[go: up one dir, main page]

JP2892092B2 - Calcium phosphate compound molded article and method for producing the same - Google Patents

Calcium phosphate compound molded article and method for producing the same

Info

Publication number
JP2892092B2
JP2892092B2 JP2081793A JP8179390A JP2892092B2 JP 2892092 B2 JP2892092 B2 JP 2892092B2 JP 2081793 A JP2081793 A JP 2081793A JP 8179390 A JP8179390 A JP 8179390A JP 2892092 B2 JP2892092 B2 JP 2892092B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
phosphate compound
same
molded body
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2081793A
Other languages
Japanese (ja)
Other versions
JPH03280958A (en
Inventor
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2081793A priority Critical patent/JP2892092B2/en
Publication of JPH03280958A publication Critical patent/JPH03280958A/en
Application granted granted Critical
Publication of JP2892092B2 publication Critical patent/JP2892092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は骨欠損部あるいは空隙部充填用材料として好
適な性能を有する燐酸カルシウム化合物成形体およびそ
の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a calcium phosphate compound molded product having a suitable performance as a material for filling a bone defect or a void, and a method for producing the same.

[従来の技術] 事故や疾病あるいは抜歯等により骨損傷を来した場
合、骨欠損部あるいは空隙部の充填が必要となる。
[Related Art] When bone damage occurs due to an accident, disease, tooth extraction, or the like, it is necessary to fill a bone defect or a void.

生体の硬組織代替物としてはSUS316等のステンレス
鋼,Ti及びTi合金,バイタリウム,プラスチック等各種
の金属ならびに有機物が用いられているが、これらは生
体に対する親和性が良好でなく、また骨との結合性も全
くなく、しかも使用中溶解や劣化等を伴ない溶解物が毒
性を有するものなどもあった。
Various metals and organic substances such as stainless steel such as SUS316, Ti and Ti alloys, vitalium, and plastic are used as hard tissue substitutes for living organisms. In some cases, the dissolved substance had no binding property and the dissolved substance was not toxic during use.

そこで、生体組織に対して無害であることはいうまで
もなく親和性や結合性に優れた材料が要求されるに至
り、これらを満足するものとしてセラミックス系材料が
注目されている。中でも燐酸カルシウム系セラミックス
は、骨と同じ成分であること、骨と高い親和性を示すこ
と、しかも骨との間に化学的結合を形成すること等から
注目されるようになってきた。
Therefore, needless to say, materials that are harmless to living tissues and have excellent affinity and binding properties have been required, and ceramic materials have been attracting attention as satisfying these requirements. Among them, calcium phosphate-based ceramics have been attracting attention because they have the same components as bone, exhibit high affinity with bone, and form a chemical bond with bone.

燐酸カルシウム系セラミックスとしては、アパタイト
類特にヒドロキシアパタイト[Ca6(PO410(OH)
およびβ−TCP[β−Ca3(PO4]が近年特に注目さ
れている。しかしこれらは実際の臨床適用における初期
の骨形成性が必ずしも良好でなく、場合によっては組織
細胞がこれらの表面を取り巻いて、骨との結合を阻害す
る状況が認められ、この欠点を改善する必要がある。
As calcium phosphate-based ceramics, apatites, especially hydroxyapatite [Ca 6 (PO 4 ) 10 (OH) 2 ]
And β-TCP [β-Ca 3 (PO 4 ) 2 ] have been particularly noted in recent years. However, they do not always have good initial osteogenic properties in practical clinical applications, and in some cases there are situations where tissue cells surround these surfaces and inhibit their association with bone, and it is necessary to remedy this drawback. There is.

