JPH06296676A - Bioimplant material and its production - Google Patents
Bioimplant material and its productionInfo
- Publication number
- JPH06296676A JPH06296676A JP5114144A JP11414493A JPH06296676A JP H06296676 A JPH06296676 A JP H06296676A JP 5114144 A JP5114144 A JP 5114144A JP 11414493 A JP11414493 A JP 11414493A JP H06296676 A JPH06296676 A JP H06296676A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- pores
- calcium phosphate
- bioimplant
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000011148 porous material Substances 0.000 claims abstract description 58
- 239000002245 particle Substances 0.000 claims abstract description 51
- 239000000843 powder Substances 0.000 claims abstract description 31
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 24
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 22
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 19
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 19
- 238000000465 moulding Methods 0.000 claims abstract description 19
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 238000010304 firing Methods 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000008187 granular material Substances 0.000 claims abstract description 5
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 4
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 4
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 6
- 239000004068 calcium phosphate ceramic Substances 0.000 claims description 3
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 3
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 3
- 210000000988 bone and bone Anatomy 0.000 abstract description 9
- 239000011575 calcium Substances 0.000 abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052791 calcium Inorganic materials 0.000 abstract description 5
- 239000000919 ceramic Substances 0.000 abstract description 5
- 238000012856 packing Methods 0.000 abstract 1
- 239000007943 implant Substances 0.000 description 20
- 239000011163 secondary particle Substances 0.000 description 19
- 238000009826 distribution Methods 0.000 description 14
- 239000012798 spherical particle Substances 0.000 description 14
- 210000003739 neck Anatomy 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 239000003814 drug Substances 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 230000012010 growth Effects 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 230000002902 bimodal effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- 239000011361 granulated particle Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008468 bone growth Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、生体インプラント材料
及びその製造方法に関する。この生体インプラント材料
は、整形外科、形成外科、脳外科、口腔外科、歯科等の
医療分野に於いて人工骨補填部材として好適に利用され
得る。TECHNICAL FIELD The present invention relates to a bioimplant material and a method for producing the same. This bioimplant material can be suitably used as an artificial bone filling member in the medical fields such as orthopedics, plastic surgery, brain surgery, oral surgery, and dentistry.
【0002】[0002]
【従来の技術】リン酸カルシウム化合物は生体親和性に
優れ、その焼結体は骨と化学的に結合あるいは骨に置換
される材料であることが知られている。本発明者らは既
に生体親和性が高く且つ高強度なリン酸カルシウム焼成
体の製造方法として、特公昭60−50744号公報に
おいて、カルシウム/リン原子比1.4〜1.75のリン
酸カルシウム塩を主体とする粉末に、焼成後のリン酸カ
ルシウム焼成体に対し0.5〜15重量%のアルカリ土
類金属酸化物−リン酸系フリットを含有せしめ、所定形
状に成形し焼成する方法を提案した。この方法により生
体親和性に優れ且つ機械的強度の高い生体インプラント
材料が得られた。これらのインプラント材料を生体に移
植すると骨組織と化学的に結合し、高強度のため容易に
破損することなく、良好な結果を示した。2. Description of the Related Art Calcium phosphate compounds are known to have excellent biocompatibility, and their sintered bodies are known to be materials that are chemically bound to bone or replaced with bone. As a method for producing a calcium phosphate calcined product having high biocompatibility and high strength, the inventors of the present invention have disclosed in JP-B-60-50744 that a calcium phosphate having a calcium / phosphorus atomic ratio of 1.4 to 1.75 is mainly used. It was proposed that the powder to be added contains 0.5 to 15% by weight of an alkaline earth metal oxide-phosphate frit based on the calcined body of calcium phosphate after calcining, and the mixture was molded into a predetermined shape and calcined. By this method, a bioimplant material having excellent biocompatibility and high mechanical strength was obtained. When these implant materials were transplanted into a living body, they chemically bonded to bone tissue, and because of their high strength, they were not easily broken and showed good results.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、これら
の材料でも新生骨との結合には約1ヶ月を要し、更なる
生体親和性の向上、特に術後初期の骨増殖性の向上が望
まれた。またインプラント材料では多孔体が必要とされ
ることもあるが、従来の多孔体では強度が低く操作中に
破損し易く、操作性が悪いため焼成後の切削加工性が著
しく悪かった。また多孔体に薬物を含浸し生体内に補填
する場合には、多量の薬物を安定して担持し、緩慢に放
出するインプラント材が望まれていた。However, even with these materials, it takes about one month to bond with new bone, and further improvement in biocompatibility, particularly improvement in bone growth in the early stage after surgery is desired. It was Although a porous material may be required for the implant material, the conventional porous material has a low strength and is easily damaged during operation, and the operability is poor, so that the machinability after firing is extremely poor. Further, in the case of impregnating a porous body with a drug and filling it in the living body, an implant material that stably supports a large amount of the drug and slowly releases it has been desired.
【0004】本発明の目的は、生体親和性、特に初期の
骨増殖性に優れ、且つ薬物の安定した担持にも適し、比
較的高い機械的強度も有する生体インプラント材料およ
びその製造方法を提供することにある。The object of the present invention is to provide a bioimplant material which is excellent in biocompatibility, particularly bone growth in the initial stage, is suitable for stable drug loading, and has relatively high mechanical strength, and a method for producing the same. Especially.
