[go: up one dir, main page]

JPH07301592A - Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas - Google Patents

Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas

Info

Publication number
JPH07301592A
JPH07301592A JP9475794A JP9475794A JPH07301592A JP H07301592 A JPH07301592 A JP H07301592A JP 9475794 A JP9475794 A JP 9475794A JP 9475794 A JP9475794 A JP 9475794A JP H07301592 A JPH07301592 A JP H07301592A
Authority
JP
Japan
Prior art keywords
hydrogen
heat treatment
crystal
monitor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9475794A
Other languages
Japanese (ja)
Inventor
Masaaki Koiizuka
正明 小飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9475794A priority Critical patent/JPH07301592A/en
Publication of JPH07301592A publication Critical patent/JPH07301592A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

(57)【要約】 【目的】 熱処理雰囲気の監視方法に関し,汚染がなく
かつ高温気体中の水素濃度を監視することを目的とす
る。 【構成】 熱処理工程を有する半導体装置の製造方法に
おいて,シリコン結晶を該熱処理工程により熱処理して
モニタ結晶1とするモニタ工程と,次いで,該モニタ結
晶1中の水素濃度を測定する工程とを有し,該モニタ結
晶1中の水素濃度に基づいて,該熱処理工程の雰囲気中
の水素分圧を監視するように構成する。
(57) [Summary] [Purpose] Regarding the method of monitoring the heat treatment atmosphere, the purpose is to monitor the hydrogen concentration in the high-temperature gas without contamination. A method of manufacturing a semiconductor device having a heat treatment step includes a monitor step of heat-treating a silicon crystal by the heat treatment step to obtain a monitor crystal 1, and a step of measuring a hydrogen concentration in the monitor crystal 1. Then, the hydrogen partial pressure in the atmosphere of the heat treatment step is monitored based on the hydrogen concentration in the monitor crystal 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は雰囲気中の水素濃度を監
視して熱処理を行う工程を有する半導体装置の製造方法
及び気体中の水素濃度の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a step of performing heat treatment by monitoring the hydrogen concentration in an atmosphere and a method for measuring hydrogen concentration in a gas.

【0002】水素は物質中への浸透性が高く低温でも配
線又は半導体中に拡散する。このため,薄膜を取り扱う
工程,例えば半導体装置の製造工程において,雰囲気中
の残留水素が薄膜の特性に大きな影響を及ぼす。
Hydrogen has a high permeability into a substance and diffuses into a wiring or a semiconductor even at a low temperature. Therefore, in the process of handling the thin film, for example, the manufacturing process of the semiconductor device, the residual hydrogen in the atmosphere has a great influence on the characteristics of the thin film.

【0003】例えば水素の存在は,水素析出による配線
内部の孔,シリコン中の酸素析出の加速,ドーパントの
電気的不活性化,中性不純物の電気的活性化,水素に起
因する結晶欠陥を生じせしめ,素子特性の不安定化又は
劣化を招くことが知られている。これらの問題は,特に
半導体装置の製造における熱処理工程で著しい。
For example, the presence of hydrogen causes holes inside the wiring due to hydrogen precipitation, acceleration of oxygen precipitation in silicon, electrical inactivation of dopants, electrical activation of neutral impurities, and crystal defects due to hydrogen. As a result, it is known that the device characteristics are destabilized or deteriorated. These problems are remarkable especially in the heat treatment process in the manufacture of semiconductor devices.

【0004】このため,製造工程における雰囲気中の水
素濃度を監視する必要があり,そのための簡便な気体中
の水素濃度の測定方法が要求されており,とくに熱処理
雰囲気中の水素濃度を測定し監視する半導体装置の製造
方法が必要とされている。
Therefore, it is necessary to monitor the hydrogen concentration in the atmosphere during the manufacturing process, and a simple method for measuring the hydrogen concentration in the gas is required for that purpose. In particular, the hydrogen concentration in the heat treatment atmosphere is measured and monitored. There is a need for a method of manufacturing a semiconductor device.

【0005】[0005]

【従来の技術】従来,気体中の水素を検知する方法とし
て,気体熱伝導式,接触燃焼式又は熱線型半導体式等の
検知器が用いられていた。
2. Description of the Related Art Conventionally, as a method for detecting hydrogen in a gas, a gas heat conduction type, a catalytic combustion type or a hot wire type semiconductor type detector has been used.

【0006】しかし,これらの検知器は,いずれも10
0℃以上の高温では使用することができない。このた
め,これらの検知器を熱処理炉中に設置して,高温の熱
処理雰囲気を直接に測定することができない。また,こ
れらの検知器は,金属ヒータ,燃焼用ガス又は吸着用の
ガスを必要とすることから,熱処理雰囲気に設置しては
熱処理炉を汚染するおそれがある。
However, each of these detectors has 10
It cannot be used at high temperatures above 0 ° C. Therefore, these detectors cannot be installed in the heat treatment furnace to directly measure the high temperature heat treatment atmosphere. Further, since these detectors require a metal heater, a combustion gas, or an adsorption gas, they may contaminate the heat treatment furnace if they are installed in the heat treatment atmosphere.

【0007】そこで,従来の検知器は,熱処理雰囲気ガ
スを熱処理炉の外部又は低温部に引込み水素濃度を測定
していた。このため,現実の熱処理温度において,被熱
処理物の近傍の水素分圧を直接測定することができず,
熱処理工程を精密に監視することができなかった。
Therefore, the conventional detector draws the heat treatment atmosphere gas outside the heat treatment furnace or at a low temperature portion to measure the hydrogen concentration. Therefore, at the actual heat treatment temperature, the hydrogen partial pressure in the vicinity of the object to be heat treated cannot be directly measured,
The heat treatment process could not be precisely monitored.

【0008】[0008]

【発明が解決しようとする課題】上述したように,従来
の水素検知器では,動作温度が低いため,高温の熱処理
炉内の水素濃度を直接に測定することができないという
欠点がある。また,熱処理炉内を汚染するおそれがある
ため,被熱処理物の近くの水素濃度を測定できないとい
う欠点がある。このため,半導体装置の製造工程での熱
処理雰囲気中の水素濃度を監視することが困難であっ
た。
As described above, the conventional hydrogen detector has a drawback that the hydrogen concentration in the high temperature heat treatment furnace cannot be directly measured because the operating temperature is low. Moreover, there is a possibility that the hydrogen concentration near the object to be heat-treated cannot be measured because the inside of the heat-treatment furnace may be contaminated. For this reason, it has been difficult to monitor the hydrogen concentration in the heat treatment atmosphere in the semiconductor device manufacturing process.

【0009】本発明は,シリコン結晶をモニタとして熱
処理炉内に置き,このモニタとされたシリコン結晶中に
拡散した水素の濃度を測定して熱処理雰囲気中の水素濃
度を知るもので,熱処理炉を汚染することなくかつ高温
雰囲気中の水素濃度を測定することができる気体中水素
濃度測定方法,及びこの方法を用いて被処理物近傍の熱
処理雰囲気中の水素濃度を精密に監視することができる
半導体装置の製造方法を提供することを目的とする。
According to the present invention, a silicon crystal is placed in a heat treatment furnace as a monitor, and the concentration of hydrogen diffused in the monitored silicon crystal is measured to know the hydrogen concentration in the heat treatment atmosphere. Method of measuring hydrogen concentration in gas without contamination and capable of measuring hydrogen concentration in high temperature atmosphere, and semiconductor capable of precisely monitoring hydrogen concentration in heat treatment atmosphere in the vicinity of an object to be processed using this method An object is to provide a method for manufacturing a device.

【0010】[0010]

【課題を解決するための手段】図1は,本発明の実施例
工程図であり,半導体装置の製造工程における熱処理雰
囲気中の水素濃度を測定して監視する工程を表してい
る。
FIG. 1 is a process chart of an embodiment of the present invention, showing a process of measuring and monitoring the hydrogen concentration in a heat treatment atmosphere in a semiconductor device manufacturing process.