この点の解決策の一つとして、骨芽細胞の侵入を促
し、結合力を高めるために孔径が10〜30μmの連続気孔
を設けた成形体が提案されている。例えば特開昭60−21
763号,特開昭62−158175号公報にはヒドロキシアパタ
イト(以下HAPという)原料粉に有機物を混合し、焼成
時に有機物を焼失せしめて多孔体とする方法、あるいは
特開昭62−12680号公報には成形体をいったん粉砕して
表面粗度の高い顆粒状物を作製し、これを再混合焼成し
て多孔体とする方法が開示されている。
As one of the solutions to this point, a molded article provided with continuous pores having a pore diameter of 10 to 30 μm has been proposed in order to promote the invasion of osteoblasts and increase the bonding strength. For example, JP-A-60-21
No. 763 and Japanese Patent Application Laid-Open No. Sho 62-158175 disclose a method in which an organic substance is mixed with hydroxyapatite (hereinafter referred to as HAP) raw material powder, and the organic substance is burned off during firing to form a porous body. Discloses a method in which a compact is once pulverized to produce a granular material having a high surface roughness, which is remixed and fired to form a porous material.

ところが前者のHAP原料粉と有機物を単に混合して焼
成する方法においては、混合を十分に行なわないと気孔
分布がかたより、連続気孔とならずに所期の目的である
骨芽細胞の侵入に“むら”が生じて死孔となってしまう
こと、期待されるほどの機械的強度が得られないこと等
の欠点がある。また後者の粉砕により粗表面を形成した
後混合焼成して多孔体とする方法では、製造工程が複雑
となるだけでなく、粉砕時の粒度分布制御の困難性を伴
なうため気孔率を制御することが難しいこと、また気孔
分布にばらつきを生じ易いこと、さらには粉砕粒が鋭利
な角を有するために生体細胞がとり付き難いこと等の問
題があった。
However, in the former method of simply mixing the HAP raw material powder and an organic substance and firing the mixture, if the mixing is not performed sufficiently, the pore distribution tends to be less than continuous pores. There are drawbacks such as the occurrence of "unevenness" resulting in dead holes and the inability to obtain the expected mechanical strength. The latter method of forming a rough surface by pulverization and then mixing and firing to form a porous body not only complicates the manufacturing process but also controls the porosity due to the difficulty in controlling the particle size distribution during pulverization. However, there are problems such as difficulties in carrying out, variation in the pore distribution, and difficulty in attaching living cells due to sharp corners of the crushed particles.

[発明が解決しようとする課題] そこで本発明者らは骨芽細胞の侵入性が良好で、且つ
溶解吸収により新生骨との置換がすみやかにおこなわれ
る燐酸カルシウム化合物成形体を開発して先に出願を済
ませた(特願昭63−263279)。該燐酸カルシウム化合物
成形体とは、30〜500μmの開口径を有する骨芽細胞侵
入孔を内包することによって成形体表面積の10倍以上の
表面積を有するとともに、前記骨芽細胞侵入孔を除いた
基質部における気孔の気孔率が30%以下であることを特
徴とするものであり、成形体表面に連続開気孔を設けて
表面積を上げることにより骨芽細胞に侵入を促すと共に
Caの持続的溶出という作用効果を発揮させて、新生骨の
成長期間中を通じてCaを供給できることとなり、骨誘導
機能が向上して新生骨の成長を更に促進することが可能
となった。
[Problems to be Solved by the Invention] Therefore, the present inventors have developed a calcium phosphate compound molded body having good penetration of osteoblasts and prompt replacement with new bone by lysis and absorption. The application has been filed (Japanese Patent Application No. 63-263279). The calcium phosphate compound molded body has a surface area of 10 times or more the surface area of the molded body by including an osteoblast intrusion hole having an opening diameter of 30 to 500 μm, and a substrate excluding the osteoblast intrusion hole. The porosity of the pores in the part is not more than 30%, and by providing continuous open pores on the surface of the molded article to increase the surface area,
By exerting the action and effect of continuous elution of Ca, Ca can be supplied throughout the growth period of the new bone, and the osteoinductive function is improved, thereby enabling the growth of the new bone to be further promoted.