【0005】[0005]
【課題を解決するための手段】その手段は、生体インプ
ラント材料が、リン酸カルシウム系セラミックスよりな
る大きさ20〜800μmの連結した粒子の群を備え、
各々の粒子の内部に細孔が存在し且つそれら粒子間に三
次元的に連通した2〜200μmの気孔が存在すること
を特徴とする。Means for Solving the Problem The means is that the bioimplant material is provided with a group of linked particles of calcium phosphate-based ceramics having a size of 20 to 800 μm,
It is characterized in that pores are present inside each particle and pores of 2 to 200 μm which are three-dimensionally communicated between the particles are present.
【0006】その製造手段は、平均粒子径5μm以下の
微細なリン酸カルシウム系原料粉末を、粒子径20〜8
00μmの顆粒状に造粒し、1〜100Kg/cm2の
圧力で成形した後に700℃〜1400℃で焼成するこ
とを特徴とする。The means for producing the fine powder of calcium phosphate-based raw material having an average particle diameter of 5 μm or less is 20 to 8
Granulated into granules of 00μm, of 1~100Kg / cm2
It is characterized in that it is formed by pressure and then fired at 700 ° C to 1400 ° C.
【0007】[0007]
【作用】本発明の作用は、未だ推察も含まれるが、概ね
以下の通りである。本発明インプラント材料の優れた生
体親和性は、細孔を備えた粒子が連結して形成される2
重気孔構造(バイモーダル気孔分布)による。特に、そ
の結晶構造が、水酸アパタイト(以下、「HAP」とも
いう。)と第三リン酸カルシウム(以下、「TCP」と
もいう。)からなる複合構造のときに2重気孔構造との
相乗効果が期待される。The function of the present invention is roughly as follows, although it may be inferred. The excellent biocompatibility of the implant material of the present invention is formed by connecting particles having pores.
Due to heavy pore structure (bimodal pore distribution). In particular, when the crystal structure is a composite structure composed of hydroxyapatite (hereinafter, also referred to as “HAP”) and tricalcium phosphate (hereinafter, also referred to as “TCP”), a synergistic effect with the double pore structure is obtained. Be expected.
【0008】即ち、HAPとTCPとの複合結晶構造を
例にして説明すると、この粒子の間の2〜200μmの
気孔は体液の侵入を容易にして新生骨の成長を促進す
る。更に粒子内の微細な連続気孔がHAP以外の構成相
であるTCPの溶出を容易にして新たな気孔を形成し、
生体骨を誘導する。こうして、優れた生体親和性を発揮
する。That is, taking the composite crystal structure of HAP and TCP as an example, the pores of 2 to 200 μm between the particles facilitate the invasion of body fluid and promote the growth of new bone. Further, the fine continuous pores in the particles facilitate the elution of TCP, which is a constituent phase other than HAP, to form new pores,
Induce living bone. Thus, excellent biocompatibility is exhibited.
【0009】本インプラント材料の良好な機械的強度
は、略球形状の粒子がネックを形成して連結した組織に
よるものである。本インプラント材料は薬物を含浸する
担体にも適しており、これは気孔径分布に基因し、略球
形状の粒子の間の気孔は薬物を含浸した溶液の自由拡
散、侵入を容易にし、且つ粒子内の微細な数多くの気孔
は薬物担持のサイトになり多量の薬物の含浸を可能にす
る。逆に薬物の放出の際には、略球形状の粒子内から粒
子間への放出は粒子内の細い気孔を経由するため比較的
緩慢に長期に亘って薬物を放出し、インプラント材内部
でも一旦粒子間に放出された薬物は比較的大きい粒子間
気孔により自由拡散で迅速にインプラント材の外へ供給
される。The good mechanical strength of the present implant material is due to the tissue in which the substantially spherical particles form a neck and are connected. The implant material is also suitable as a carrier for impregnating the drug, which is based on the pore size distribution, and the pores between the approximately spherical particles facilitate the free diffusion and penetration of the drug-impregnated solution, and Numerous fine pores inside become sites for drug loading, allowing impregnation of a large amount of drug. On the other hand, when the drug is released, the release from the inside of the approximately spherical particles to the inside of the particles passes through the fine pores in the particles, so that the drug is released relatively slowly over a long period of time, and even once inside the implant material. The drug released between the particles is rapidly supplied to the outside of the implant material by free diffusion due to the relatively large interparticle pores.
【0010】本インプラント材料を製造する方法におい
て、リン酸カルシウム系原料粉末としては、水酸化アパ
タイト、第三リン酸カルシウムをはじめとするリンとカ
ルシウムの内一種以上を含む原料であれば特に限定はな
い。但し、調合量の合計のカルシウム/リン(Ca/
P)原子比が1.4〜1.75であることが生体親和性の
点で好ましい。例えば、HAPのみ(単味)、又はHA
P粉末と微量の炭酸カルシウムの混合粉末、又は水酸化
カルシウム粉末とTCP粉末の混合粉末が用いられる。In the method for producing the present implant material, the calcium phosphate raw material powder is not particularly limited as long as it is a raw material containing at least one of phosphorus and calcium such as hydroxyapatite and tricalcium phosphate. However, the total amount of calcium / phosphorus (Ca / Ca)
The P) atomic ratio is preferably 1.4 to 1.75 in terms of biocompatibility. For example, HAP only (plain) or HA
A mixed powder of P powder and a small amount of calcium carbonate or a mixed powder of calcium hydroxide powder and TCP powder is used.