【0011】図1を参照して,上記課題を解決する本発
明の第一の構成は,シリコン結晶を気体中で熱処理して
モニタ結晶1とするモニタ工程と,次いで,該モニタ結
晶1中の水素濃度を測定する工程とを有し,該モニタ結
晶1中の水素濃度に基づいて,該気体中の水素分圧を監
視することを特徴として構成し,及び,第二の構成は,
熱処理工程を有する半導体装置の製造方法において,シ
リコン結晶を該熱処理工程により熱処理してモニタ結晶
1とするモニタ工程と,次いで,該モニタ結晶1中の水
素濃度を測定する工程とを有し,該モニタ結晶1中の水
素濃度に基づいて,該熱処理工程の雰囲気中の水素分圧
を監視することを特徴として構成し,及び,第三の構成
は,第一又は第二の構成の半導体装置の製造方法におい
て,該モニタ結晶1中の水素濃度を測定する工程は,該
モニタ結晶1及び互いに異なる既知の水素濃度を有する
複数の水素ドープシリコン結晶2を,同一条件で熱処理
してサーマルドナーを生成するドナー生成熱処理工程
と,次いで,該サーマルドナー濃度を測定する工程と,
次いで,該水素ドープシリコン結晶2中の水素濃度とサ
ーマルドナー濃度との関係に,該モニタ結晶1中の該サ
ーマルドナー濃度を内挿又は外挿して該モニタ結晶1中
の水素濃度を求める工程とを含むことを特徴として構成
し,及び,第四の構成は,第三の構成の半導体装置の製
造方法において,該水素ドープシリコン結晶2は,シリ
コン結晶を水素含有雰囲気4中で熱処理して,該水素含
有雰囲気4の圧力をPdT,該水素含有雰囲気4中の水素
分圧をPd ,該水素含有雰囲気4中での該熱処理温度を
d ,ボルツマン定数をkするとき,定数C0 =4.9
6×1021cm-3,及び定数ε=1.86eVを用いて, Cd =C0 ・exp(−ε/kTd )・(Pd /PdT
1/2 , なる水素濃度を有する該水素ドープシリコン結晶とする
工程を含む工程により製造されることを特徴として構成
し,及び,第五の構成は,第三又は第四の構成の半導体
装置の製造方法において,該ドナー熱処理工程は,41
0〜450℃の熱処理温度で,10〜60分間の熱処理
を行う工程を有することを特徴として構成し,及び,第
六の構成は,第三の構成の半導体装置の製造方法におい
て,該気体中の水素分圧を求める工程は,該モニタ結晶
1中の水素濃度をC,該モニタ工程の熱処理温度を
a ,該気体の圧力をPT ,ボルツマン定数をkとする
とき,定数C0 =4.96×1021cm-3,及び定数ε=
1.86eVを用いて,該気体中の水素分圧Pa ,a =PT ・(C/C0 2 ・exp(2ε/kTa ) として算出する工程を含むことを特徴として構成し,及
び,第七の構成は,気体中の水素濃度測定方法におい
て,シリコン結晶を気体中で熱処理してモニタ結晶1と
するモニタ工程と,次いで,該モニタ結晶1中の水素濃
度を測定する工程とを有し,該モニタ結晶中の水素濃度
をC,該モニタ工程の熱処理温度をTa ,該気体の圧力
をPT ,ボルツマン定数をkとするとき,定数C0
4.96×1021cm-3,及び定数ε=1.86eVを用い
て,該気体中の水素分圧Pa ,a =PT ・(C/C0 2 ・exp(2ε/kTa ) として算出することを特徴として構成する。
With reference to FIG. 1, the first structure of the present invention for solving the above-mentioned problems is to perform a monitor step of heat-treating a silicon crystal in a gas to obtain a monitor crystal 1, and then to a monitor crystal 1 in the monitor crystal 1. And a step of measuring a hydrogen concentration, wherein the hydrogen partial pressure in the gas is monitored based on the hydrogen concentration in the monitor crystal 1, and the second configuration comprises
A method of manufacturing a semiconductor device having a heat treatment step, which comprises a monitor step of heat-treating a silicon crystal by the heat treatment step to obtain a monitor crystal 1, and a step of measuring a hydrogen concentration in the monitor crystal 1. The hydrogen partial pressure in the atmosphere of the heat treatment step is monitored based on the hydrogen concentration in the monitor crystal 1, and the third configuration is the semiconductor device of the first or second configuration. In the manufacturing method, in the step of measuring the hydrogen concentration in the monitor crystal 1, the monitor crystal 1 and a plurality of hydrogen-doped silicon crystals 2 having different known hydrogen concentrations are heat-treated under the same condition to generate a thermal donor. A heat treatment step for forming a donor, and a step for measuring the thermal donor concentration,
Then, the step of interpolating or extrapolating the thermal donor concentration in the monitor crystal 1 to obtain the hydrogen concentration in the monitor crystal 1 in the relationship between the hydrogen concentration in the hydrogen-doped silicon crystal 2 and the thermal donor concentration. And a fourth structure is the method for manufacturing a semiconductor device having the third structure, wherein the hydrogen-doped silicon crystal 2 is obtained by heat treating the silicon crystal in a hydrogen-containing atmosphere 4. When the pressure of the hydrogen-containing atmosphere 4 is P dT , the hydrogen partial pressure in the hydrogen-containing atmosphere 4 is P d , the heat treatment temperature in the hydrogen-containing atmosphere 4 is T d , and the Boltzmann constant is k, the constant C 0 = 4.9
Using 6 × 10 21 cm −3 and the constant ε = 1.86 eV, C d = C 0 · exp (−ε / kT d ) · (P d / P dT ).
Characterized by being manufactured by a process including a process of forming the hydrogen-doped silicon crystal having a hydrogen concentration of 1/2 , and a fifth structure is a semiconductor device of the third or fourth structure. In the manufacturing method, the donor heat treatment step includes 41
And a heat treatment temperature of 0 to 450 ° C. for a period of 10 to 60 minutes. In the step of obtaining the hydrogen partial pressure of C, the hydrogen concentration in the monitor crystal 1 is C, the heat treatment temperature in the monitor step is T a , the gas pressure is P T , and the Boltzmann constant is k, the constant C 0 = 4.96 × 10 21 cm -3 and constant ε =
It is characterized by including a step of calculating a hydrogen partial pressure P a in the gas as P a = P T · (C / C 0 ) 2 · exp (2ε / kT a ), using 1.86 eV. And, in the seventh configuration, in the method for measuring hydrogen concentration in a gas, a monitor step of heat-treating a silicon crystal in a gas to obtain a monitor crystal 1, and then measuring a hydrogen concentration in the monitor crystal 1. and a step, when the hydrogen concentration of the monitor in the crystal to C, and the heat treatment temperature of the monitoring step T a, the pressure of the gas P T, the Boltzmann constant and k, the constant C 0 =
4.96 × 10 21 cm -3, and with a constant epsilon = 1.86 eV, the hydrogen partial pressure P a in the gas, P a = P T · ( C / C 0) 2 · exp (2ε / The feature is that it is calculated as kT a ).

【0012】[0012]

【作用】本発明の第一の構成では,図1モニタ工程を
参照して,水素濃度を測定すべき気体3中でシリコン結
晶を熱処理するモニタ工程を有する。このモニタ工程で
の熱処理は,シリコン結晶中の水素濃度が気体中の水素
分圧と熱平衡に到達するまでなされ,例えば700℃〜
1200℃で30分間処理される。その結果,シリコン
結晶は,被測定気体3の水素分圧と熱平衡の水素濃度を
有するモニタ結晶1に変換される。
In the first configuration of the present invention, referring to the monitoring step of FIG. 1, there is a monitoring step of heat-treating the silicon crystal in the gas 3 whose hydrogen concentration is to be measured. The heat treatment in this monitoring step is performed until the hydrogen concentration in the silicon crystal reaches thermal equilibrium with the hydrogen partial pressure in the gas, for example, 700 ° C.
It is processed at 1200 ° C. for 30 minutes. As a result, the silicon crystal is converted into the monitor crystal 1 having a hydrogen partial pressure of the measured gas 3 and a hydrogen concentration in thermal equilibrium.