尚先願発明において成形体の実質的な表面積を理論表
面積の10倍以上としたのは、10倍未満では骨芽細胞の侵
入とCaの溶出速度が小さくて骨誘導性が芳しくないから
であり、成形体の理論表面積を10倍以上とするために骨
芽細胞侵入孔の開口径を30〜500μmとしたものであ
る。
In the invention of the prior application, the substantial surface area of the molded body was set to 10 times or more of the theoretical surface area, because if it is less than 10 times, the osteoblast invasion and Ca elution rate are small, and the osteoinductivity is not good. In order to make the theoretical surface area of the molded body 10 times or more, the opening diameter of the osteoblast cell intrusion hole is set to 30 to 500 μm.

但し上記の様な骨芽細胞侵入孔を設けると強度を低下
させるという不都合な面もあるので、強度低下を防ぐた
めに骨芽細胞侵入孔を除いた基質部における気孔の気孔
率を30%以下と定めた。
However, there is an inconvenience that the strength is reduced when the osteoblast invasion hole is provided as described above. Therefore, in order to prevent the strength from decreasing, the porosity of the stoma in the matrix portion excluding the osteoblast intrusion hole is set to 30% or less. I decided.

また上記先願発明の成形体は、粒径5μm以下の燐酸
カルシウム化合物粉末およびバインダ液から平均粒径30
〜200μmの1次粒子を造粒し、次いで該1次粒子,前
記バインダ液と同一又は異なったバインダ液および前記
燐酸カルシウム化合物と同一又は異なった燐酸カルシウ
ム化合物粉末から2次粒子を造粒した後、該2次粒子を
そのままあるいは焼成した後、前記バインダ液と同一又
は異なったバインダ液を加えて成形し焼成することによ
って得られる。
Further, the molded article of the invention of the prior application is prepared from a calcium phosphate compound powder having a particle diameter of 5 μm or less and a binder liquid to have an average particle diameter of 30 μm.
After granulating primary particles of about 200 μm, and then granulating secondary particles from the primary particles, a binder liquid the same or different from the binder liquid, and a calcium phosphate compound powder same or different from the calcium phosphate compound The secondary particles can be obtained as they are or after calcination, by adding a binder liquid which is the same as or different from the above-mentioned binder liquid, molding and firing.

しかしながら上記先願発明に係る燐酸カルシウム化合
物成形体であっても骨欠損部に埋入する際に該成形体の
一部が脱落しやすいことが見出され、該成形体の強度を
さらに向上させる技術が要望されている。
However, it has been found that even when the calcium phosphate compound molded article according to the above-mentioned prior invention is embedded in a bone defect part, it is found that a part of the molded article is likely to fall off, further improving the strength of the molded article. Technology is needed.

[課題を解決するための手段] 本発明は上記事情に着目してなされたものであって、
30〜500μmの開口径を有する骨芽細胞侵入孔を内包す
ることによって成形体表面積の10倍以上の表面積を有す
るとともに、前記骨芽細胞侵入孔を除いた基質部におけ
る気孔の気孔率が30%以下である燐酸カルシウム化合物
成形体であって、上記基質部における気孔に前記燐酸カ
ルシウムと同一又は異なった燐酸カルシウム化合物の微
粒子を侵入せしめてなることを要旨とするものである。
[Means for Solving the Problems] The present invention has been made by focusing on the above circumstances,
By including an osteoblast intrusion hole having an opening diameter of 30 to 500 μm, the surface area of the molded body is at least 10 times the surface area of the molded body, and the porosity of the stoma in the matrix portion excluding the osteoblast intrusion hole is 30%. The following calcium phosphate compound molded body is characterized in that fine particles of the same or different calcium phosphate compound as the calcium phosphate are caused to penetrate into pores in the substrate portion.