【0011】特に好ましいのは、HAP粉末とリン酸カ
ルシウム系のガラスフリット(粉末)の混合物である。
この混合粉末は焼成プロセスにより化学的に反応しフリ
ットは変化して、HAPとTCPの混合結晶相、あるい
はTCP相となる。この混合粉末が非常に優れる点は、
焼成中に液相が生成し微細なHAP粉末間、および成形
した略球形状の粒子間の接合(ネック形成)を著しく促
進することである。そして、このネックの成長が高い気
孔率と機械的強度を両立させる極めて重要な因子であ
る。Particularly preferred is a mixture of HAP powder and calcium phosphate-based glass frit (powder).
This mixed powder chemically reacts by the firing process and the frit changes to become a mixed crystal phase of HAP and TCP or a TCP phase. The great advantage of this mixed powder is that
A liquid phase is generated during firing to significantly promote the bonding (neck formation) between the fine HAP powders and between the molded substantially spherical particles. And, the growth of this neck is a very important factor for achieving both high porosity and mechanical strength.
【0012】他の原料粉末でも目的のインプラント材料
は得られるが、何れの場合でも焼成体のネックの成長が
不十分で強度が低く粒子の脱落が起こりうる。このHA
P粉末とリン酸カルシウム系ガラスフリット(粉末)の
混合物の場合にのみ、50〜70体積%の高い気孔率を
持つにも関わらず、手で擦っても粒子の脱落等は起こら
ず、指等では潰れないかなり高い強度を示した。ダイヤ
モンド砥石を用いた湿式加工では容易に破損することな
く、良好に切削加工が可能であった。The target implant material can be obtained with other raw material powders, but in any case, the growth of the neck of the fired body is insufficient, the strength is low, and particles may fall off. This HA
Only in the case of the mixture of P powder and calcium phosphate type glass frit (powder), even though it has a high porosity of 50 to 70% by volume, the particles do not fall off even if rubbed with hands, and the particles are crushed by fingers or the like. It did not show quite high strength. Wet processing using a diamond grindstone did not break easily, and good cutting was possible.
【0013】これらの出発原料の平均粒子径は重要で、
粒子径が5μmを越えて大きいと粒子内の微細粉末間の
ネックが進行し難いばかりか略球形状の粒子間ネックの
成長もしない。従って、焼成体から粒子が脱落したり、
焼成体が低い強度のものとなり易い。よって、5μm以
下であることが必要であり、好ましくは平均粒子径3μ
m以下である。尚、出発原料の粒子径が小さくなると、
インプラント材料の粒子中に形成される微細気孔の径が
小さくなる。The average particle size of these starting materials is important,
If the particle size is larger than 5 μm, the neck between the fine powder particles in the particle is hard to progress, and the substantially spherical neck between particles does not grow. Therefore, particles may fall off the fired body,
The fired product tends to have low strength. Therefore, it is necessary that the average particle size is 5 μm or less, preferably 3 μm.
m or less. Incidentally, when the particle size of the starting material becomes small,
The size of the micropores formed in the particles of implant material is reduced.
【0014】これらの原料から一旦粒子径20〜800
μmの略球形状の二次粒子に造粒する。この造粒法とし
てはスプレードライヤーを用いた噴霧乾燥が好ましい。
具体的には原料粉末の混合物にポリエチレンオキサイド
(PEO)あるいはエマルジョン型アクリル系バインダ
などの有機バインダーと分散剤、水などを加えて粘度5
〜30cpのスラリーに調整し、スプレードライヤで2
0〜800μmのほぼ球状の二次粒子に造粒する。From these raw materials, once the particle size is 20-800.
Granulate into substantially spherical secondary particles of μm. As this granulation method, spray drying using a spray dryer is preferable.
Specifically, a viscosity of 5 is obtained by adding an organic binder such as polyethylene oxide (PEO) or an emulsion type acrylic binder, a dispersant, and water to a mixture of raw material powders.
Adjust to ~ 30cp slurry and spray dryer to 2
Granulate into substantially spherical secondary particles of 0 to 800 μm.
【0015】この二次粒子の径は目的とするインプラン
ト材料の構造により選ばれ、スプレードライヤーの操作
条件(粉末の濃度、スピンドルの回転速度、乾燥温度)
により制御できる。二次粒子の径が大きいとインプラン
ト材料に形成される粒子間の気孔径も大きくなる。なお
スプレードライヤーの条件によっては二次粒子内に数μ
m〜数十μm以上の空洞ができる場合もあるが、そのま
ま使用することができる。The diameter of the secondary particles is selected according to the structure of the intended implant material, and the operating conditions of the spray dryer (concentration of powder, rotation speed of spindle, drying temperature).
Can be controlled by. When the diameter of the secondary particles is large, the pore diameter between particles formed in the implant material also becomes large. Depending on the conditions of the spray dryer, several μ may be present in the secondary particles.
Although there may be a cavity having a size of m to several tens of μm or more, it can be used as it is.
【0016】この造粒したほぼ球状の二次粒子(以下、
単に「球状粒子」ともいう。)を、1〜100Kg/c
m2の成形圧で金型プレス、ラバープレス、水中プレス
などの加圧成形法にて成形する。HAP粉末とリン酸カ
ルシウム系フリットとの混合物を原料とする場合、好ま
しい成形圧は10〜60Kg/cm2である。これらの
成形体は、約60〜75%の気孔率を有する。[0016] The granulated substantially spherical secondary particles (hereinafter,
Also referred to simply as “spherical particles”. ) Is 1 to 100 kg / c
Molding is performed by a pressure molding method such as a die press, a rubber press, and an underwater press with a molding pressure of m 2 . When a mixture of HAP powder and calcium phosphate-based frit is used as a raw material, a preferable molding pressure is 10 to 60 Kg / cm 2 . These compacts have a porosity of about 60-75%.