【0013】次いでモニタ結晶の水素濃度を測定する。
なお,本明細書における水素濃度の測定とは,水素濃度
の絶対値の測定の他,何らかの手段により基準となる水
素濃度との相対比較がなされることをいう。このモニタ
結晶中の水素濃度測定は,通常のシリコン中の水素濃度
測定方法,例えば赤外吸収法又は2次電子質量分析法に
よることができる。さらに,便宜な具体的手段について
は後述する。
Next, the hydrogen concentration of the monitor crystal is measured.
It should be noted that the measurement of the hydrogen concentration in the present specification means that, in addition to the measurement of the absolute value of the hydrogen concentration, relative comparison with the reference hydrogen concentration is performed by some means. The hydrogen concentration in the monitor crystal can be measured by a usual hydrogen concentration measuring method in silicon, for example, an infrared absorption method or a secondary electron mass spectrometry method. Furthermore, convenient concrete means will be described later.

【0014】この水素濃度の測定の結果,モニタ結晶中
の水素濃度は,その絶対値が測定され,又は基準水素濃
度との比較がなされる。モニタ結晶中の水素濃度は,モ
ニタ工程中の気体中の水素分圧と熱平衡している。従っ
て,モニタ結晶中の水素濃度の測定により,モニタ工程
で熱平衡している気体中の水素分圧を知ることができ
る。このため,本構成の水素濃度測定方法により,半導
体装置の製造工程に用いられる気体中の水素分圧を監視
することができる。
As a result of the measurement of the hydrogen concentration, the absolute value of the hydrogen concentration in the monitor crystal is measured or compared with the reference hydrogen concentration. The hydrogen concentration in the monitor crystal is in thermal equilibrium with the hydrogen partial pressure in the gas during the monitoring process. Therefore, by measuring the hydrogen concentration in the monitor crystal, the hydrogen partial pressure in the gas that is in thermal equilibrium in the monitoring process can be known. Therefore, with the hydrogen concentration measuring method of this configuration, the hydrogen partial pressure in the gas used in the manufacturing process of the semiconductor device can be monitored.

【0015】本発明の第二の構成は,図1モニタ工程
を参照して,半導体装置の製造工程で行われる熱処理の
雰囲気中の水素分圧を監視する方法に関する。本構成で
は,製造工程で行われる熱処理雰囲気中に,被熱処理
物,例えばウエーハと一緒にシリコン結晶を入れて熱処
理し,この熱処理をモニタ工程として利用しモニタ結晶
を作る。
The second configuration of the present invention relates to a method of monitoring the hydrogen partial pressure in the atmosphere of the heat treatment performed in the semiconductor device manufacturing process with reference to the monitoring process of FIG. In this configuration, a silicon crystal is put together with an object to be heat-treated, for example, a wafer in a heat treatment atmosphere performed in the manufacturing process to perform heat treatment, and this heat treatment is used as a monitor process to produce a monitor crystal.

【0016】本構成によれば,第一の構成と同様にモニ
タ結晶の水素濃度の測定により,半導体装置の製造工程
で行われる熱処理の雰囲気中の水素分圧が監視される。
上述した,本発明の第一及び第二の構成では,モニタ結
晶を熱処理した際の,その温度における雰囲気中の水素
分圧が測定される。従って,第一及び第二の構成によれ
ば,高温の熱処理温度における水素分圧を直接に測定す
ることができる。
According to this structure, the hydrogen partial pressure in the atmosphere of the heat treatment performed in the semiconductor device manufacturing process is monitored by measuring the hydrogen concentration of the monitor crystal as in the first structure.
In the above-described first and second configurations of the present invention, the hydrogen partial pressure in the atmosphere at the temperature when the monitor crystal is heat-treated is measured. Therefore, according to the first and second configurations, the hydrogen partial pressure at a high heat treatment temperature can be directly measured.

【0017】さらに,モニタ結晶はシリコン結晶である
から極めて高純度にすることができる。このため,モニ
タ結晶を,被処理物,例えばシリコンウエーハと一緒に
熱処理炉に入れて熱処理しても,被処理物あるいは熱処
理炉を汚染しない。
Further, since the monitor crystal is a silicon crystal, it can be made extremely high in purity. Therefore, even if the monitor crystal is put in a heat treatment furnace together with an object to be treated, for example, a silicon wafer, and heat-treated, the object to be treated or the heat treatment furnace is not contaminated.

【0018】第六の構成では,モニタ結晶1中の水素濃
度Cから,図1モニタ工程における熱処理雰囲気であ
る気体中の水素分圧Pa を,
In the sixth configuration, from the hydrogen concentration C in the monitor crystal 1, the hydrogen partial pressure P a in the gas, which is the heat treatment atmosphere in the monitoring step in FIG.

【0019】[0019]

【数1】 Pa =PT ・(C/C0 2 ・exp(2ε/kTa ) により計算する。ここで,Cは該モニタ結晶1中の水素
濃度,Ta はモニタ工程での熱処理温度,PT は気体の
圧力,kはボルツマン定数,C0 は定数4.96×10
21cm-3,εは定数1.86eVである。
## EQU1 ## Calculation is performed by P a = P T · (C / C 0 ) 2 · exp (2ε / kT a ). Here, C is the hydrogen concentration in the monitor crystal 1, T a is the heat treatment temperature in the monitoring step, P T is the gas pressure, k is the Boltzmann constant, and C 0 is the constant 4.96 × 10 4.
21 cm -3 and ε are constant 1.86 eV.

【0020】この数1は以下のように導かれる。モニタ
結晶1中の水素濃度Cは,モニタ工程での熱処理温度T
a において熱平衡にある。かかる平衡状態では,雰囲気
の水素分圧が1気圧の場合に,モニタ結晶1中の水素濃
度Cは,
This equation 1 is derived as follows. The hydrogen concentration C in the monitor crystal 1 is determined by the heat treatment temperature T in the monitor process.
It is in thermal equilibrium at a. In this equilibrium state, when the hydrogen partial pressure of the atmosphere is 1 atm, the hydrogen concentration C in the monitor crystal 1 is

【0021】[0021]

【数2】C=C0 ・exp(−ε/kTa ), で与えられることが,Hydrogen in Semiconductors: Se
miconductors and Semimetals vol.34に開示されてい
る。他方,深井 有により日本金属学会会報vol.24p597
に,
[Equation 2] C = C 0 · exp (−ε / kT a ), is given by Hydrogen in Semiconductors: Se
It is disclosed in miconductors and Semimetals vol.34. On the other hand, by Fukai Yuru
To

【0022】[0022]

【数3】C∝(Pa /PT 1/2 , なることが開示されている。数2,数3から,雰囲気の
気体と熱平衡するモニタ結晶中の水素濃度Cは,
## EQU3 ## It is disclosed that C∝ (P a / P T ) 1/2 . From Equations 2 and 3, the hydrogen concentration C in the monitor crystal that is in thermal equilibrium with the atmosphere gas is

【0023】[0023]

【数4】C=C0 ・exp(−ε/kTa )・(Pa
T 1/2 , であり,これから数1が導出される。本構成によれば,
モニタ結晶を用いることで,高温における気体中の水素
分圧の絶対値を測定することができる。また,第三〜第
五の構成と同様にしてモニタ結晶中の水素濃度を測定す
ることで,直接モニタ結晶中の水素濃度を測定する装置
を用いることなく,熱処理と電気的特性の測定による簡
便な方法で,気体中の水素濃度を測定することができ
る。
## EQU4 ## C = C 0 · exp (−ε / kT a ) · (P a /
P T ) 1/2 , from which the equation 1 is derived. According to this configuration,
By using a monitor crystal, the absolute value of the hydrogen partial pressure in the gas at high temperature can be measured. In addition, by measuring the hydrogen concentration in the monitor crystal in the same manner as the third to fifth configurations, it is possible to simply perform the heat treatment and the electrical characteristic measurement without using a device for directly measuring the hydrogen concentration in the monitor crystal. The hydrogen concentration in the gas can be measured by various methods.