また上記燐酸カルシウム化合物を製造するにあたって
は、粒径5μm以下の燐酸カルシウム化合物粉末および
バインダ液から平均粒径30〜200μmの1次粒子を造粒
し、次いで該1次粒子,前記バインダ液と同一又は異な
ったバインダ液および前記燐酸カルシウム化合物と同一
又は異なった燐酸カルシウム化合物粉末から2次粒子を
造粒した後、該2次粒子をそのままあるいは焼成した
後、前記バインダ液と同一又は異なったバインダ液を加
えて成形し、得られた成形体をそのままあるいは焼成し
た後、前記燐酸カルシウム化合物と同一又は異なった燐
酸カルシウム化合物を含有するスラリーを含浸して焼成
する方法を用いればよい。
In producing the above calcium phosphate compound, primary particles having an average particle size of 30 to 200 μm are granulated from a calcium phosphate compound powder having a particle size of 5 μm or less and a binder solution, and then the same as the primary particles and the binder solution. Or, after granulating secondary particles from a different binder liquid and the same or different calcium phosphate compound powder as the calcium phosphate compound, the secondary particles are directly or calcined, and then the same or different binder liquid as the binder liquid is used. Then, a method may be used in which the obtained molded body is directly or calcined, and then impregnated with a slurry containing the same or different calcium phosphate compound as the calcium phosphate compound and calcined.

[作用] 本発明に係る燐酸カルシウム化合物成形体は、焼成体
の粒子間の接合を強化する目的で、1μm以下、望まし
くは0.5μm以下のアパタイト微粒子を含有するスラリ
ーに成形体を含浸させ、毛細管の管理に従って該スラリ
ーを成形体の開気孔を通して内部深くまで含浸させた後
乾燥焼成を行なうことにより得られるので成形体の強度
向上が可能である。
[Operation] The calcium phosphate compound molded article according to the present invention is obtained by impregnating a molded article with a slurry containing fine particles of apatite of 1 μm or less, preferably 0.5 μm or less, for the purpose of strengthening the bonding between the particles of the fired body. According to the control described above, the slurry is impregnated deeply through the open pores of the molded body and then dried and fired, whereby the strength of the molded body can be improved.

また上記スラリーに含浸し、乾燥焼成する工程を繰り
返すことによって成形体の強度をさらに高めることがで
きる。
In addition, the strength of the molded body can be further increased by repeating the steps of impregnating the slurry and drying and firing.

尚本発明に係るバインダとしては、ポリビニルアルコ
ール溶液,ヒドロキシプロピルセルロース溶液およびそ
の他通常用いられている有機バインダを用いることがで
きる。
As the binder according to the present invention, a polyvinyl alcohol solution, a hydroxypropyl cellulose solution, and other commonly used organic binders can be used.

また無機バインダとしては燐酸カルシウムのスラリ
ー、例えばHAPの懸濁液やβ−TCPの懸濁液等を用いるこ
とができる。さらにカルシウムアルコキシドと燐の酸素
酸のアルキルエステルとの非水溶媒中における反応生成
物である燐酸カルシウムゾル等も無機バインダとして用
いることができる(有機成分も含んでいるが、有機成分
は乾燥時あるいは焼成の初期に揮発してしまうので無機
バインダの範疇に入れることができる)。上記燐酸カル
シウムゾルとしてはHAPゾルやβ−TCPゾルが好ましいも
のとして挙げられる。そして乾燥時および焼成時におい
てバインダ成分中の揮発成分や熱分解成分が除去されて
この部分が骨芽細胞侵入孔および基質部の気孔となる。
As the inorganic binder, a slurry of calcium phosphate, for example, a suspension of HAP or a suspension of β-TCP can be used. Further, a calcium phosphate sol or the like, which is a reaction product of a calcium alkoxide and an alkyl ester of phosphorus oxyacid in a non-aqueous solvent, can also be used as an inorganic binder (an organic component is also contained. Since it evaporates early in the firing, it can be included in the category of inorganic binders). Preferred examples of the calcium phosphate sol include HAP sol and β-TCP sol. At the time of drying and baking, the volatile component and the thermal decomposition component in the binder component are removed, and this portion becomes the osteoblast cell entry hole and the pore of the matrix portion.

また本発明に用いる燐酸カルシウム系スラリーとして
は前記有機バインダとして挙げたものを用いることがで
きる。
As the calcium phosphate-based slurry used in the present invention, those mentioned above as the organic binder can be used.

また本発明は焼成温度によって限定されるものではな
いが、焼成温度が1300℃を超えるとアパタイトが溶解性
及び為害性の高いαTCPに転移するので、焼成温度は130
0℃以下とするのが好ましい。
Further, the present invention is not limited by the firing temperature, but when the firing temperature exceeds 1300 ° C., since the apatite is transferred to αTCP which is highly soluble and harmful, the firing temperature is 130.
The temperature is preferably set to 0 ° C. or lower.

さらに成形体の基質部の密度を高めたい場合には、焼
成前の成形体をHIP(静水圧高圧プレス法)条件下で900
℃以上にて熱処理すれば良い。また成形体表面を水蒸気
雰囲気下に養生してやればHAPのひずみが解消できる。
If it is desired to further increase the density of the substrate part of the molded body, the molded body before firing should be 900 ppm under HIP (Hydrostatic High Pressure Pressing).
Heat treatment may be performed at a temperature of not less than ℃. Also, if the surface of the molded body is cured in a steam atmosphere, the distortion of HAP can be eliminated.

[実施例] 実験例1 直径360mmのパン型転動造粒機に粒径5μm以下のHAP
粉末500gを装入し、5%ポリビニルアルコール(PVA)
液480mlを20分間にわたってスプレー圧1kg/cm2以下で噴
霧しながら粒径50〜100μmになるように造粒し、つい
でこれに90gのHAP粉末を加えて調湿し1次粒子とした。
さらにこの1次粒子に10%PVA液300mlを前記と同条件で
20分間にわたって噴霧しながらHAP粉末120gを徐々に加
え2次粒子を造粒した。該2次粒子に10%PVA液5mlを加
えて成形体とし、該成形体を1250℃で焼成したものを比
較例1の試験片とした。
[Example] Experimental Example 1 HAP having a particle size of 5 μm or less was placed in a pan-type rolling granulator having a diameter of 360 mm.
Charge 500g of powder, 5% polyvinyl alcohol (PVA)
While spraying 480 ml of the liquid at a spray pressure of 1 kg / cm 2 or less for 20 minutes, the particles were granulated to a particle size of 50 to 100 μm, and 90 g of HAP powder was added thereto to adjust the humidity to obtain primary particles.
Further, 300 ml of 10% PVA solution is added to the primary particles under the same conditions as above.
While spraying for 20 minutes, 120 g of HAP powder was gradually added to granulate secondary particles. A molded article was obtained by adding 5 ml of a 10% PVA solution to the secondary particles, and the molded article was fired at 1250 ° C. to obtain a test piece of Comparative Example 1.

焼成前の上記成形体と比較例1の成形体に、平均粒径
0.5μmのHAPを0.5%含有する懸濁液を含浸した後、125
0℃で焼成して得た成形体を、夫々本発明例1及び本発
明例2の試験片とした。上記3種の試験片について理論
表面積、実表面積、骨芽細胞侵入孔径(平均)及び破壊
試験による強度を測定した。結果は第1表に示す。
The average particle size was added to the above-mentioned molded body before firing and the molded body of Comparative Example 1.
After impregnation with a suspension containing 0.5% of HAP 0.5%, 125
The molded bodies obtained by firing at 0 ° C. were used as test pieces of Inventive Example 1 and Inventive Example 2, respectively. The theoretical surface area, actual surface area, osteoblast invasion pore size (average), and strength by a destructive test were measured for the above three types of test pieces. The results are shown in Table 1.