【0017】通常の緻密質のセラミックスを製造する場
合、その成形圧力は金型プレスでは500〜800Kg
/cm2、静水圧プレスでは1000〜2000Kg/
cm2であるのに対して、本発明製造方法における成形
圧力は極めて低いのが特徴である。即ち、本発明では、
造粒した球状粒子をこの様な低い圧力で成形すると、造
粒した球状粒子が潰れることなく球状粒子同士が均質に
接触する。その結果、バイモーダル気孔径分布を持った
インプラント材料が製造できるのである。In the case of producing ordinary dense ceramics, the molding pressure is 500 to 800 Kg in a die press.
/ Cm 2 , 1000 to 2000 kg / in a hydrostatic press
In contrast to cm 2 , the molding pressure in the production method of the present invention is extremely low. That is, in the present invention,
When the granulated spherical particles are molded under such a low pressure, the granulated spherical particles do not crush and the spherical particles come into uniform contact with each other. As a result, an implant material having a bimodal pore size distribution can be manufactured.
【0018】従って、成形圧力が100Kg/cm2を
越えると造粒した球状粒子が潰れ目的とするバイモーダ
ルの気孔径分布が得られない。他方、成形圧力が1Kg
/cm2未満では造粒粒子同士の接触が不十分で均質な
成形体が得られず、焼成してもネックの成長が不十分と
なる。そのため、焼成体の強度が低く、切削加工に耐え
られない。Therefore, if the molding pressure exceeds 100 kg / cm 2 , the granulated spherical particles are crushed and the desired bimodal pore size distribution cannot be obtained. On the other hand, the molding pressure is 1 kg
If it is less than / cm 2 , the granulated particles are not sufficiently contacted with each other to obtain a homogeneous molded product, and the growth of the neck is insufficient even after firing. Therefore, the strength of the fired body is low and it cannot withstand cutting.
【0019】尚、球状粒子間の気孔を増加させるため
に、球状粒子とほぼ同等の大きさの有機質可燃性粒子を
混入して成形しても良い。また、球状粒子を遠心分離機
にかけて遠心力で乾式成形すると、造粒した粒子に均質
に成形圧が加わり、均質な成形体を得るのに好ましい。
金型成形のように周縁部と中心部とで圧力が不均等にな
るというような不具合が生じないからである。In order to increase the pores between the spherical particles, organic combustible particles having a size substantially equal to that of the spherical particles may be mixed and molded. In addition, when the spherical particles are subjected to dry molding by a centrifugal force with a centrifugal separator, the granulated particles are uniformly subjected to molding pressure, which is preferable for obtaining a homogeneous molded body.
This is because there is no inconvenience that the pressure becomes uneven between the peripheral portion and the central portion as in the die molding.
【0020】これら成形体を焼成温度700℃〜140
0℃で焼成することにより、上記のインプラント材料が
得られる。特にHAP粉末とリン酸カルシウム系フリッ
トを用いた場合には、1000〜1300℃の焼成が好
ましい。焼成温度が700℃より低いと粒子間のネック
成長が進行し難く、粒子の連結した上記インプラント材
料が得られない。1400℃より高いと緻密化が進行し
て良好な気孔分布を有した多孔体とならない。These compacts are fired at a temperature of 700 ° C. to 140 ° C.
The above-mentioned implant material is obtained by firing at 0 ° C. Especially when HAP powder and calcium phosphate-based frit are used, firing at 1000 to 1300 ° C. is preferable. When the firing temperature is lower than 700 ° C., neck growth between particles is difficult to proceed, and the implant material in which particles are connected cannot be obtained. If it is higher than 1400 ° C, the densification will proceed and the porous body will not have a good pore distribution.
【0021】気孔率はその焼成温度により変化し、70
0〜1100℃までの焼成では緻密化は進行せず気孔を
維持し、微粒子間及び二次粒子球間のネックが成長す
る。その結果1100℃での焼成では、二次粒子がネッ
クを形成して連結した構造が形成され、その二次粒子と
二次粒子の隙間に三次元的に連結した2〜200μmの
気孔が形成され、更にその二次粒子内にも原料微粒子間
のネック成長により2μm以下の連続した気孔が形成さ
れ、2重気孔構造を有する生体インプラント材料が得ら
れる。The porosity varies depending on the firing temperature and is 70
By firing at 0 to 1100 ° C., densification does not proceed, pores are maintained, and necks between fine particles and secondary particle spheres grow. As a result, in firing at 1100 ° C., a structure in which secondary particles form a neck and are connected to each other is formed, and pores of 2 to 200 μm that are three-dimensionally connected are formed in the gaps between the secondary particles and the secondary particles. Further, continuous pores of 2 μm or less are formed in the secondary particles due to neck growth between the raw material fine particles, and a bioimplant material having a double pore structure can be obtained.