【0024】次に,モニタ結晶中の水素濃度の測定方法
についてのべる。第三の構成では,図1のドナー生成
熱処理工程を参照して,既知の水素濃度を有する複数の
水素ドープシリコン結晶2を,ドナー生成熱処理してサ
ーマルドナーを生成し,図1のモニタ結晶中水素濃度
を求める工程を参照して,水素ドープシリコン結晶2中
の水素濃度と水素ドープシリコン結晶2中に生成したサ
ーマルドナー濃度との関係を,例えば図1の実線で示
すようにして求める。即ち,本構成は,サーマルドナー
濃度が水素濃度に依存することを利用したもので,かか
る依存性は本発明の発明者により明らかにされた。
Next, a method for measuring the hydrogen concentration in the monitor crystal will be described. In the third configuration, referring to the donor generation heat treatment step of FIG. 1, a plurality of hydrogen-doped silicon crystals 2 having a known hydrogen concentration are subjected to donor heat treatment to generate thermal donors. With reference to the step of obtaining the hydrogen concentration, the relationship between the hydrogen concentration in the hydrogen-doped silicon crystal 2 and the thermal donor concentration generated in the hydrogen-doped silicon crystal 2 is obtained as shown by the solid line in FIG. 1, for example. That is, this configuration utilizes the fact that the thermal donor concentration depends on the hydrogen concentration, and the dependency was clarified by the inventor of the present invention.

【0025】一方,モニタ結晶1を同一条件でドナー生
成熱処理する。その結果モニタ結晶1中に生成したサー
マルドナー濃度(図1中にイで示す)を,図1を参
照して,水素ドープシリコン結晶2中の水素濃度とサー
マルドナー濃度との関係に内挿,又は外挿し,対応する
水素濃度Cを求める。
On the other hand, the monitor crystal 1 is heat-treated to generate donors under the same conditions. As a result, the thermal donor concentration (indicated by a in FIG. 1) generated in the monitor crystal 1 is interpolated into the relationship between the hydrogen concentration in the hydrogen-doped silicon crystal 2 and the thermal donor concentration with reference to FIG. Alternatively, extrapolate to obtain the corresponding hydrogen concentration C.

【0026】本発明の構成では,モニタ結晶1及び水素
ドープシリコン結晶2を,サーマルドナー生成に関係し
て実質的に同一性質を有するシリコン結晶として製造す
る。かかるシリコン結晶は,例えば同一のインゴットの
互い近い位置から切り出すことで製造することができ
る。また,高温の溶体化熱処理を施して,シリコン結晶
の熱履歴を消去してもよい。この様に製造されたモニタ
結晶1及び水素ドープシリコン結晶2における水素濃度
とサーマルドナー濃度との関係は,サーマルドナーの生
成条件が同一の場合は一致する。従って,水素ドープシ
リコン結晶の関係に,モニタ結晶の結果を当てはめるこ
とができる。
In the configuration of the present invention, the monitor crystal 1 and the hydrogen-doped silicon crystal 2 are manufactured as silicon crystals having substantially the same properties in relation to the generation of thermal donors. Such a silicon crystal can be manufactured, for example, by cutting the same ingot from positions close to each other. Further, a high temperature solution heat treatment may be performed to erase the thermal history of the silicon crystal. The relationship between the hydrogen concentration and the thermal donor concentration in the monitor crystal 1 and the hydrogen-doped silicon crystal 2 manufactured as described above is the same when the thermal donor generation conditions are the same. Therefore, the results of the monitor crystal can be applied to the relationship of the hydrogen-doped silicon crystal.

【0027】本構成では,既知の水素濃度の水素ドープ
シリコン結晶を準備することで,モニタ結晶中の水素濃
度を直接測定する必要がない。このため,シリコン結晶
中の水素濃度測定装置を必要としない。
In this structure, it is not necessary to directly measure the hydrogen concentration in the monitor crystal by preparing a hydrogen-doped silicon crystal having a known hydrogen concentration. Therefore, a device for measuring the hydrogen concentration in the silicon crystal is not required.

【0028】本発明の第四の構成では,図1の水素ド
ープシリコン結晶製造工程を参照して,シリコン結晶を
水素分圧が既知の水素含有雰囲気4中で熱処理して,水
素ドープシリコン結晶2とする。この水素ドープシリコ
ン結晶2は水素含有雰囲気4と熱平衡の水素濃度を有す
る。この水素ドープシリコン結晶2の水素濃度Cd は,
圧力がPdTの水素含有雰囲気4中の水素分圧Pd と熱平
衡しており,数4と同様にして,該水素含有雰囲気4中
での該熱処理温度をTd ,ボルツマン定数をkすると
き,定数C0 =4.96×1021cm-3,及び定数ε=
1.86eVを用いて, Cd =C0 ・exp(−ε/kTd )・(Pd /PdT
1/2 , と表される。
In the fourth structure of the present invention, referring to the hydrogen-doped silicon crystal manufacturing process of FIG. 1, the silicon crystal is heat-treated in the hydrogen-containing atmosphere 4 having a known hydrogen partial pressure to obtain the hydrogen-doped silicon crystal 2. And The hydrogen-doped silicon crystal 2 has a hydrogen concentration in thermal equilibrium with the hydrogen-containing atmosphere 4. The hydrogen concentration C d of this hydrogen-doped silicon crystal 2 is
When the heat treatment temperature in the hydrogen-containing atmosphere 4 is T d and the Boltzmann constant is k in thermal equilibrium with the hydrogen partial pressure P d in the hydrogen-containing atmosphere 4 having a pressure of P dT , , Constant C 0 = 4.96 × 10 21 cm −3 , and constant ε =
Using 1.86 eV, C d = C 0 · exp (−ε / kT d ) · (P d / P dT ).
It is expressed as 1/2 .

【0029】本構成によれば,熱処理温度及び水素含有
雰囲気の水素分圧のうち,何れか一方又は両方を変える
ことで,異なるかつ既知の水素濃度を有する水素ドープ
シリコン結晶を容易に製造することができる。従って,
既知濃度の水素ドープシリコン結晶を製造するために水
素濃度の測定装置を必要としない。
According to this structure, by changing either one or both of the heat treatment temperature and the hydrogen partial pressure of the hydrogen-containing atmosphere, hydrogen-doped silicon crystals having different and known hydrogen concentrations can be easily manufactured. You can Therefore,
No device for measuring hydrogen concentration is required to produce a hydrogen-doped silicon crystal of known concentration.

【0030】第五の構成は,本発明にかかる水素濃度の
測定を鋭敏に行うに適したサーマルドナー生成熱処理条
件に関する。本発明の発明者は,サーマルドナー濃度の
シリコン結晶中の水素濃度依存性と,ドナー生成熱処理
条件との関係を実験により明らかにした。図3〜図6に
その実験結果を示した。以下,この実験と,その結果を
説明する。
The fifth constitution relates to a thermal donor generation heat treatment condition suitable for sensitively measuring the hydrogen concentration according to the present invention. The inventor of the present invention has clarified experimentally the relation between the hydrogen concentration dependence of the thermal donor concentration in the silicon crystal and the heat treatment conditions for donor generation. The experimental results are shown in FIGS. Hereinafter, this experiment and its result will be described.

【0031】同じインゴットの隣接する位置から,厚さ
1mmのウエーハと厚さ10mmのシリコン板を切出した。
このウエーハを窒素雰囲気中で750℃,5分間の脱水
素熱処理をして,水素をウエーハ表面から拡散して除去
し,水素濃度が低い脱水素シリコン結晶とした。一方,
シリコン板は,22Torrの水素分圧を有する水素含有雰
囲気中で1200℃,30分間の熱処理を施し,水素ド
ープシリコン結晶とした。
A wafer having a thickness of 1 mm and a silicon plate having a thickness of 10 mm were cut out from adjacent positions of the same ingot.
This wafer was subjected to a dehydrogenation heat treatment at 750 ° C. for 5 minutes in a nitrogen atmosphere to diffuse and remove hydrogen from the wafer surface to obtain a dehydrogenated silicon crystal having a low hydrogen concentration. on the other hand,
The silicon plate was heat-treated at 1200 ° C. for 30 minutes in a hydrogen-containing atmosphere having a hydrogen partial pressure of 22 Torr to obtain a hydrogen-doped silicon crystal.

【0032】次いで,水素ドープシリコン結晶及び脱水
素シリコン結晶を,425℃及び500℃でドナー生成
熱処理をし,サーマルドナーを発生させた。図3は,サ
ーマルドナー濃度のドナー生成熱処理時間依存性を表す
図であり,水素ドープシリコン結晶と水素濃度が低い脱
水素シリコン結晶とについて,ドナー生成熱処理の時間
と,それにより生成されたサーマルドナーの濃度との関
係を明らかにした実験結果である。
Next, the hydrogen-doped silicon crystal and the dehydrogenated silicon crystal were subjected to donor formation heat treatment at 425 ° C. and 500 ° C. to generate a thermal donor. FIG. 3 is a diagram showing the dependence of the thermal donor concentration on the time of donor generation heat treatment. The time of the donor generation heat treatment and the thermal donor generated by the hydrogen-doped silicon crystal and the dehydrogenated silicon crystal having a low hydrogen concentration. It is the experimental result that clarified the relationship with the concentration of.

【0033】図3中,イ,ロは,425℃での熱処理,
ハ,ニは500℃での熱処理に対応して発生したサーマ
ルドナー濃度を表し,イ,ハは水素ドープシリコン結晶
を,ロ,ニは脱水素シリコン結晶を表している。
In FIG. 3, a and b are heat treatments at 425 ° C.,
C and D represent the thermal donor concentration generated corresponding to the heat treatment at 500 ° C., B and C represent hydrogen-doped silicon crystals, and B and D represent dehydrogenated silicon crystals.

【0034】図3のイ,ロを参照して,ドナー生成熱処
理温度が425℃の場合,熱処理時間の初期では,脱水
素シリコン結晶のサーマルドナー濃度ロは,水素ドープ
シリコン結晶のサーマルドナー濃度イよりも立ち上がり
が遅い。さらに,長時間の熱処理後にも一定のサーマル
ドナー濃度差を生じた。
Referring to (a) and (b) in FIG. 3, when the heat treatment temperature for donor generation is 425 ° C., the thermal donor concentration b of the dehydrogenated silicon crystal is equal to that of the hydrogen-doped silicon crystal at the beginning of the heat treatment time. Rises slower than Furthermore, a constant thermal donor concentration difference occurred even after long-term heat treatment.

【0035】これに対して,ハ,ニを参照して,ドナー
生成熱処理温度が500℃の場合,脱水素シリコン結晶
及び水素ドープシリコン結晶のいずれのサーマルドナー
濃度も急速に立ち上がり,その差は小さい。
On the other hand, referring to C and D, when the heat treatment temperature for donor generation is 500 ° C., the thermal donor concentrations of both the dehydrogenated silicon crystal and the hydrogen-doped silicon crystal rise rapidly, and the difference is small. .

【0036】図4は,サーマルドナー濃度比のドナー生
成熱処理時間依存性を表す図であり,ある処理時間後に
水素ドープシリコン結晶中に発生したサーマルドナー濃
度を,その時間に脱水素シリコン結晶中に発生したサー
マルドナー濃度を基準として表したサーマルドナー濃度
比の熱処理時間依存性を表している。なお,図4中,
イ,ロはそれぞれ425℃,及び500℃のドナー生成
熱処理に対応している。
FIG. 4 is a diagram showing the dependence of the thermal donor concentration ratio on the time of heat treatment for donor generation. The thermal donor concentration generated in the hydrogen-doped silicon crystal after a certain processing time was changed to that in the dehydrogenated silicon crystal at that time. The heat treatment time dependence of the thermal donor concentration ratio expressed based on the generated thermal donor concentration is shown. In addition, in FIG.
(A) and (b) correspond to the donor formation heat treatment at 425 ° C. and 500 ° C., respectively.

【0037】図4は,ドナー生成熱処理時間が短い程,
特に60分以内で,サーマルドナー濃度比が大きくなる
こと,即ち,サーマルドナー濃度が水素濃度に鋭敏に影
響されることを明らかにしている。他方,図3から,ド
ナー生成熱処理時間が短い場合,例えば10分間以下で
はサーマルドナー濃度が低く,サーマルドナー濃度の精
密な測定が困難になる。また,この処理時間が短い場合
に起こるサーマルドナー濃度比の増加は,低温の425
℃で顕著であり,高温の500℃では少ない。従って,
水素濃度を精密にかつ鋭敏に測定するには,低温で10
〜60分間のドナー生成熱処理をすることが好ましい。
なお,この時間は,シリコン結晶の性質,ドナー生成熱
処理温度,酸素濃度,等により異なることがある。
FIG. 4 shows that the shorter the heat treatment time for generating the donor,
In particular, it is clarified that the thermal donor concentration ratio increases within 60 minutes, that is, the thermal donor concentration is sensitively affected by the hydrogen concentration. On the other hand, from FIG. 3, when the heat treatment time for generating the donor is short, for example, for 10 minutes or less, the thermal donor concentration is low, and precise measurement of the thermal donor concentration becomes difficult. The increase in the thermal donor concentration ratio that occurs when the processing time is short is 425 at low temperature.
It is remarkable at ℃, and it is small at high temperature of 500 ℃. Therefore,
To measure hydrogen concentration precisely and sensitively, 10
It is preferable to perform the donor formation heat treatment for about 60 minutes.
Note that this time may vary depending on the properties of the silicon crystal, the temperature of the heat treatment for donor generation, the oxygen concentration, and the like.

【0038】図5はサーマルドナー濃度のドナー生成熱
処理温度依存性を表す図であり,1時間のドナー生成熱
処理により発生したサーマルドナー濃度を表している。
また,図6は,サーマルドナー濃度比のドナー生成熱処
理温度依存性を表す図であり,1時間のドナー生成熱処
理後の脱水素処理シリコン結晶中のサーマルドナー濃度
を基準として表した,水素ドープシリコン結晶中のサー
マルドナー濃度を,サーマルドナー濃度比としている。
なお,脱水素処理シリコン結晶及び水素ドープシリコン
は,図3及び図4の実験に用いたものと同様である。ま
た,ドナー生成熱処理は,処理時間を1時間とし,異な
る処理温度について行った。
FIG. 5 is a diagram showing the temperature dependence of the thermal donor concentration on the donor formation heat treatment, and shows the thermal donor concentration generated by the donor formation heat treatment for 1 hour.
In addition, FIG. 6 is a diagram showing the temperature dependence of the thermal donor concentration ratio on the donor formation heat treatment. The hydrogen-doped silicon is represented based on the thermal donor concentration in the dehydrogenated silicon crystal after the donor formation heat treatment for 1 hour. The thermal donor concentration in the crystal is defined as the thermal donor concentration ratio.
The dehydrogenated silicon crystal and hydrogen-doped silicon are the same as those used in the experiments of FIGS. 3 and 4. In addition, the donor generation heat treatment was performed at different treatment temperatures for a treatment time of 1 hour.

