできるだけ薄くする必要がある。
However, in this temperature range, when trying to introduce hydrogen over the entire thickness of the CZ silicon crystal of the sample, if the thickness is 500 to 600 μm, which is about the same as that of a normal silicon wafer, the heating time is several tens of hours. Since it takes a long time, it is necessary to make it as thin as possible within the range where infrared absorption measurement is possible.

このための,CZシリコン結晶の厚みは1〜100μmが適
当である。
For this purpose, the thickness of the CZ silicon crystal is suitably 1 to 100 μm.

このように測定対象となるCZシリコン結晶試料を薄く
した場合は,その機械的な強度が問題となるが,この問
題は,測定結果に影響を与えないFZシリコン結晶(フロ
ーティングゾーン法による結晶)にCZシリコン結晶試料
を張り合わせた後に薄くすることにより解決する。
When the thickness of the CZ silicon crystal sample to be measured is reduced in this way, the mechanical strength of the sample becomes a problem. This problem is caused by the FZ silicon crystal (crystal by the floating zone method) that does not affect the measurement results. The problem is solved by laminating a CZ silicon crystal sample after bonding.

1)S.M.Sze;Physics of Semiconductor,p68,John Wile
y & Sons. 〔実施例〕 第1図は本発明の一実施例を説明する装置の模式断面
図である。
1) SMSze; Physics of Semiconductor, p68, John Wile
FIG. 1 is a schematic sectional view of an apparatus for explaining one embodiment of the present invention.

図において,1は測定試料,1Aは被測定結晶でCZシリコ
ン結晶,18はFZシリコン結晶,2は処理室,3は水素ガス供
給口,4は水素プラズマ発生装置,5は試料加熱用のヒータ
である。
In the figure, 1 is a sample to be measured, 1A is a CZ silicon crystal as a measured crystal, 18 is an FZ silicon crystal, 2 is a processing chamber, 3 is a hydrogen gas supply port, 4 is a hydrogen plasma generator, and 5 is a heater for heating a sample. It is.

まず,被測定のCZシリコン結晶1Aを,ドーパント濃度
が0.01ppm以下で格子間型酸素濃度が1016cm-3以下のFZ
シリコン結晶1Bに張り合わせ,CZシリコン結晶1Aの厚さ
を5μmまで薄くする。
First, the CZ silicon crystal 1A to be measured was placed in an FZ having a dopant concentration of 0.01 ppm or less and an interstitial oxygen concentration of 10 16 cm -3 or less.
The thickness of the CZ silicon crystal 1A is reduced to 5 μm by bonding to the silicon crystal 1B.

ここで,シリコン結晶の張り合わせ方法を説明する。 Here, a method of bonding silicon crystals will be described.

850℃程度に加熱されたヒータ上にFZシリコンウエハ
を載せ,その上にCZシリコンウエハを重ねて1分間加熱
し,2枚のウエハを仮接着する。次に,仮接着されたウエ
ハを電気炉に入れて1100℃で30分加熱すると,2枚のウエ
ハは完全に接着される。
An FZ silicon wafer is placed on a heater heated to about 850 ° C., and a CZ silicon wafer is stacked thereon and heated for 1 minute, and the two wafers are temporarily bonded. Next, when the temporarily bonded wafers are placed in an electric furnace and heated at 1100 ° C. for 30 minutes, the two wafers are completely bonded.

850℃以上の温度で長時間加熱すると,CZシリコン中の
酸素が析出したり,析出している酸素が融けたりするた
め,正しい酸素濃度の測定ができなくなるおそれがある
が,30分程度の短時間の加熱ならば,このようなことが
起こらないので酸素濃度測定には影響を与えない。
If heated at a temperature of 850 ° C or more for a long time, oxygen in the CZ silicon may precipitate or the precipitated oxygen may melt, making it impossible to measure the oxygen concentration correctly. If the heating is performed for a long time, this does not occur, so that the oxygen concentration measurement is not affected.

次に,この試料をヒータ5の上に載せ,プラズマ発生
装置4で発生させた水素原子雰囲気中で,130℃で4時間
加熱してシリコン結晶中に水素原子を導入する。
Next, the sample is placed on the heater 5 and heated at 130 ° C. for 4 hours in a hydrogen atom atmosphere generated by the plasma generator 4 to introduce hydrogen atoms into the silicon crystal.

その後,試料を処理室2により取り出し,室温まで急
冷する。冷却速度は30秒以内に100〜250℃から室温まで
冷却する。
Thereafter, the sample is taken out from the processing chamber 2 and rapidly cooled to room temperature. The cooling rate is from 30-250 ° C to room temperature within 30 seconds.

以上の処理により,測定試料中のドーパントはすべて
不活性化される。
By the above processing, all the dopants in the measurement sample are inactivated.

この試料を第3図に示される赤外分光装置を用いて,
酸素の赤外吸収ピークを測定して格子間型酸素の濃度を
求めることができる。
This sample was analyzed using an infrared spectrometer shown in FIG.
The concentration of interstitial oxygen can be determined by measuring the infrared absorption peak of oxygen.

上記の水素プラズマ発生装置の一例を次に説明する。 Next, an example of the hydrogen plasma generator will be described.

直径1cm程度の円筒放電管内を,排気装置によって1
〜数10m/sの速さで気体水素が流れるようにし,流れの
上流に空洞共振器を設けると,気体水素は共振器内で電
離または励起され,その後,共振器を流れ出し下流に向
かう。このようなプラズマの発生は市販のプラズマ発生
装置により行うことができる。
The inside of a cylindrical discharge tube with a diameter of about 1 cm is
When gaseous hydrogen flows at a speed of up to several tens of m / s and a cavity resonator is provided upstream of the flow, the gaseous hydrogen is ionized or excited in the resonator, and then flows out of the resonator and travels downstream. Such plasma can be generated by a commercially available plasma generator.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば,ドーパントの濃
度が0.1ppm以上の低抵抗のシリコン結晶に対して,赤外
吸収法により格子間酸素の濃度測定が可能となった。
As described above, according to the present invention, the concentration of interstitial oxygen can be measured by an infrared absorption method for a low-resistance silicon crystal having a dopant concentration of 0.1 ppm or more.

この結果,デバイス製造上の歩留,信頼性向上に寄与
することができた。
As a result, it was possible to contribute to improving the yield and reliability in device manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を説明する装置の模式断面
図, 第2図はシリコン結晶中における不純物原子の拡散係数
と温度の関係図, 第3図は赤外吸収法によるシリコン結晶の格子間型酸素
の濃度測定方法の説明図、 第4図は赤外線の波数と吸収強度の関係を示すスペクト
ルである。 図において、 1はシリコン結晶試料,1Aは被測定結晶でCZシリコン結
晶,1BはFZシリコン結晶,2は処理室,3は水素ガス供給口,
4は水素プラズマ発生装置,5は試料加熱用のヒータ,6は
ビームスプリッタ,7は赤外線光源,8は可動ミラー,9は固
定ミラー,10は赤外線検出器,11は記録計,12は計算機 である。
FIG. 1 is a schematic sectional view of an apparatus for explaining one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the diffusion coefficient of impurity atoms in silicon crystal and temperature, and FIG. FIG. 4 is an explanatory diagram of a method for measuring the concentration of interstitial oxygen, and FIG. 4 is a spectrum showing a relationship between a wave number of infrared rays and an absorption intensity. In the figure, 1 is a silicon crystal sample, 1A is a CZ silicon crystal as a measured crystal, 1B is an FZ silicon crystal, 2 is a processing chamber, 3 is a hydrogen gas supply port,
4 is a hydrogen plasma generator, 5 is a heater for heating the sample, 6 is a beam splitter, 7 is an infrared light source, 8 is a movable mirror, 9 is a fixed mirror, 10 is an infrared detector, 11 is a recorder, and 12 is a computer. is there.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/66 G01N 21/35 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/66 G01N 21/35

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコン結晶の格子間型酸素の濃度を赤外
吸収ピーク強度の測定により求める際に, 被測定シリコン結晶の試料をドーパント濃度が0.01ppm
以下で格子間型酸素濃度が1016cm-3以下のフローティン
グゾーン(FZ)シリコン結晶に張り合わせ,該試料を薄
膜化する工程と, 該試料を水素原子雰囲気中で100〜250℃の温度範囲で加
熱して水素原子を該試料中に導入する工程とを有するこ
とを特徴とするシリコン結晶の評価方法。
When the concentration of interstitial oxygen of a silicon crystal is determined by measuring the infrared absorption peak intensity, a sample of the silicon crystal to be measured has a dopant concentration of 0.01 ppm.
A process of bonding the sample to a floating zone (FZ) silicon crystal having an interstitial oxygen concentration of 10 16 cm −3 or less to thin the sample, and subjecting the sample to a temperature range of 100 to 250 ° C. in a hydrogen atom atmosphere. Heating to introduce hydrogen atoms into the sample.
【請求項2】該試料の薄膜化後の膜厚が1〜100μmで
あることを特徴とする請求項1記載のシリコン結晶の評
価方法。
2. The method for evaluating a silicon crystal according to claim 1, wherein the thickness of the sample after thinning is 1 to 100 μm.
JP12499190A 1990-05-15 1990-05-15 Evaluation method of silicon crystal Expired - Lifetime JP2893859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12499190A JP2893859B2 (en) 1990-05-15 1990-05-15 Evaluation method of silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12499190A JP2893859B2 (en) 1990-05-15 1990-05-15 Evaluation method of silicon crystal

Publications (2)

Publication Number Publication Date
JPH0424939A JPH0424939A (en) 1992-01-28
JP2893859B2 true JP2893859B2 (en) 1999-05-24

Family

ID=14899203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12499190A Expired - Lifetime JP2893859B2 (en) 1990-05-15 1990-05-15 Evaluation method of silicon crystal

Country Status (1)

Country Link
JP (1) JP2893859B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955804A (en) * 1997-03-10 1999-09-21 Denso Corporation Alternator winding arrangement with coil ends spaced apart from one another for air passage
JP3780528B2 (en) * 1997-03-10 2006-05-31 株式会社デンソー AC generator for vehicles
EP1227567B1 (en) 1997-05-26 2007-01-17 Denso Corporation Alternator for vehicles
CN1200591A (en) * 1997-05-26 1998-12-02 株式会社电装 car generator
JP2002010555A (en) 2000-06-21 2002-01-11 Denso Corp Rotary electric machine for vehicle
JP4740789B2 (en) * 2006-04-24 2011-08-03 トヨタホーム株式会社 Building interior structure

Also Published As

Publication number Publication date
JPH0424939A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
JP2893859B2 (en) Evaluation method of silicon crystal
KR0127998B1 (en) Method of measuring hydrogen concentration in silicon crystal
US4803884A (en) Method for measuring lattice defects in semiconductor
WO2023051617A1 (en) Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
JP2560251B2 (en) Manufacturing method of silicon single crystal self-supporting thin film
JP2692211B2 (en) Silicon crystal evaluation method
JPH0318340B2 (en)
JP2681613B2 (en) Silicon single crystal evaluation method
US10317338B2 (en) Method and assembly for determining the carbon content in silicon
JP3811582B2 (en) Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate
JPH11288894A (en) Lamp annealing apparatus
JPS62110127A (en) Method for measuring temperature of article to be heat-treated in optical heat-treatment apparatus
JPH09330966A (en) Method for detecting carbon in silicon substrate
JPH01114727A (en) Radiation temperature measuring instrument
Vlasova et al. On the Problem of Inhomogeneous Spatial Distribution of the Redox Index of Polyvalent Iron Ions in the Volume of Ultrapure Synthetic Quartz Materials
JP2002246429A (en) Method of evaluating silicon wafer and nitrogen-doped annealed wafer
JP3238169B2 (en) Method for measuring the concentration of interstitial oxygen in silicon crystal
JP2014035305A (en) Method for evaluating nitrogen concentration in silicon single crystal
JPS63157434A (en) Measuring method for impurity concentration of p-type silicon crystal
JPH07301592A (en) Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas
JP2000188313A (en) Method for evaluating silicon substrate and method for manufacturing semiconductor device
JPH04239742A (en) Film thickness measuring method in manufacturer of semiconductor
JP2002350331A (en) Method and apparatus for measuring shallow level in silicon single crystal
Glushkov et al. Raman scattering spectra recorded in the course of the water–ice phase transition and laser diagnostics of heterophase water systems