【0022】既に述べた様にフリットは液相となりHA
P微粒子間、二次粒子間で反応して、HAPとTCPの
混合結晶相となる。1100℃を越える温度では二次粒
子内の微細気孔の量と径は徐々に減少するが、造粒した
二次粒子間の気孔は減少せず強度の向上したインプラン
ト材料が得られる。従って焼成温度は実使用時の用途に
より、気孔量と機械的強度のバランスから選定できる。As already mentioned, the frit becomes a liquid phase and HA
The P fine particles and the secondary particles react with each other to form a mixed crystal phase of HAP and TCP. At temperatures above 1100 ° C, the amount and size of fine pores in the secondary particles gradually decrease, but the pores between the granulated secondary particles do not decrease, and an implant material with improved strength can be obtained. Therefore, the firing temperature can be selected from the balance between the amount of pores and the mechanical strength depending on the actual use.
【0023】[0023]
−実施例1− 平均粒子径0.6μmのHAP粉末95重量%とリン酸
カルシウム系ガラスフリット(CaO−P2O5が90%
モル以上)5重量%との混合粉末にポリエチレンオキサ
イド系のバインダを添加した水系のスラリーを調製し、
スプレードライヤーで平均粒子径約80μmのほぼ球状
の粒子を造粒した。- 95 wt% HAP powder of Example 1 The average particle diameter of 0.6μm and calcium phosphate glass frit (CaO-P 2 O 5 90%
5% by weight or more) to prepare a water-based slurry in which a polyethylene oxide-based binder is added to the mixed powder.
Almost spherical particles having an average particle diameter of about 80 μm were granulated with a spray dryer.
【0024】造粒粒子をプレス金型に充填し、成形圧力
0.5〜500Kg/cm2 の各圧力で直径10mmの
円柱試料に成形した。得られた成形体を電気炉にて昇温
速度300℃/時間で、各温度で2時間保持の焼成を行
うことによって、試料No.1〜14を製造した。これ
らの試料について、製造条件と特性を表1に示す。The granulated particles were filled in a press mold and molded into a cylindrical sample having a diameter of 10 mm at each molding pressure of 0.5 to 500 Kg / cm 2 . The obtained molded body was fired in an electric furnace at a temperature rising rate of 300 ° C./hour for 2 hours at each temperature to obtain Sample No. 1-14 were produced. Table 1 shows manufacturing conditions and characteristics of these samples.
【0025】[0025]
【表1】 表1にみられるように、試料No.1〜14は、本発明
の範囲に属するので、25〜73%という高い気孔率を
有し、且つ指等で擦っても容易に粒子が脱落することの
なく、通常のハンドリングでは破損しないものであっ
た。そして、X線回折で表面の結晶相を同定したとこ
ろ、すべてTCP相(30%)を含んだHAP−TCP
の複合結晶相となっていた。従って、これら試料と同質
の構造体は、高強度且つ生体親和性に優れたインプラン
ト材料となることが明らかとなった。[Table 1] As seen in Table 1, sample No. Since 1 to 14 belong to the scope of the present invention, they have a high porosity of 25 to 73%, and the particles do not easily fall off even if they are rubbed with a finger or the like, and are not damaged by ordinary handling. there were. Then, when the crystal phase on the surface was identified by X-ray diffraction, HAP-TCP containing all TCP phases (30%)
Was a composite crystal phase of. Therefore, it has been clarified that the structure having the same quality as those of these samples is an implant material having high strength and excellent biocompatibility.
【0026】次に図1及び図2に代表的な組織(試料N
o.5と試料No.12)の走査型電子顕微鏡(以下、
「SEM」と略記する。)観察写真を示す。図1(試料
No.5)及び図2(試料No.12)より、本発明に
属する試料は、約80μmのリン酸カルシウム系セラミ
ックスの二次粒子が連結した構造からなり、その二次粒
子の隙間に三次元的に連結した10〜数十μm程度の気
孔を有していることが、判明した。しかも個々の二次粒
子は微細な連結した一次粒子からなっており、少なくと
も1μm以下の連通した気孔が観察された。すなわち、
試料全体として2重(バイモーダル)気孔分布構造を備
えることが確認された。No12では粒子内の緻密化が
進行している。Next, a typical structure (Sample N) is shown in FIGS.
o.5 and sample No. 12) scanning electron microscope (hereinafter,
Abbreviated as "SEM". ) An observation photograph is shown. 1 (Sample No. 5) and FIG. 2 (Sample No. 12), the sample belonging to the present invention has a structure in which secondary particles of the calcium phosphate ceramics of about 80 μm are connected to each other, and in the gap between the secondary particles. It was found to have pores of about 10 to several tens of μm that are three-dimensionally connected. Moreover, each secondary particle was composed of finely linked primary particles, and open pores of at least 1 μm or less were observed. That is,
It was confirmed that the entire sample had a bimodal pore distribution structure. In No. 12, densification in the particles is progressing.
【0027】図3及び図4に試料No.5及び試料N
o.12の水銀圧入法による細孔径分布をそれぞれ示し
た。それによると数μm〜100(装置限界)μmの大
きい気孔と2μm以下の微細気孔のバイモーダルの気孔
分布が見られた。このことは、図1及び図2で示したS
EMの観察結果と基本的に一致する。ただし、水銀圧入
法による細孔径分布では、その原理上、連続した気孔の
最も狭い気孔径と平衡な圧力で圧入が律速されるため
(インクボトム効果)、大気孔が著しく過小評価されて
いる。従って、水銀圧入法による実際の分布の定量は不
可能で、SEMの観察結果のほうが信頼性が高いと考え
られる。Sample No. 5 and sample N are shown in FIGS.
o. 12 shows the pore size distributions by the mercury porosimetry. According to this, a bimodal pore distribution of large pores of several μm to 100 (device limit) μm and fine pores of 2 μm or less was observed. This means that S shown in FIGS.