【0039】サーマルドナー濃度は,図5を参照して,
ドナー生成熱処理温度が410℃〜450℃の間は温度
が高い程増加し,450℃を超えると一定又は減少す
る。他方,サーマルドナー濃度比は,図6を参照して,
ドナー生成熱処理温度が低い程,とくに450℃以下で
増大する。従って,ドナー生成熱処理温度は450℃以
下であることが鋭敏な水素濃度の測定のために好まし
い。他方,ドナーの測定精度を劣化させない程度の濃度
のサーマルドナーを生成するためには,410℃以上で
あることが好ましい。
For the thermal donor concentration, refer to FIG.
When the heat treatment temperature for donor generation is between 410 ° C and 450 ° C, it increases as the temperature rises, and when it exceeds 450 ° C, it becomes constant or decreases. On the other hand, for the thermal donor concentration ratio, refer to FIG.
The lower the temperature for donor heat treatment, the more it increases at 450 ° C or lower. Therefore, the heat treatment temperature for donor generation is preferably 450 ° C. or lower for sensitive measurement of hydrogen concentration. On the other hand, in order to generate a thermal donor having a concentration that does not deteriorate the measurement accuracy of the donor, the temperature is preferably 410 ° C. or higher.

【0040】[0040]

【実施例】本発明を,半導体装置の製造工程における熱
処理工程に適用した実施例を参照して詳細に説明する。
The present invention will be described in detail with reference to an embodiment in which the present invention is applied to a heat treatment process in a semiconductor device manufacturing process.

【0041】図1は本発明の実施例工程図であり,半導
体装置の製造工程におけるウエーハの熱処理工程の雰囲
気中の水素濃度を監視する工程を表している。先ず,チ
ョクラルスキー法で成長されたシリコン結晶インゴット
の略同位置から,厚さ10mm,幅12mm,長さ20mmの
シリコン結晶小片を切り出した。
FIG. 1 is a process chart of an embodiment of the present invention, showing a process of monitoring the hydrogen concentration in the atmosphere during the heat treatment process of a wafer in the process of manufacturing a semiconductor device. First, a silicon crystal small piece having a thickness of 10 mm, a width of 12 mm and a length of 20 mm was cut out from substantially the same position of a silicon crystal ingot grown by the Czochralski method.

【0042】次いで,図1のモニタ工程を参照して,
モニタ結晶1となるシリコン結晶小片の一つを,半導体
装置の基板となるシリコン基板5と共にボート6に載せ
て熱処理炉3中に挿入し,熱処理した。なお,この熱処
理がモニタ工程に相当する。熱処理炉3内には,窒素純
化装置を通した1気圧の窒素ガスをガス導入口7から流
入し,シリコン基板5と接触した後,排気口8から流出
させた。
Next, referring to the monitoring process of FIG.
One of the silicon crystal small pieces to be the monitor crystal 1 was placed on the boat 6 together with the silicon substrate 5 to be the substrate of the semiconductor device, inserted into the heat treatment furnace 3, and heat-treated. This heat treatment corresponds to the monitor process. Into the heat treatment furnace 3, nitrogen gas of 1 atm passing through the nitrogen purifier was introduced from the gas introduction port 7, contacted with the silicon substrate 5, and then discharged from the exhaust port 8.

【0043】このモニタ工程の熱処理は,温度1000
℃で2時間行われ,シリコン結晶小片はモニタ結晶に変
換された。なお,モニタ結晶は,モニタ工程の熱処理終
了後,1000℃から20℃まで10分間で急冷され
た。この急冷は,モニタ結晶中の水素の外方拡散を阻止
するためになされる。本実施例ではモニタ結晶表面から
略1mm以上の深さでは外方拡散の影響を無視することが
できた。
The heat treatment in this monitor process is performed at a temperature of 1000
After 2 hours at 0 ° C., the silicon crystal pieces were converted into monitor crystals. The monitor crystal was rapidly cooled from 1000 ° C. to 20 ° C. in 10 minutes after the heat treatment in the monitor process was completed. This quenching is done to prevent out-diffusion of hydrogen in the monitor crystal. In this embodiment, the effect of outward diffusion could be ignored at a depth of approximately 1 mm or more from the surface of the monitor crystal.

【0044】他方,残りのシリコン結晶小片は,図1
の水素ドープシリコン結晶製造工程を参照して,ボート
6に載せて1気圧の水素含有雰囲気4中に挿入して熱処
理し,水素ドープシリコン結晶2を製造した。水素雰囲
気4は, 窒素ガスをキャリアとするガスに水素ガスを加
えて20Torrの水素分圧を付与した。この水素ドープシ
リコン結晶2を製造するための熱処理温度は,10個の
シリコン結晶小片についてそれぞれ800℃から120
0℃まで略50℃ずつ異なる温度で行い,その結果10
個の異なる水素濃度を有する水素ドープシリコン結晶2
を製造した。
On the other hand, the remaining silicon crystal pieces are shown in FIG.
The hydrogen-doped silicon crystal 2 was manufactured by referring to the hydrogen-doped silicon crystal manufacturing process of 1), mounting it on a boat 6, inserting it in a hydrogen-containing atmosphere 4 at 1 atm, and performing heat treatment. In the hydrogen atmosphere 4, hydrogen gas was added to a gas having nitrogen gas as a carrier to give a hydrogen partial pressure of 20 Torr. The heat treatment temperature for producing the hydrogen-doped silicon crystal 2 is 800 ° C. to 120 ° C. for each of 10 silicon crystal pieces.
Performed at different temperatures of about 50 ℃ up to 0 ℃, and as a result 10
Hydrogen-doped silicon crystals having different hydrogen concentrations 2
Was manufactured.

【0045】次いで,図1のドナー生成熱処理工程を
参照して,モニタ結晶1及び10個の水素ドープシリコ
ン結晶2を,ボート6にのせ,窒素雰囲気中で450
℃,30分間のドナー生成熱処理して,これらの結晶中
にサーマルドナーを生成した。これらのサーマルドナー
濃度は,図1のサーマルドナー濃度測定工程を参照し
て,モニタ結晶1及び水素ドープシリコン結晶2を2分
割し,研磨されたその分割面に4個の探針を当接して比
抵抗を測定する四探針抵抗測定器を用いて測定された比
抵抗から求められた。
Next, referring to the donor generation heat treatment step of FIG. 1, the monitor crystal 1 and the 10 hydrogen-doped silicon crystals 2 are placed on the boat 6 and the temperature is set to 450 in a nitrogen atmosphere.
The donor was heat-treated at 30 ° C. for 30 minutes to generate a thermal donor in these crystals. For these thermal donor concentrations, referring to the thermal donor concentration measuring step of FIG. 1, the monitor crystal 1 and the hydrogen-doped silicon crystal 2 are divided into two, and four probes are brought into contact with the polished divided surface. It was obtained from the specific resistance measured using a four-point probe resistance measuring device for measuring the specific resistance.

【0046】次いで,モニタ結晶のサーマルドナー濃度
を,以下のようにして水素ドープシリコン結晶2のサー
マルドナー濃度と比較した。図2は,サーマルドナー濃
度の水素濃度依存性を表す図であり,水素ドープシリコ
ン結晶2中の水素濃度と,ドナー生成熱処理の結果その
中に生成したサーマルドナー濃度との関係を表してい
る。
Next, the thermal donor concentration of the monitor crystal was compared with the thermal donor concentration of the hydrogen-doped silicon crystal 2 as follows. FIG. 2 is a diagram showing the hydrogen concentration dependence of the thermal donor concentration, and shows the relationship between the hydrogen concentration in the hydrogen-doped silicon crystal 2 and the thermal donor concentration generated in the hydrogen-containing silicon crystal 2 as a result of the donor generation heat treatment.

【0047】図2から,水素濃度とサーマルドナー濃度
とは,それらの対数が直線になる関係にある。なお図2
は,その直線を低水素濃度領域にまで外挿している。他
方,モニタ結晶中のサーマルドナー濃度DT は,2.1
×1013cm-3であった。このモニタ結晶中のサーマルド
ナー濃度DT を,図2の直線に当てはめ,相当するモニ
タ結晶中の水素濃度C=3.05×1011原子cm-3を得
た。
From FIG. 2, the hydrogen concentration and the thermal donor concentration have a relationship in which their logarithms are linear. Figure 2
Has extrapolated the straight line to the low hydrogen concentration region. On the other hand, the thermal donor concentration D T in the monitor crystal is 2.1
It was × 10 13 cm -3 . The thermal donor concentration D T in this monitor crystal was applied to the straight line in FIG. 2 to obtain the hydrogen concentration C = 3.05 × 10 11 atoms cm −3 in the corresponding monitor crystal.

【0048】次いで,図1の気体中水素分圧算出工程
を参照して,このモニタ結晶中の水素濃度C=3.05
×1011原子cm-3,モニタ工程の熱処理温度,即ち半導
体製造工程での熱処理工程の熱処理温度,Ta =100
0℃,及びその熱処理雰囲気圧力PT =1気圧を数1に
代入して,Pa ≒2×10-6気圧を得た。従って,この
半導体製造工程での熱処理工程雰囲気中の水素濃度は,
被処理物であるシリコン基板の近くで,2ppm であった
ことが確認された。
Next, referring to the hydrogen partial pressure calculation step in FIG. 1, the hydrogen concentration C in this monitor crystal is C = 3.05.
× 10 11 atoms cm −3 , heat treatment temperature of monitor process, that is, heat treatment temperature of heat treatment process in semiconductor manufacturing process, T a = 100
By substituting 0 ° C. and its heat treatment atmosphere pressure P T = 1 atm into Equation 1, P a ≈2 × 10 −6 atm was obtained. Therefore, the hydrogen concentration in the heat treatment process atmosphere in this semiconductor manufacturing process is
It was confirmed that the concentration was 2 ppm near the silicon substrate that was the object to be processed.

【0049】[0049]

【発明の効果】本発明によれば,シリコン結晶をモニタ
とすることで熱処理雰囲気中の水素濃度を監視すること
ができるから,熱処理炉を汚染することなく,高温雰囲
気中で及び被熱処理物の近くで水素濃度を監視すること
ができる半導体装置の製造方法を提供でき,また,熱処
理炉を汚染することなく,高温雰囲気中で及び被熱処理
物の近くで測定することができる気体中の水素濃度測定
方法を提供することができるから,半導体装置の性能向
上に寄与するところが大きい。
According to the present invention, since the hydrogen concentration in the heat treatment atmosphere can be monitored by using the silicon crystal as a monitor, the heat treatment furnace is not contaminated, and the heat treatment object can be used in the high temperature atmosphere and in the high temperature atmosphere. It is possible to provide a method for manufacturing a semiconductor device capable of monitoring the hydrogen concentration in the vicinity, and to measure the hydrogen concentration in a gas in a high temperature atmosphere and near the object to be heat treated without contaminating the heat treatment furnace. Since the measurement method can be provided, it greatly contributes to the performance improvement of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例工程図FIG. 1 is a process chart of an embodiment of the present invention.

【図2】 サーマルドナー濃度の水素濃度依存性を表す
FIG. 2 is a diagram showing the hydrogen concentration dependence of the thermal donor concentration.

【図3】 サーマルドナー濃度のドナー生成熱処理時間
依存性を表す図
FIG. 3 is a diagram showing the dependency of thermal donor concentration on the heat treatment for donor generation.

【図4】 サーマルドナー濃度比のドナー生成熱処理時
間依存性を表す図
FIG. 4 is a diagram showing the dependency of the thermal donor concentration ratio on the heat treatment time for donor generation.

【図5】 サーマルドナー濃度のドナー生成熱処理温度
依存性を表す図
FIG. 5 is a diagram showing temperature dependence of thermal donor concentration for donor generation heat treatment.

【図6】 サーマルドナー濃度比のドナー生成熱処理温
度依存性を表す図
FIG. 6 is a diagram showing a temperature dependence of a donor thermal treatment on a thermal donor concentration ratio.

【符号の説明】[Explanation of symbols]

1 モニタ結晶 2 水素ドープシリコン結晶 3 熱処理炉 4 水素含有雰囲気 5 シリコン基板 6 ボート 7 ガス導入口 8 排気口 9 四探針抵抗測定器 9a 探針 1 monitor crystal 2 hydrogen-doped silicon crystal 3 heat treatment furnace 4 hydrogen-containing atmosphere 5 silicon substrate 6 boat 7 gas inlet port 8 exhaust port 9 four-point probe resistance measuring instrument 9a probe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリコン結晶を気体中で熱処理してモニ
タ結晶(1)とするモニタ工程と,次いで,該モニタ結
晶(1)中の水素濃度を測定する工程とを有し,該モニ
タ結晶(1)中の水素濃度に基づいて,該気体中の水素
分圧を監視することを特徴とする気体中の水素濃度測定
方法。
1. A monitor step of heat-treating a silicon crystal in a gas to form a monitor crystal (1), and a step of measuring a hydrogen concentration in the monitor crystal (1). 1) A method for measuring hydrogen concentration in a gas, which comprises monitoring the hydrogen partial pressure in the gas based on the hydrogen concentration in the gas.
【請求項2】 熱処理工程を有する半導体装置の製造方
法において,シリコン結晶を該熱処理工程により熱処理
してモニタ結晶(1)とするモニタ工程と,次いで,該
モニタ結晶(1)中の水素濃度を測定する工程とを有
し,該モニタ結晶(1)中の水素濃度に基づいて,該熱
処理工程の雰囲気中の水素分圧を監視することを特徴と
する半導体装置の製造方法。
2. A method of manufacturing a semiconductor device having a heat treatment step, wherein a monitor step of heat-treating a silicon crystal in the heat treatment step to obtain a monitor crystal (1), and then a hydrogen concentration in the monitor crystal (1) are set. A method for manufacturing a semiconductor device, comprising: measuring the hydrogen partial pressure in the atmosphere of the heat treatment step based on the hydrogen concentration in the monitor crystal (1).
【請求項3】 請求項1又は請求項2記載の半導体装置
の製造方法において,該モニタ結晶(1)中の水素濃度
を測定する工程は,該モニタ結晶(1)及び互いに異な
る既知の水素濃度を有する複数の水素ドープシリコン結
晶(2)を,同一条件で熱処理してサーマルドナーを生
成するドナー生成熱処理工程と,次いで,該サーマルド
ナー濃度を測定する工程と,次いで,該水素ドープシリ
コン結晶(2)中の水素濃度とサーマルドナー濃度との
関係に,該モニタ結晶(1)中の該サーマルドナー濃度
を内挿又は外挿して該モニタ結晶(1)中の水素濃度を
求める工程とを含むことを特徴とする半導体装置の製造
方法。
3. The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the step of measuring the hydrogen concentration in the monitor crystal (1) includes the steps of measuring the hydrogen concentration in the monitor crystal (1) and known hydrogen concentrations different from each other. A plurality of hydrogen-doped silicon crystals (2) having a heat treatment under the same conditions to generate a thermal donor, a donor generation heat treatment step, a step of measuring the thermal donor concentration, and then a hydrogen-doped silicon crystal ( 2) interpolating or extrapolating the thermal donor concentration in the monitor crystal (1) to determine the hydrogen concentration in the monitor crystal (1) in relation to the hydrogen concentration in the monitor crystal (1). A method of manufacturing a semiconductor device, comprising:
【請求項4】 請求項3記載の半導体装置の製造方法に
おいて,該水素ドープシリコン結晶(2)は,シリコン
結晶を水素含有雰囲気(4)中で熱処理して,該水素含
有雰囲気(4)の圧力をPdT,該水素含有雰囲気(4)
中の水素分圧をPd ,該水素含有雰囲気(4)中での該
熱処理温度をTd ,ボルツマン定数をkするとき,定数
0 =4.96×1021cm-3,及び定数ε=1.86eV
を用いて, Cd =C0 ・exp(−ε/kTd )・(Pd /PdT
1/2 , なる水素濃度を有する該水素ドープシリコン結晶とする
工程を含む工程により製造されることを特徴とする半導
体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the hydrogen-doped silicon crystal (2) is heat-treated in a hydrogen-containing atmosphere (4) to obtain a hydrogen-doped silicon crystal (2). Pressure is P dT , the hydrogen-containing atmosphere (4)
When the hydrogen partial pressure in the medium is P d , the heat treatment temperature in the hydrogen-containing atmosphere (4) is T d , and the Boltzmann constant is k, the constant C 0 = 4.96 × 10 21 cm −3 , and the constant ε. = 1.86 eV
By using C d = C 0 · exp (−ε / kT d ) · (P d / P dT ).
A method of manufacturing a semiconductor device, which is manufactured by a step including a step of forming the hydrogen-doped silicon crystal having a hydrogen concentration of 1/2 .
【請求項5】 請求項3又は請求項4記載の半導体装置
の製造方法において,該ドナー熱処理工程は,410〜
450℃の熱処理温度で,10〜60分間の熱処理を行
う工程を有することを特徴とする半導体装置の製造方
法。
5. The method of manufacturing a semiconductor device according to claim 3 or 4, wherein the donor heat treatment step includes steps 410 to 410.
A method of manufacturing a semiconductor device, comprising a step of performing heat treatment for 10 to 60 minutes at a heat treatment temperature of 450 ° C.
【請求項6】 請求項3記載の半導体装置の製造方法に
おいて,該気体中の水素分圧を求める工程は,該モニタ
結晶(1)中の水素濃度をC,該モニタ工程の熱処理温
度をTa ,該気体の圧力をPT ,ボルツマン定数をkと
するとき,定数C0 =4.96×10 21cm-3,及び定数
ε=1.86eVを用いて,該気体中の水素分圧Pa ,a =PT ・(C/C0 2 ・exp(2ε/kTa ) として算出する工程を含むことを特徴とする半導体装置
の製造方法。
6. A method of manufacturing a semiconductor device according to claim 3.
In the step of obtaining the hydrogen partial pressure in the gas,
The hydrogen concentration in the crystal (1) is C, and the heat treatment temperature of the monitoring step is
Degree Ta, The pressure of the gas is PT, The Boltzmann constant is k
The constant C0= 4.96 × 10 twenty onecm-3, And constant
Using ε = 1.86 eV, the hydrogen partial pressure P in the gasaTo, Pa= PT・ (C / C0)2・ Exp (2ε / kTa) The semiconductor device including the step of calculating
Manufacturing method.
【請求項7】 請求項1記載の気体中の水素濃度測定方
法において,該モニタ結晶(1)中の水素濃度をC,該
モニタ工程の熱処理温度をTa ,該気体の圧力をPT
ボルツマン定数をkとするとき,定数C0 =4.96×
10 21cm-3,及び定数ε=1.86eVを用いて,該気体
中の水素分圧Pa ,a =PT ・(C/C0 2 ・exp(2ε/kTa ) として算出することを特徴とする気体中の水素濃度測定
方法。
7. A method for measuring hydrogen concentration in a gas according to claim 1.
In the method, the hydrogen concentration in the monitor crystal (1) is
The heat treatment temperature of the monitor process is Ta, The pressure of the gas is PT
When the Boltzmann constant is k, the constant C0= 4.96 ×
10 twenty onecm-3, And the constant ε = 1.86 eV, the gas
Hydrogen partial pressure P inaTo, Pa= PT・ (C / C0)2・ Exp (2ε / kTa) Is calculated as
Method.
JP9475794A 1994-05-09 1994-05-09 Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas Withdrawn JPH07301592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9475794A JPH07301592A (en) 1994-05-09 1994-05-09 Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9475794A JPH07301592A (en) 1994-05-09 1994-05-09 Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas

Publications (1)

Publication Number Publication Date
JPH07301592A true JPH07301592A (en) 1995-11-14

Family

ID=14118980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9475794A Withdrawn JPH07301592A (en) 1994-05-09 1994-05-09 Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas

Country Status (1)

Country Link
JP (1) JPH07301592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267380A (en) * 2008-04-03 2009-11-12 Commissariat A L'energie Atomique Method of treating semiconductor substrate by thermal activation of light element
CN115280472A (en) * 2020-03-17 2022-11-01 信越半导体株式会社 Control method of donor concentration in single crystal silicon substrate
CN115732352A (en) * 2021-08-26 2023-03-03 长鑫存储技术有限公司 Method for monitoring gas concentration in semiconductor equipment
CN115280472B (en) * 2020-03-17 2025-07-25 信越半导体株式会社 Method for controlling donor concentration in monocrystalline silicon substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267380A (en) * 2008-04-03 2009-11-12 Commissariat A L'energie Atomique Method of treating semiconductor substrate by thermal activation of light element
CN115280472A (en) * 2020-03-17 2022-11-01 信越半导体株式会社 Control method of donor concentration in single crystal silicon substrate
EP4123686A4 (en) * 2020-03-17 2024-05-01 Shin-Etsu Handotai Co., Ltd. Method for controlling donor concentration in silicon single crystal substrate
CN115280472B (en) * 2020-03-17 2025-07-25 信越半导体株式会社 Method for controlling donor concentration in monocrystalline silicon substrate
CN115732352A (en) * 2021-08-26 2023-03-03 长鑫存储技术有限公司 Method for monitoring gas concentration in semiconductor equipment

Similar Documents

Publication Publication Date Title
Bean et al. The effect of carbon on thermal donor formation in heat treated pulled silicon crystals
Takahashi et al. Self-diffusion of Si in thermally grown SiO 2 under equilibrium conditions
US5505157A (en) Low hydrogen-content silicon crystal with few micro-defects caused from annealing, and its manufacturing methods
US20020052095A1 (en) Method for evaluating impurity concentrations in epitaxial susceptors
Jakiela et al. Ultrahigh sensitivity SIMS analysis of oxygen in silicon
JP3279527B2 (en) Method for evaluating IG capability in semiconductor silicon substrate and method for manufacturing semiconductor silicon substrate
JPH07301592A (en) Method for manufacturing semiconductor device and method for measuring hydrogen concentration in gas
Evwaraye et al. DLTS measurements of trapping defects in high purity germanium
US20030203519A1 (en) Evaluation method of IG effectivity in semiconductor silicon substrates
JPH039078B2 (en)
Stesmans Influence of chlorine annealing on the low-temperature electrical conductivity of high-purity gold foil
Pivac et al. Oxygen‐and carbon‐related defects in edge‐defined film‐fed growth silicon ribbon
Angelucci et al. Oxygen effect on the electrical characteristics of polycrystalline silicon films
KR0127999B1 (en) Semiconductor device having substrate made of silicon crystal and manufacturing method thereof
Chabane‐Sari et al. Hole trap level generation in silicon during rapid thermal annealing: Influence of substrate type and process conditions
Theodossiu et al. Formation of SiC-surface layer by ion implantation
JPS6066827A (en) Control method for introducing crystal defects into silicon wafers
KR100500712B1 (en) A method for measuring concentration of metal contamintion of silicon wafer
Mikkelsen Jr The chemistry of oxygen in silicon
Hall et al. High-purity germanium for gamma detectors
Abdul Fattah et al. Determination of Gallium Concentration in Silicon from Low‐Temperature Photoluminescence Analysis
JPS647338B2 (en)
JPH1092891A (en) Method of detecting n-type conversion in semiconductor device thermal oxidizing process
JPS6116760B2 (en)
Buckman Response of the Electrical Resistance of Molybdenum Oxide Single Crystals to Hydrogen in Air

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731