尚上記3種の試験片は、いずれも粒径5μm以下の燐
酸カルシウム化合物粉末およびバインダ液から平均粒径
30〜200μmの1次粒子を造粒し、次いで該1次粒子,
バインダ液及び前記燐酸カルシウム化合物粉末から2次
粒子を造粒した後、該2次粒子に上記バインダ液を加え
て成形し焼成したものであるが、上記試験片を用いて動
物試験を行なったところいずれも2週間で非常に良好な
骨誘導能を示したことから、上記試験片は骨芽細胞の侵
入性が良く、適度なCaの溶出により新生骨の形成がすみ
やかに行なわれたことがわかる。
The above three types of test pieces were all prepared from a calcium phosphate compound powder having a particle size of 5 μm or less and a binder solution to obtain an average particle size.
30-200 μm primary particles are granulated, then the primary particles,
After granulating the secondary particles from the binder liquid and the calcium phosphate compound powder, the above-mentioned binder liquid was added to the secondary particles, and the mixture was molded and baked. All showed very good osteoinductive ability in 2 weeks, indicating that the test piece had good osteoblast invasiveness and new bone was formed promptly by appropriate Ca elution. .

実験例2 実験例1と同様にして造粒した2次粒子を、乾燥後12
00℃で焼成し、粒径600〜1000μm(平均700μm)の多
孔質顆粒体を得た。該顆粒体に10%PVA液10mlを加えて
成形体とし、該成形体を125℃で焼成したものを比較例
2の試験片とした。
Experimental Example 2 Secondary particles granulated in the same manner as in Experimental Example 1 were dried and dried.
It was calcined at 00 ° C to obtain porous granules having a particle size of 600 to 1000 µm (average 700 µm). A 10% PVA solution (10 ml) was added to the granules to form a molded body. The molded body was fired at 125 ° C. to obtain a test piece of Comparative Example 2.

焼成前の上記成形体と比較例2の成形体に、平均粒径
0.5μmのHAPを5%含有するスラリーを含浸させた後、
1250℃で焼成して得た成形体を、夫々本発明例3及び本
発明例4の試験片とした。
The average particle size was added to the above-mentioned molded body before firing and the molded body of Comparative Example 2.
After impregnating a slurry containing 5% of 0.5 μm HAP,
The molded bodies obtained by firing at 1250 ° C. were used as test pieces of Inventive Example 3 and Inventive Example 4, respectively.

次に比較例2の成形体を用いて、平均粒径0.5μmのH
APを5%含有するスラリーを含浸させて乾燥させる工程
を5回繰り返した後、1250℃で焼成して得た成形体を本
発明例5の試験片とした。
Next, using the molded product of Comparative Example 2, H
After repeating the process of impregnating and drying the slurry containing 5% of AP five times, the molded product obtained by firing at 1250 ° C. was used as a test piece of Example 5 of the present invention.

上記4種の試験片について理論表面積、実表面積、骨
芽細胞侵入孔径(平均)及び破壊試験による強度を測定
した。結果は第1表に併記する。
The theoretical surface area, actual surface area, osteoblast invasion pore size (average), and strength by a destructive test were measured for the above four types of test pieces. The results are shown in Table 1.

尚上記試験片を用いて動物試験を行なったところ、い
ずれも2週間で非常に良好な骨誘導能を示した。
In addition, when an animal test was performed using the above-mentioned test piece, all showed very good osteoinductive ability in 2 weeks.

実験例3 カルシウムエトキシド260g,亜燐酸トリエチル200g
を、エチレングリコール1.3とエチルアルコール2
の混合液に溶解した後、純水10mlを注意深く加えアパタ
イトゾルを得た。
Experimental Example 3 Calcium ethoxide 260 g, triethyl phosphite 200 g
With ethylene glycol 1.3 and ethyl alcohol 2
Was dissolved in the above mixture, and 10 ml of pure water was carefully added to obtain an apatite sol.

他方直径360mmのパン転動造粒機にHAP粉末500gを装入
し、前記の様にして得たアパタイトゾル500mlを20分間
にわたってスプレー圧1kg/cm2以下で噴霧しながら粒径5
0〜100μmになるよう造粒し、ついでこれに90gのHAP粉
末を加えて調湿し1次粒子とした。さらにこの1次粒子
に上記アパタイトゾルを300ml、前記条件と同条件で20
分間噴霧しながら、HAP粉末120gを徐々に加え2次粒子
を造粒した。該2次粒子を乾燥後1200℃で焼成して粒径
600〜1000μm(平均700μm)の多孔質顆粒体を得た。
該顆粒体に前記アパタイトゾル5mlを加えて成形し、125
0℃で焼成して得た成形体を比較例3の試験片とした。
On the other hand, 500 g of HAP powder was charged into a 360 mm diameter pan tumbling granulator, and 500 ml of the apatite sol obtained as described above was sprayed at a spray pressure of 1 kg / cm 2 or less for 20 minutes to give a particle size of 5.
The mixture was granulated to have a particle size of 0 to 100 μm, and 90 g of HAP powder was added thereto to adjust the humidity to obtain primary particles. Further, 300 ml of the apatite sol was added to the primary particles under the same conditions as above.
While spraying for 120 minutes, 120 g of HAP powder was gradually added to granulate secondary particles. The secondary particles are dried and fired at 1200 ° C.
Porous granules of 600 to 1000 μm (average 700 μm) were obtained.
The granules were molded by adding 5 ml of the apatite sol,
The molded body obtained by firing at 0 ° C. was used as a test piece of Comparative Example 3.

次に比較例3の得た成形体に前記アパタイトゾル5ml
を含浸して1250℃で焼成して得た成形体を本発明例6の
試験片とした。
Next, 5 ml of the apatite sol was added to the molded article obtained in Comparative Example 3.
And fired at 1250 ° C. to obtain a molded article of Example 6 of the present invention.

上記2種の試験片について理論表面積、実表面積、骨
芽細胞侵入孔径(平均)及び破壊試験による強度を測定
した。結果は第1表に併記する。
The theoretical surface area, actual surface area, osteoblast invasion pore size (average), and strength by a destructive test were measured for the above two types of test pieces. The results are shown in Table 1.

尚上記試験片を用いて動物試験を行なったところ、い
ずれも2週間で非常に良好な骨誘導能を示した。
In addition, when an animal test was performed using the above-mentioned test piece, all showed very good osteoinductive ability in 2 weeks.

本発明に係る燐酸カルシウム化合物成形体は、燐酸カ
ルシウム化合物を含有するスラリーを含浸した後焼成し
て得られたものであるので、比較例に比べて強度が向上
していることがわる。また上記スラリーの含浸・乾燥工
程を5回繰り返した本発明例6は特に強度が高いことが
わかる。
Since the calcium phosphate compound molded article according to the present invention is obtained by impregnating the slurry containing the calcium phosphate compound and then firing, the strength is improved as compared with the comparative example. In addition, it can be seen that Example 6 of the present invention, in which the above-described slurry impregnation and drying steps were repeated five times, had particularly high strength.

[発明の効果] 本発明は以上のように構成されているので、骨芽細胞
の侵入性が良く、適度なCaの溶出により新生骨の形成が
すみやかに行なわれると共に、骨欠損部充填合材として
優れた機械的強度を有する燐酸カルシウム化合物成形体
およびその製造方法が提供できることとなった。
[Effects of the Invention] Since the present invention is configured as described above, the penetration of osteoblasts is good, the formation of new bone is performed promptly by the appropriate Ca elution, and the bone-filled composite material As a result, a calcium phosphate compound molded article having excellent mechanical strength and a method for producing the same can be provided.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】30〜500μmの開口径を有する骨芽細胞侵
入孔を内包することによって成形体表面積の10倍以上の
表面積を有するとともに、前記骨芽細胞侵入孔を除いた
基質部における気孔の気孔率が30%以下である燐酸カル
シウム化合物成形体であって、上記基質部における気孔
に前記燐酸カルシウムと同一又は異なった燐酸カルシウ
ム化合物の微粒子を侵入せしめてなることを特徴とする
燐酸カルシウム化合物成形体。
The present invention has an osteoblast infiltration hole having an opening diameter of 30 to 500 μm, and has a surface area of at least 10 times the surface area of the molded body, and a pore in a matrix portion excluding the osteoblast intrusion hole. What is claimed is: 1. A calcium phosphate compound molded article having a porosity of 30% or less, characterized in that fine particles of the same or different calcium phosphate compound are penetrated into the pores of said substrate portion. body.
【請求項2】請求項(1)記載の燐酸カルシウム化合物
成形体を製造する方法であって、粒径5μm以下の燐酸
カルシウム化合物粉末およびバインダ液から平均粒径30
〜200μmの1次粒子を造粒し、次いで該1次粒子,前
記バインダ液と同一又は異なったバインダ液および前記
燐酸カルシウム化合物と同一又は異なった燐酸カルシウ
ム化合物粉末から2次粒子を造粒した後、該2次粒子を
そのままあるいは焼成した後、前記バインダ液と同一又
は異なったバインダ液を加えて成形し、得られた成形体
をそのままあるいは焼成した後、前記燐酸カルシウム化
合物と同一又は異なった燐酸カルシウム化合物を含有す
るスラリーを含浸して焼成することを特徴とする燐酸カ
ルシウム化合物成形体の製造方法。
2. A method for producing a calcium phosphate compound molded article according to claim 1, wherein the calcium phosphate compound powder having a particle diameter of 5 μm or less and a binder liquid have an average particle diameter of 30 μm.
After granulating primary particles of about 200 μm, and then granulating secondary particles from the primary particles, a binder liquid identical to or different from the binder liquid, and a calcium phosphate compound powder identical to or different from the calcium phosphate compound After the secondary particles are directly or calcined, the same or different binder liquid as the binder liquid is added and molded, and the obtained molded body is directly or calcined, and the same or different phosphoric acid as the calcium phosphate compound is used. A method for producing a calcium phosphate compound molded body, comprising impregnating and firing a slurry containing a calcium compound.
JP2081793A 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same Expired - Lifetime JP2892092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081793A JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081793A JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03280958A JPH03280958A (en) 1991-12-11
JP2892092B2 true JP2892092B2 (en) 1999-05-17

Family

ID=13756369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081793A Expired - Lifetime JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2892092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515404B1 (en) * 2002-02-01 2005-09-16 한국화학연구원 A method for the preparation of bone filler with rugged surface

Also Published As

Publication number Publication date
JPH03280958A (en) 1991-12-11

Similar Documents

Publication Publication Date Title
JP3679570B2 (en) Bone prosthetic material and manufacturing method thereof
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
US5137534A (en) Method for producing dental and medical bone prosthesis and bone prosthesis produced thereby
Lee et al. Selective laser sintering of bioceramic materials for implants
AU2003277270A1 (en) Inorganic shaped bodies and methods for their production and use
SE465775B (en) PROCEDURES FOR PREPARING A POROEST CERAMIC MATERIAL
JPH0359703B2 (en)
JP3940770B2 (en) Method for producing porous ceramic implant material and porous ceramic implant material produced by the method
JPH05305134A (en) Porous calcium phosphate material for bone formation
AU2005332589B2 (en) Shaped article
EP0335359A2 (en) Porous ceramic material and production process thereof
WO1987004110A1 (en) Ceramic processing and products
JP2892092B2 (en) Calcium phosphate compound molded article and method for producing the same
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
JP2783565B2 (en) Calcium phosphate compound granules and method for producing the same
Swain Processing of porous hydroxyapatite scaffold
JP6005046B2 (en) Porous body and method for producing porous body
JPH0415062A (en) Living body material with multiphase structure and its manufacture
JPH06296676A (en) Bioimplant material and its production
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
JPH0566909B2 (en)
JP2539501B2 (en) Calcium phosphate-based compound molded body and method for producing the same
JP5783864B2 (en) Bioabsorbable implant and method for producing the same
JPH0848583A (en) Production of porous ceramics and green compact used for the same
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material