It basically agrees with the observation result of EM. However, in the pore size distribution determined by the mercury porosimetry, the pore size is markedly underestimated because, in principle, the porosity is controlled by the pressure equilibrium with the narrowest pore size of the continuous pores (ink bottom effect). Therefore, it is impossible to quantify the actual distribution by the mercury injection method, and it is considered that the SEM observation result is more reliable.
【0028】−実施例2〜3− 原料粉末として、平均粒子径0.6μmのHAP粉末9
9重量%と炭酸カルシウム1重量%との混合粉末を用い
た以外は実施例1と同様に実施例2の試料を製造した。
その特性を製造条件とともに試料No.15〜20とし
て表2に示す。Examples 2-3-HAP powder 9 having an average particle diameter of 0.6 μm as a raw material powder
A sample of Example 2 was manufactured in the same manner as in Example 1 except that a mixed powder of 9% by weight and 1% by weight of calcium carbonate was used.
The characteristics of the sample No. It is shown in Table 2 as 15 to 20.
【0029】原料粉末として、平均粒子径0.6μmの
HAP粉末85重量%とリン酸カルシウム系ガラスフリ
ット(CaO−P2O5が90%モル以上)15重量%の
混合粉末を用いた以外は実施例1と同様に実施例3の試
料を製造した。その特性を製造条件とともに試料No.
21〜26として表2に示す。Example except that 85% by weight of HAP powder having an average particle size of 0.6 μm and 15% by weight of calcium phosphate glass frit (90% by mole or more of CaO-P 2 O 5 ) were used as the raw material powder. The sample of Example 3 was manufactured in the same manner as in Example 1. The characteristics of the sample No.
It shows in Table 2 as 21-26.
【0030】[0030]
【表2】 実施例2の試料は、ほぼ球状の二次粒子が連結したバイ
モーダル気孔径分布の多孔体が得られたものの、表2中
に示した様に、実施例1のものと比較すると指で軽く擦
っても粒子の脱落が起こり易く、機械的強度もやや低か
った。[Table 2] Although the sample of Example 2 was obtained as a porous body having a bimodal pore size distribution in which secondary particles of substantially spherical shape were connected, as shown in Table 2, as compared with that of Example 1, it was lighter with fingers. Even if rubbed, the particles were likely to come off, and the mechanical strength was also slightly low.
【0031】実施例3の試料は、実施例1と同様に、ほ
ぼ球状の二次粒子が連結したバイモーダル気孔径分布の
良好な多孔体が得られ、指で軽く擦っても粒子の脱落は
起こらず、機械的強度も高かった。実施例1との違いは
その構成される結晶相がTCPであることであった。In the same manner as in Example 1, the sample of Example 3 yielded a porous body having a good bimodal pore size distribution in which substantially spherical secondary particles were connected, and the particles did not fall off even when lightly rubbed with a finger. It did not happen and had high mechanical strength. The difference from Example 1 was that the constituent crystal phase was TCP.
【0032】−比較例1〜5− 実施例1または実施例3と同様の原料粉末を用い、成形
圧0.5Kg/cm2で比較例1の試料を製造した。その
特性を製造条件とともに試料No.27〜30として表
3に示す。実施例1と同様の原料粉末を用い、成形圧5
00Kg/cm2で比較例2の試料を製造した。その特
性を製造条件とともに試料No.31,32として表3
に示す。Comparative Examples 1 to 5 Using the same raw material powder as in Example 1 or Example 3, a sample of Comparative Example 1 was manufactured at a molding pressure of 0.5 Kg / cm 2 . The characteristics of the sample No. It shows in Table 3 as 27-30. Using the same raw material powder as in Example 1, molding pressure 5
The sample of Comparative Example 2 was manufactured at 00 Kg / cm 2 . The characteristics of the sample No. Table 3 as 31, 32
Shown in.
【0033】原料粉末として、平均粒子径7μmのHA
P粉末95重量%とリン酸カルシウム系ガラスフリット
5重量%との混合粉末を用いて、実施例1と同様に比較
例3の試料を製造した。その特性を製造条件とともに試
料No.33,34として表3に示す。HA having an average particle diameter of 7 μm was used as the raw material powder.
A sample of Comparative Example 3 was manufactured in the same manner as in Example 1 using a mixed powder of 95% by weight of P powder and 5% by weight of calcium phosphate-based glass frit. The characteristics of the sample No. It is shown in Table 3 as 33 and 34.
【0034】実施例1と同じ原料粉末を用い、造粒粒子
の平均粒子径を約10μmとして実施例1と同様に比較
例4の試料を製造した。その特性を製造条件とともに試
料No.35,36として表3に示す。実施例1と同様
であるが、その焼成温度を500℃として比較例5の試
料を製造した。その特性を製造条件とともに試料No.
37,38として表3に示す。A sample of Comparative Example 4 was produced in the same manner as in Example 1, except that the same raw material powder as in Example 1 was used and the average particle size of the granulated particles was about 10 μm. The characteristics of the sample No. It shows in Table 3 as 35 and 36. A sample of Comparative Example 5 was manufactured in the same manner as in Example 1 except that the firing temperature was 500 ° C. The characteristics of the sample No.
It is shown in Table 3 as 37 and 38.
【0035】[0035]
【表3】 表3にみられるように、比較例1の試料は、粒子が脱落
し、強度も低く、ハンドリングに耐える焼成体ではなか
った。これは、造粒粒子の均質な接触・充填が困難で、
成形体中に大きな空洞が生じたことによると考えられ
る。[Table 3] As can be seen from Table 3, the sample of Comparative Example 1 was not a fired body with particles falling off, low strength, and handling. This is because it is difficult to uniformly contact and fill the granulated particles,
It is considered that this is due to the formation of large cavities in the molded body.
【0036】比較例2の試料は、成形時に造粒粒子が潰
れ高密度の成形体となり、1100℃で焼成すると単一
気孔径の多孔体、1300℃で焼成すると気孔の無い緻
密な高強度インプラント材料となった。比較例3の試料
は、焼成体の強度が何れも低く、指で擦ると粒子が容易
に脱落し、軽いハンドリングでも形状を保持しなかっ
た。これは、原料粉末間および球状粒子間のネックの成
長がほとんど進行しなかったことによると考えられる。In the sample of Comparative Example 2, the granulated particles were crushed at the time of molding to form a high-density molded body, and a porous body having a single pore size when fired at 1100 ° C. and a dense high-strength implant material having no pores when fired at 1300 ° C. Became. In each of the samples of Comparative Example 3, the strength of the fired body was low, the particles easily dropped when rubbed with a finger, and the shape was not retained even by light handling. It is considered that this is because the growth of the neck between the raw material powders and between the spherical particles hardly progressed.
【0037】比較例4の試料は、焼成体中に径の大きい
気孔がほとんど形成されず単一気孔径のインプラント材
料となった。比較例5の試料は、焼成体のネックの成長
は起こらず、粒子の脱落が起こり容易に破損した。The sample of Comparative Example 4 was an implant material having a single pore diameter with few large pores formed in the fired body. In the sample of Comparative Example 5, the growth of the neck of the fired body did not occur, and the particles fell off and were easily broken.
【0038】−比較例6− 実施例1と同様であるが、その焼成温度を1500℃と
して試料を製造した。その結果、成形圧に関わらず緻密
化が進行し、三次元に連結した気孔もなく閉気孔が残存
するだけであった。-Comparative Example 6-A sample was manufactured in the same manner as in Example 1, except that the firing temperature was 1500 ° C. As a result, the densification proceeded regardless of the molding pressure, and the closed pores remained without the pores connected in three dimensions.
【0039】[0039]
【発明の効果】機械的強度が高く、しかも生体親和性が
良好で、且つ薬物の担持性にも優れた生体インプラント
材料として有用である。The present invention is useful as a bioimplant material having high mechanical strength, good biocompatibility, and excellent drug loading.
【図1】実施例1の試料No.5の粒子構造を示すもの
で、(A)は、倍率200、(B)は、倍率2000の
走査型電子顕微鏡写真である。1 is a sample No. 1 of Example 1. FIG. 5 shows a particle structure of No. 5, (A) is a scanning electron micrograph at a magnification of 200, and (B) is a scanning electron micrograph at a magnification of 2000.
【図2】実施例1の試料No.12の粒子構造を示すも
ので、(A)は、倍率200、(B)は、倍率2000
の走査型電子顕微鏡写真である。2 is a sample No. 1 of Example 1. FIG. 12 shows a particle structure of No. 12, (A) is a magnification of 200, and (B) is a magnification of 2000.
2 is a scanning electron micrograph of FIG.
【図3】実施例1の試料No.5の気孔径分布を水銀圧
入法により測定した結果を示すグラフである。3 is a sample No. 1 of Example 1. FIG. 5 is a graph showing the results of measuring the pore size distribution of No. 5 by the mercury penetration method.
【図4】実施例1の試料No.12の気孔径分布を水銀
圧入法により測定した結果を示すグラフである。4 is a sample No. 1 of Example 1. FIG. It is a graph which shows the result of having measured the pore diameter distribution of 12 by the mercury intrusion method.
Claims (5)
る大きさ20〜800μmの連結した粒子の群を備え、
各々の粒子の内部に細孔が存在し且つそれら粒子間に三
次元的に連通した2〜200μmの気孔が存在すること
を特徴とする生体インプラント材料。1. A group of connected particles, each having a size of 20 to 800 μm, made of calcium phosphate ceramics,
A bioimplant material having pores inside each particle and pores of 2 to 200 μm which are three-dimensionally communicated between the particles.
ある請求項1に記載の生体インプラント材料。2. The bioimplant material according to claim 1, wherein the internal pores are continuous pores of 2 μm or less.
る結晶相として水酸アパタイト及び第三リン酸カルシウ
ムを含むものである請求項1ないし2に記載の生体イン
プラント材料。3. The bioimplant material according to claim 1, wherein the calcium phosphate ceramics contains hydroxyapatite and tricalcium phosphate as main crystal phases.
ルシウム系原料粉末を、粒子径20〜800μmの顆粒
状に造粒し、1〜100Kg/cm2の圧力で成形した
後に700℃〜1400℃で焼成することを特徴とする
生体インプラント材料の製造方法。4. A fine calcium phosphate-based raw material powder having an average particle diameter of 5 μm or less is granulated into granules having a particle diameter of 20 to 800 μm, molded at a pressure of 1 to 100 Kg / cm 2 , and then at 700 ° C. to 1400 ° C. A method for producing a bioimplant material, which comprises firing.
タイト粉末とリン酸カルシウム系フリットとの混合物で
あって、成形圧力が10〜60Kg/cm2である請求
項4に記載の生体インプラント材料の製造方法。5. The method for producing a bioimplant material according to claim 4, wherein the calcium phosphate-based raw material powder is a mixture of hydroxyapatite powder and calcium phosphate-based frit, and the molding pressure is 10 to 60 Kg / cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11414493A JP3231135B2 (en) | 1993-04-16 | 1993-04-16 | Biological implant material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11414493A JP3231135B2 (en) | 1993-04-16 | 1993-04-16 | Biological implant material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06296676A true JPH06296676A (en) | 1994-10-25 |
JP3231135B2 JP3231135B2 (en) | 2001-11-19 |
Family
ID=14630251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11414493A Expired - Lifetime JP3231135B2 (en) | 1993-04-16 | 1993-04-16 | Biological implant material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3231135B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340648B1 (en) * | 1999-04-13 | 2002-01-22 | Toshiba Ceramics Co., Ltd. | Calcium phosphate porous sintered body and production thereof |
JP2003062061A (en) * | 2001-08-22 | 2003-03-04 | Ngk Spark Plug Co Ltd | Implant material for living body and method for producing it |
US6713420B2 (en) | 2000-10-13 | 2004-03-30 | Toshiba Ceramics Co., Ltd. | Porous ceramics body for in vivo or in vitro use |
WO2005025542A1 (en) * | 2003-09-16 | 2005-03-24 | Ltt Bio-Pharma Co., Ltd. | Fine grain having fat-soluble drug encapsulated therein, process for producing the same and preparation containing the same |
US10286102B2 (en) | 2010-05-11 | 2019-05-14 | Howmedica Osteonics Corp | Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6949251B2 (en) | 2001-03-02 | 2005-09-27 | Stryker Corporation | Porous β-tricalcium phosphate granules for regeneration of bone tissue |
CN102053392B (en) * | 2010-12-16 | 2012-10-10 | 福州高意光学有限公司 | High-power laser attenuator |
US8765189B2 (en) | 2011-05-13 | 2014-07-01 | Howmedica Osteonic Corp. | Organophosphorous and multivalent metal compound compositions and methods |
-
1993
- 1993-04-16 JP JP11414493A patent/JP3231135B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340648B1 (en) * | 1999-04-13 | 2002-01-22 | Toshiba Ceramics Co., Ltd. | Calcium phosphate porous sintered body and production thereof |
US6713420B2 (en) | 2000-10-13 | 2004-03-30 | Toshiba Ceramics Co., Ltd. | Porous ceramics body for in vivo or in vitro use |
JP2003062061A (en) * | 2001-08-22 | 2003-03-04 | Ngk Spark Plug Co Ltd | Implant material for living body and method for producing it |
WO2005025542A1 (en) * | 2003-09-16 | 2005-03-24 | Ltt Bio-Pharma Co., Ltd. | Fine grain having fat-soluble drug encapsulated therein, process for producing the same and preparation containing the same |
US10286102B2 (en) | 2010-05-11 | 2019-05-14 | Howmedica Osteonics Corp | Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods |
Also Published As
Publication number | Publication date |
---|---|
JP3231135B2 (en) | 2001-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3362267B2 (en) | Bioimplant material and method for producing the same | |
US6235225B1 (en) | Process for producing biocompatible implant material | |
Descamps et al. | Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural | |
TW558461B (en) | A method of producing a composite body by coalescence and the composite body produced | |
Rodrıguez-Lorenzo et al. | Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems | |
EP0263489B1 (en) | Granular inorganic moldings and a process for production thereof | |
JPH04504403A (en) | Synthetic ceramic materials and their manufacturing methods | |
JPH05305134A (en) | Porous calcium phosphate material for bone formation | |
JPH0359703B2 (en) | ||
Sudan et al. | Processing of hydroxyapatite and its composites using ceramic fused filament fabrication (CF3) | |
JP3231135B2 (en) | Biological implant material and method for producing the same | |
Kalita et al. | Porous calcium aluminate ceramics for bone-graft applications | |
JP3718708B2 (en) | Calcium phosphate bioceramic sintered body and method for producing the same | |
Swain | Processing of porous hydroxyapatite scaffold | |
JPH0214866A (en) | Solution of calcium phosphate compound ceramic precursor and production thereof | |
WO2001094274A1 (en) | Foamed ceramics | |
JPH0415062A (en) | Living body material with multiphase structure and its manufacture | |
EP2229961A2 (en) | Method for fabrication of highly porous, calcium phosphate bioactive implant material | |
Kim et al. | Densification behavior of hydroxyapatite green pellets prepared by different methods | |
Sych et al. | Morphology and properties of new porous biocomposites based on biogenic hydroxyapatite and synthetic calcium phosphates | |
JPH067148A (en) | Carrier for culturing cell and method for culturing cell | |
JP3933716B2 (en) | Method for producing α-tricalcium phosphate ceramic | |
JP3463106B2 (en) | Spherical apatite ceramics and method for producing the same | |
JP6832646B2 (en) | Apatite ceramics and their manufacturing method | |
JP2506826B2 (en) | Granular inorganic molded body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |