JP2871334B2 - Method of removing carbon dioxide from flue gas - Google Patents
Method of removing carbon dioxide from flue gasInfo
- Publication number
- JP2871334B2 JP2871334B2 JP4246395A JP24639592A JP2871334B2 JP 2871334 B2 JP2871334 B2 JP 2871334B2 JP 4246395 A JP4246395 A JP 4246395A JP 24639592 A JP24639592 A JP 24639592A JP 2871334 B2 JP2871334 B2 JP 2871334B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- combustion exhaust
- carbon dioxide
- hindered amine
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
Landscapes
- Chimneys And Flues (AREA)
- Treating Waste Gases (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関する。さらに
詳しくは、特定のヒンダードアミンの水溶液を用いて、
大気圧下の燃焼排ガス中のCO2 を除去する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in flue gas. More specifically, using an aqueous solution of a specific hindered amine,
The present invention relates to a method for removing CO 2 in flue gas at atmospheric pressure.
【0002】[0002]
【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラの燃焼排ガ
スをアルカノールアミン水溶液等と接触させ、燃焼排ガ
ス中のCO2 を除去して回収する方法および回収された
CO2 を大気へ放出することなく貯蔵する方法が精力的
に研究されている。2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures have been urgently required internationally to protect the global environment. CO 2
As a source of the occurrence, all human activity fields burning fossil fuels tend to be increasingly demanded for emission control. Along with this, a method and method for contacting boiler flue gas with an alkanolamine aqueous solution and removing and recovering CO 2 in flue gas for power generation facilities such as thermal power plants that use large amounts of fossil fuels Methods for storing the released CO 2 without releasing it to the atmosphere are being vigorously studied.
【0003】アルカノールアミンとしては、モノエタノ
ールアミン、ジエタノールアミン、トリエタノールアミ
ン、メチルジエタノールアミン、ジイソプロパノールア
ミン、ジグリコールアミン等を挙げることができるが、
通常モノエタノールアミン(MEA)が好んで用いられ
る。Examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, and diglycolamine.
Usually, monoethanolamine (MEA) is preferably used.
【0004】しかし、MEAに代表される上記のような
アルカノールアミン水溶液を燃焼排ガス中のCO2 を吸
収・除去する吸収液として用いても、所定濃度のアミン
水溶液の所定量当たりのCO2 の吸収量、所定濃度のア
ミン水溶液の単位アミンモル当たりのCO2 吸収量、所
定濃度におけるCO2 の吸収速度、さらには吸収後のア
ルカノールアミン水溶液の再生に要する熱エネルギ等に
照らして、必ずしも満足のできるものではない。However, even if the above-mentioned alkanolamine aqueous solution represented by MEA is used as an absorbing solution for absorbing and removing CO 2 in combustion exhaust gas, the absorption of CO 2 per a predetermined amount of the aqueous amine solution having a predetermined concentration can be achieved. The amount of CO 2 absorbed per unit amine mole of the aqueous amine solution of the predetermined concentration, the absorption rate of CO 2 at the predetermined concentration, and the heat energy required for regeneration of the aqueous alkanolamine solution after absorption, which is not always satisfactory. is not.
【0005】ところで、各種混合ガスからアミン化合物
を用いて酸性ガスを分離する技術は数多く知られてい
る。特開昭53−100180号公報には、(1)環の
一部分であって且つ第二炭素原子若しくは第三炭素原子
のどちらかに結合された少なくとも1個の第二アミノ基
又は第三炭素原子に結合された第一アミノ基を含有する
立体障害アミン少なくとも50モル%と第三アミノアル
コール少なくとも約10モル%とよりなるアミン混合
物、及び(2)酸性ガスに対する物理的吸収剤である前
記アミン混合物用の溶媒、からなるアミン−溶媒液体吸
収剤に通常ガス状の混合物を接触させることからなる酸
性ガスの除去法が記載されている。立体障害アミンとし
ては2−ピペリジンエタノール〔2−(2−ヒドロキシ
エチル)−ピペリジン〕及び3−アミノ−3−メチル−
1−ブタノール等が、また溶媒としては25重量%まで
の水を含んでもよいスルホキシド化合物等が、さらに処
理ガスの例としては同公報11頁左上欄に「高濃度の二
酸化炭素及び硫化水素、例えば35%のCO2 及び10
〜12%のH2 Sを有する通常ガス状の混合物」が例示
され、また実施例にはCO2 そのものが使用されてい
る。There are many known techniques for separating an acidic gas from various mixed gases using an amine compound. JP-A-53-100180 discloses that (1) at least one secondary amino group or tertiary carbon atom which is part of a ring and bonded to either a secondary carbon atom or a tertiary carbon atom. An amine mixture consisting of at least 50 mol% of a sterically hindered amine containing a primary amino group bound to a tertiary amino alcohol and at least about 10 mol%, and (2) said amine mixture which is a physical absorbent for acidic gases A method for removing acidic gases, which comprises contacting a gaseous mixture with an amine-solvent liquid absorbent comprising a solvent for use, is described. Sterically hindered amines include 2-piperidineethanol [2- (2-hydroxyethyl) -piperidine] and 3-amino-3-methyl-
1-butanol and the like, a solvent such as a sulfoxide compound which may contain up to 25% by weight of water and the like. 35% CO 2 and 10
Typical gaseous mixtures having 〜12% H 2 S ”, and the examples use CO 2 itself.
【0006】特開昭61−71819号公報には、立体
障害アミンおよびスルホラン等の非水溶媒を含む酸性ガ
ススクラッピング用組成物が記載されている。立体障害
第一モノアミノアルコールとして2−アミノ−2−メチ
ル−1−プロパノール(AMP)等が例示され、また用
いられている。実施例では、処理されるガスとしてはC
O2 と窒素、CO2 とヘリウムが用いられている。ま
た、吸収剤としてはアミンと炭酸カリの水溶液等も使用
されている。さらに水の使用についても記載されてい
る。さらに該公報にはCO2 の吸収に対し、立体障害ア
ミンの有利性を反応式を用いて説明している。Japanese Patent Application Laid-Open No. 61-71819 discloses a composition for scraping an acidic gas containing a non-aqueous solvent such as a sterically hindered amine and sulfolane. As the sterically hindered primary monoamino alcohol, 2-amino-2-methyl-1-propanol (AMP) and the like are exemplified and used. In the embodiment, the gas to be treated is C
O 2 and nitrogen, CO 2 and helium are used. Further, an aqueous solution of an amine and potassium carbonate or the like is also used as the absorbent. It also describes the use of water. Further, the publication describes the advantage of the sterically hindered amine with respect to the absorption of CO 2 using a reaction formula.
【0007】ケミカルエンジニアリングサイエンス( C
hemical Engineering Science ) ,41巻,4号,99
7〜1003頁には、ヒンダードアミンである2−アミ
ノ−2−メチル−1−プロパノール(AMP)水溶液の
炭酸ガス吸収挙動が開示されている。吸収されるガスと
しては大気圧のCO2 およびCO2 と窒素の混合物が用
いられている。Chemical Engineering Science (C)
chemical Engineering Science), Vol. 41, No. 4, 99
Pages 7 to 1003 disclose the carbon dioxide absorption behavior of an aqueous solution of hindered amine 2-amino-2-methyl-1-propanol (AMP). As the gas to be absorbed, atmospheric pressure CO 2 and a mixture of CO 2 and nitrogen are used.
【0008】ケミカルエンジニアリングサイエンス( C
hemical Engineering Science ) ,41巻,2号,40
5〜408頁には、常温付近において、AMPのような
ヒンダードアミンとMEAのような直鎖アミンの各水溶
液のCO2 やH2 Sに対する吸収速度が報告されてい
る。これによると、CO2 の分圧が1atm の場合、水溶
液濃度0.1〜0.3Mで両者に大差はない。しかし、
濃度0.1Mの水溶液を用い、CO2 分圧を1、0.
5、0.05atm と低下させると、0.05atm ではA
MPはMEAよりも吸収速度が大きく低下している。Chemical Engineering Science (C)
chemical Engineering Science), Vol. 41, No. 2, 40
On pages 5 to 408, the absorption rates of hindered amines such as AMP and linear amines such as MEA for CO 2 and H 2 S are reported at around normal temperature. According to this, when the partial pressure of CO 2 is 1 atm, there is no significant difference between the two at an aqueous solution concentration of 0.1 to 0.3M. But,
Using an aqueous solution having a concentration of 0.1 M, the partial pressure of CO 2 was adjusted to 1.0.
5. If the pressure is reduced to 0.05 atm,
MP has a much lower absorption rate than MEA.
【0009】米国特許3,622,267号にはメチル
ジエタノールアミン及びモノエチルモノエタノールアミ
ンを含有する水性混合物を用い、原油などの部分酸化ガ
ス等の合成ガスに含まれる高分圧のCO2 、例えば40
気圧の30%CO2 含有合成ガスを精製する技術が開示
されている。US Pat. No. 3,622,267 uses an aqueous mixture containing methyldiethanolamine and monoethylmonoethanolamine and uses a high partial pressure of CO 2 contained in a synthesis gas such as a partially oxidized gas such as crude oil. 40
A technique for purifying synthesis gas containing 30% CO 2 at atmospheric pressure is disclosed.
【0010】ドイツ公開特許1,542,415号には
CO2 、H2 S、COSの吸収速度の向上のためモノア
ルキルアルカノールアミン等を物理または化学吸収剤に
添加する技術が開示されている。同様にドイツ公開特許
1,904,428号には、モノメチルエタノールアミ
ンがメチルジエタノールアミンの吸収速度を向上させる
目的で添加される技術が開示されている。[0010] German Patent Publication No. 1,542,415 discloses a technique of adding a monoalkylalkanolamine or the like to a physical or chemical absorbent in order to improve the absorption rate of CO 2 , H 2 S and COS. Similarly, German Offenlegungsschrift 1,904,428 discloses a technique in which monomethylethanolamine is added for the purpose of improving the absorption rate of methyldiethanolamine.
【0011】米国特許4,336,233号には、天然
ガス、合成ガス、ガス化石炭ガスの精製にピペラジンの
0.81〜1.3モル/リットル水溶液が洗浄液とし
て、またピペラジンがメチルジエタノールアミン、トリ
エタノールアミン、ジエタノールアミン、モノメチルエ
タノールアミン等の溶媒と共に水溶液で洗浄液として使
用される技術が開示されている。US Pat. No. 4,336,233 discloses that a 0.81-1.3 mol / l aqueous solution of piperazine is used as a washing liquid for refining natural gas, synthesis gas and gasified coal gas, and that piperazine is methyldiethanolamine. There is disclosed a technique used as a washing solution in an aqueous solution together with a solvent such as triethanolamine, diethanolamine, and monomethylethanolamine.
【0012】同様に特開昭52−63171号公報に
は、第三級アルカノールアミン、モノアルキルアルカノ
ールアミン等にピペラジンまたはヒドロキシエチルピペ
ラジン等のピペラジン誘導体を促進剤として加えたCO
2 吸収剤が開示されている。Similarly, Japanese Patent Application Laid-Open No. Sho 52-63171 discloses a CO containing a tertiary alkanolamine, a monoalkylalkanolamine or the like, and a piperazine derivative such as piperazine or hydroxyethylpiperazine added as an accelerator.
Two absorbents are disclosed.
【0013】[0013]
【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく除去する方法が望まれている。
特に、一定濃度のCO2 吸収剤(アミン化合物)を含む
水溶液で燃焼排ガスを処理する場合、所定濃度における
吸収剤単位モル当たりのCO2 吸収量、吸収剤の所定濃
度における水溶液の単位体積当たりのCO2 の吸収量、
および吸収速度の大きい吸収剤を選択することが当面の
大きな課題である。さらにはCO2 の吸収後、CO2 を
分離し、吸収液を再生させる際に必要な熱エネルギの少
ない吸収剤が望まれる。As described above, there is a need for a method for efficiently removing CO 2 from combustion exhaust gas.
In particular, when the flue gas is treated with an aqueous solution containing a certain concentration of a CO 2 absorbent (amine compound), the CO 2 absorption amount per unit mole of the absorbent at a predetermined concentration, and the CO 2 absorption amount per unit volume of the aqueous solution at a predetermined concentration of the absorbent. CO 2 absorption,
A major problem for the moment is to select an absorbent having a high absorption rate. Furthermore after absorption of CO 2, separating the CO 2, heat energy less absorbent necessary for regenerating the absorbing solution is desired.
【0014】[0014]
【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のヒンダードア
ミンを用いることが特に有効であるとの知見を得て、本
発明を完成させることができた。Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies on an absorbent used for removing CO 2 in flue gas, and as a result, it is particularly effective to use a specific hindered amine. With the knowledge that there was, the present invention could be completed.
【0015】すなわち本発明は(1)アルコール性水酸
基と第二アミノ基とを有し、該第二アミノ基は結合炭素
原子を含めて炭素数2以上の連鎖を有する基に結合した
N原子を有するヒンダードアミン(A)(但し、二以上
のアミノ基を有するものを除く)の水溶液と大気圧下の
燃焼排ガスとを接触させることを特徴とする燃焼排ガス
中の二酸化炭素の除去方法、(2)前記ヒンダードアミ
ン(A)が2−メチルアミノ−エタノールまたは2−エ
チルアミノエタノールであることを特徴とする前記
(1)の燃焼排ガス中の二酸化炭素の除去方法、(3)
ジ−非置換アルキルアミノプロパノール及びジ−非置換
アルキルアミノブタノールからなる群から選ばれるヒン
ダードアミン(B)の水溶液と大気圧下の燃焼排ガスと
を接触させることを特徴とする燃焼排ガス中の二酸化炭
素の除去方法、及び(4)前記ヒンダードアミン(B)
が3−ジエチルアミノ−1−プロパノールであることを
特徴とする前記(3)の燃焼排ガス中の二酸化炭素の除
去方法である。 That is, the present invention relates to (1) alcoholic hydroxyl
And a secondary amino group, wherein the secondary amino group is
Attached to a group having a chain of 2 or more carbon atoms including atoms
Hindered amine having an N atom (A) (however, two or more
With an amino group) and under atmospheric pressure
Combustion exhaust gas characterized by contacting with combustion exhaust gas
A method for removing carbon dioxide from the inside, (2) the hindered ami
(A) is 2-methylamino-ethanol or 2-E
The above, wherein the amino acid is tylaminoethanol.
(1) Method for removing carbon dioxide in combustion exhaust gas, (3)
Di-unsubstituted alkylaminopropanol and di-unsubstituted
Hinnes selected from the group consisting of alkylaminobutanols
Aqueous solution of dadoamine (B) and flue gas under atmospheric pressure
Carbon dioxide in flue gas characterized by contacting
Method for removing element, and (4) the hindered amine (B)
Is 3-diethylamino-1-propanol.
Removal of carbon dioxide in combustion exhaust gas according to the above (3)
It is a method of leaving.
【0016】[0016]
【作用】本発明で用いられるヒンダードアミンはいずれ
も分子内にアルコール性の水酸基を有する。アルコール
性の水酸基は、分子内に1個有することが好ましい。さ
らに、ヒンダードアミンの分子量は150以下であるも
のが所定濃度の単位溶液当たりのCO2 の吸収能力の点
から好ましい。The hindered amine used in the present invention has an alcoholic hydroxyl group in the molecule. The alcoholic hydroxyl group preferably has one in the molecule. Further, the molecular weight of the hindered amine is preferably 150 or less from the viewpoint of the ability to absorb CO 2 per unit solution having a predetermined concentration.
【0017】本発明で用いるヒンダードアミンのうち、
(A)アルコール性水酸基と第二アミノ基とを有し、該
第二アミノ基は結合炭素原子を含めて炭素数2以上の連
鎖を有する基に結合したN原子を有する化合物である。
この化合物において、結合炭素原子を含めて炭素数2以
上の連鎖を有する基としては、例えば通常炭素数2〜5
の水酸基置換アルキル基好ましくは炭素数2〜3の水酸
基置換されてもよいアルキル基である。 Among the hindered amines used in the present invention,
(A) having an alcoholic hydroxyl group and a secondary amino group,
Secondary amino groups are those having 2 or more carbon atoms, including the bonding carbon atom.
A compound having an N atom bonded to a group having a chain.
In this compound, the number of carbon atoms is 2 or more including the bonding carbon atom.
Examples of the above group having a chain include, for example, those having usually 2 to 5 carbon atoms.
A hydroxyl-substituted alkyl group, preferably a hydroxyl group having 2 to 3 carbon atoms
It is an alkyl group which may be substituted.
【0018】この(A)に属する化合物としては、2−
エチルアミノエタノール、2−メチルアミノエタノー
ル、2−プロピルアミノエタノール、2−イソプロピル
アミノエタノール、1−エチルアミノエタノール、1−
メチルアミノエタノール、1−プロピルアミノエタノー
ル、1−イソプロピルアミノエタノール等を例示するこ
とができ、中でも2−エチルアミノエタノール〔EAE
と略記〕、2−メチルアミノエタノール〔MAEと略
記〕を用いることが好ましい。[0018] Examples of the compounds belonging to (A) of this, 2 -
Et Chiruami Noe pentanol, 2 - main Chiruami Noe Tano <br/> le, 2 - flop Ropiruami Noe pentanol, 2 - b an isopropyl <br/> Ami Noe pentanol, 1 - d Chiruami Noe pentanol, 1 -
Main Chiruami Noe pentanol, 1 - flop Ropiruami Noe Tano <br/> le, 1 - Lee Sopuropiruami Noe ethanol or the like can be exemplified, among others 2 - d Chiruami Noe ethanol [EAE
Abbreviated], 2 - is preferably used main Chiruami Noe methanol [MAE abbreviated].
【0019】本発明で用いるヒンダードアミンのうち、
(B)はジ−非置換アルキルアミノプロパノールまたは
ジ−非置換アルキルアミノブタノールである。これらの
化合物において、2個の非置換アルキル基としては互い
に同一または異なっていても良く、メチル基、エチル
基、プロピル基、イソプロピル基などが挙げられる。Among the hindered amines used in the present invention,
(B) is di-unsubstituted alkylaminopropanol or
Di-unsubstituted alkylaminobutanol. In these compounds, the two unsubstituted alkyl groups may be the same or different from each other and include a methyl group, an ethyl group, a propyl group, an isopropyl group and the like.
【0020】このような化合物としては、1−ジエチル
アミノ−2−プロパノール、3−ジエチルアミノ−1−
プロパノール等を例示することができる。 Such compounds include 1-diethyl
Amino-2-propanol, 3-diethylamino-1-
Propanol and the like can be exemplified.
【0021】本発明で用いられる、上記した群から選ば
れるヒンダードアミンは各単独で用いられるほか、混合
して用いることも可能である。また吸収液として用いら
れるヒンダードアミン水溶液の濃度は、ヒンダードアミ
ンの種類にもよるが、通常25〜65重量%である。燃
焼排ガスとの接触時のヒンダードアミン水溶液の温度は
通常30〜70℃の範囲である。The hindered amines selected from the above-mentioned groups used in the present invention can be used alone or in combination. The concentration of the hindered amine aqueous solution used as the absorbing solution is usually 25 to 65% by weight, though it depends on the kind of the hindered amine. The temperature of the hindered amine aqueous solution at the time of contact with the combustion exhaust gas is usually in the range of 30 to 70 ° C.
【0022】またヒンダードアミン水溶液には、必要に
応じて腐蝕防止剤、ヒンダードアミンの劣化防止剤等が
加えられる。Further, a corrosion inhibitor, a hindered amine deterioration inhibitor and the like are added to the hindered amine aqueous solution as required.
【0023】さらに本発明における大気圧下とは燃焼排
ガスを供給するためブロア等を作用させる程度の大気圧
近傍の圧力範囲は含まれるものである。Further, the term "atmospheric pressure" in the present invention includes a pressure range near atmospheric pressure at which a blower or the like acts to supply combustion exhaust gas.
【0024】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは特に限定されないが、その
一例について図1によって説明する。図1では主要設備
のみ示し、付属設備は省略した。The process that can be employed in the method of the present invention for removing CO 2 from flue gas is not particularly limited, but one example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown, and the auxiliary equipment is omitted.
【0025】図1において、1は脱CO2 塔、2は下部
充填部、3は上記充填部またはトレイ、4は脱CO2 塔
燃焼排ガス供給口、5は脱CO2 燃焼排ガス排出口、6
は吸収液供給口、7はノズル、8は必要に応じて設けら
れる燃焼排ガス冷却器、9はノズル、10は充填部、1
1は加湿冷却水循環ポンプ、12は補給水供給ライン、
13はCO2 を吸収した吸収液排出ポンプ、14は熱交
換器、15は吸収液再生(以下、「再生」とも略称)
塔、16はノズル、17は下部充填部、18は再生加熱
器(リボイラー)、19は上部充填部、20は還流水ポ
ンプ、21はCO 2 分離器、22は回収CO2 排出ライ
ン、23は再生塔還流冷却器、24はノズル、25は再
生塔還流水供給ライン、26は燃焼排ガス供給ブロア、
27は冷却器、28は再生塔還流水供給口、である。In FIG. 1, reference numeral 1 denotes CO2 removal.TwoTower, 2 at the bottom
Filling unit, 3 is the above filling unit or tray, 4 is CO 2 removalTwoTower
Combustion exhaust gas supply port, 5 de-COTwoFlue gas outlet, 6
Is an absorption liquid supply port, 7 is a nozzle, and 8 is provided as necessary.
9 is a nozzle, 10 is a filling part, 1
1 is a humidification cooling water circulation pump, 12 is a makeup water supply line,
13 is COTwoPump for absorbing liquid absorbed
Exchanger 15 is an absorbent regeneration (hereinafter also abbreviated as "regeneration")
Tower, 16 is a nozzle, 17 is a lower filling section, 18 is regeneration heating
Vessel (reboiler), 19 is the upper filling part, 20 is the reflux water port
Pump, 21 is CO TwoSeparator, 22 is recovered COTwoDischarge line
, 23 is a regenerator cooling condenser, 24 is a nozzle, and 25 is a regenerator.
Live tower reflux water supply line, 26 is a combustion exhaust gas supply blower,
27 is a cooler, and 28 is a recycle tower reflux water supply port.
【0026】図1において、燃焼排ガスは燃焼排ガス供
給ブロア26により燃焼排ガス冷却器8に押し込めら
れ、ノズル9からの加湿冷却水と充填部10で接触し、
加湿冷却され、脱CO2 塔燃焼排ガス供給口4を通って
脱CO2 塔1へ導かれる。燃焼排ガスと接触した加湿冷
却水は燃焼排ガス冷却器8の下部に溜り、ポンプ11に
よりノズル9へ循環使用される。加湿冷却水は燃焼排ガ
スを加湿冷却することにより徐々に失われるので、補給
水供給ライン12により補充される。燃焼排ガスを加湿
冷却の状態より、さらに冷却する場合は、加湿冷却水循
環ポンプ11とノズル9との間に熱交換器を置き、加湿
冷却水を冷却して燃焼排ガス冷却器8に供給することに
より可能となる。In FIG. 1, the flue gas is pushed into the flue gas cooler 8 by the flue gas supply blower 26 and comes into contact with the humidified cooling water from the nozzle 9 at the filling section 10.
Is fogging, is directed through a de-CO 2 tower combustion exhaust gas feed port 4 to the de-CO 2 column 1. The humidified cooling water in contact with the combustion exhaust gas accumulates in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished through the makeup water supply line 12. To further cool the combustion exhaust gas from the humidified cooling state, a heat exchanger is placed between the humidified cooling water circulation pump 11 and the nozzle 9 to cool the humidified cooling water and supply it to the combustion exhaust gas cooler 8. It becomes possible.
【0027】脱CO2 塔1に押し込められた燃焼排ガス
はノズル7から供給される所定濃度の吸収液と下部充填
部2で向流接触させられ、燃焼排ガス中のCO2 は吸収
液により吸収除去され、脱CO2 燃焼排ガスは上部充填
部3へと向う。脱CO2 塔1に供給される吸収液はCO
2 を吸収し、その吸収による反応熱のため、通常供給口
6における温度よりも高温となり、CO2 を吸収した吸
収液排出ポンプ13により熱交換器14に送られ、加熱
され、吸収液再生塔15へ導かれる。再生された吸収液
の温度調節は熱交換器14あるいは必要に応じて熱交換
器14と吸収液供給口6の間に設けられる冷却器27に
より行なうことができる。The combustion exhaust gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorption liquid of a predetermined concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the combustion exhaust gas is absorbed and removed by the absorption liquid. Then, the CO 2 -free flue gas is directed to the upper filling section 3. The absorbing solution supplied to the CO 2 removal tower 1 is CO
2 absorbs, because of the heat of reaction due to the absorption becomes a temperature higher than the temperature in the normal supply port 6, it is fed to the heat exchanger 14 by absorbing solution discharge pump 13 that has absorbed CO 2, heated, absorbent regenerator It is led to 15. The temperature of the regenerated absorbent can be adjusted by the heat exchanger 14 or, if necessary, by the cooler 27 provided between the heat exchanger 14 and the absorbent supply port 6.
【0028】吸収液再生塔15では、再生加熱器18に
よる加熱により下部充填部17で吸収液が再生され、熱
交換器14により冷却され脱CO2 塔1へ戻される。吸
収液再生塔15の上部において、吸収液から分離された
CO2 はノズル24より供給される還流水と上部充填部
19で接触し、再生塔還流冷却器23により冷却され、
CO2 分離器21にてCO2 に同伴した水蒸気が凝縮し
た還流水と分離され、回収CO2 排出ライン22よりC
O2 回収工程へ導かれる。還流水の一部は還流水ポンプ
20で、大部分は吸収液再生塔15へ還流され、一部は
再生塔還流水供給ライン25を経て脱CO2 塔1の再生
塔還流水供給口28に供給される。この再生塔還流水に
は微量の吸収液が含まれているので、脱CO2 塔1の上
部充填部3で排ガスと接触し、排ガス中に含まれる微量
のCO2 の除去に貢献する。In the absorption liquid regeneration tower 15, the absorption liquid is regenerated in the lower filling section 17 by heating by the regeneration heater 18, cooled by the heat exchanger 14 and returned to the CO 2 removal tower 1. In the upper part of the absorption liquid regeneration tower 15, the CO 2 separated from the absorption liquid comes into contact with the reflux water supplied from the nozzle 24 at the upper filling section 19, and is cooled by the regeneration tower reflux cooler 23,
In the CO 2 separator 21, water vapor accompanying the CO 2 is separated from the condensed reflux water, and the recovered CO 2 is discharged from the CO 2 discharge line 22.
It is led to the O 2 recovery step. A part of the reflux water is refluxed by the reflux water pump 20 and most of the reflux water is returned to the absorbent regeneration tower 15, and a part of the reflux water is supplied to the regeneration tower reflux water supply port 28 of the CO 2 removal tower 1 through the regeneration tower reflux water supply line 25. Supplied. Since the regenerated tower reflux water contains a trace amount of the absorbing solution, it comes into contact with the exhaust gas at the upper filling section 3 of the CO 2 removal tower 1 and contributes to the removal of the trace amount of CO 2 contained in the exhaust gas.
【0029】[0029]
【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例、比較例)恒温槽内に設置したガラス製反応容
器(フラスコ)にヒンダードアミンの30重量%水溶液
からなる吸収液50mlを入れ、温度40℃で攪拌下、
該フラスコに混合ガス(試験ガス)を、大気圧下1リッ
トル/分の流速で通した。試験ガスはCO2 10モル
%,O2 3モル%,N2 87モル%の組成を有する40
℃のモデル燃焼排ガス(LNG焚き燃焼排ガス相当)を
用いた。試験ガスを通し続け、出入りガスのCO2 濃度
が等しくなった時点で、吸収液に含まれるCO2 をCO
2 分析計(全有機炭素計)を用いて測定し、CO2 飽和
吸収量を求めた。同様の試験を温度60℃、80℃で行
った。また、比較としてMEA30重量%水溶液を用
い、同様に行った。The present invention will be described below in detail with reference to examples. (Examples and Comparative Examples) A glass reaction vessel (flask) placed in a thermostat was charged with 50 ml of an absorbing solution comprising a 30% by weight aqueous solution of hindered amine, and stirred at a temperature of 40 ° C.
A mixed gas (test gas) was passed through the flask at a flow rate of 1 liter / min under atmospheric pressure. Test gas CO 2 10 mol%, O 2 3 mol%, 40 having a composition of N 2 87 mole%
C. model combustion exhaust gas (equivalent to LNG-fired combustion exhaust gas) was used. The test gas was continuously passed, and when the CO 2 concentration of the incoming and outgoing gas became equal, the CO 2 contained in the absorbing solution was changed to CO 2
The measurement was performed using two analyzers (total organic carbon meter) to determine the CO 2 saturated absorption amount. Similar tests were conducted at temperatures of 60 ° C and 80 ° C. As a comparison, a 30% by weight aqueous solution of MEA was used in the same manner.
【0030】得られた結果を表1(40℃における結
果)及び図2に示す。図2の縦軸の単位はNm3 CO2
/m3 水溶液であり、横軸は温度(℃)を示す。The results obtained are shown in Table 1 (results at 40 ° C.) and FIG. The unit of the vertical axis in FIG. 2 is Nm 3 CO 2
/ M 3 aqueous solution, and the horizontal axis indicates temperature (° C.).
【0031】またフラスコ出口のガス中のCO2 濃度と
通気時間との関係グラフから、通気開始時における接線
傾きを求め、吸収液のCO2 初期吸収速度を同濃度のM
EA水溶液との比で求めた。From the graph of the relationship between the CO 2 concentration in the gas at the outlet of the flask and the aeration time, the tangent slope at the start of the aeration is determined, and the initial absorption rate of the CO 2 of the absorbing solution is adjusted to the same concentration of M
It was determined by the ratio to the EA aqueous solution.
【0032】[0032]
【表1】 [Table 1]
【0033】表1から明らかなように、本発明の吸収液
であるヒンダードアミン水溶液の初期吸収速度は予期し
た程は低くなく、MEAと同等またはやや小さい程度で
ある。吸収速度は吸収促進剤の添加により向上できる可
能性がある。 一方、ヒンダードアミン単位モル当たり
のCO2 吸収量は、いずれもMEAよりも多い。なお、
単位吸収液容量当たりの吸収量はヒンダードアミンの種
類にもよるが、MEAよりもやや小さい程度である。[0033] As apparent from Table 1, the initial absorption rate of the aqueous hindered amine solution is the absorption solution of the present invention is not lower the extent that synchronized pre, equivalent or degree slightly smaller and MEA. The absorption rate may be improved by the addition of an absorption enhancer. On the other hand, the amount of CO 2 absorbed per unit mole of hindered amine is larger than that of MEA. In addition,
Absorption per unit absorbent liquid volume depends on the kind of hindered amine is the degree slightly smaller than M EA.
【0034】また図2から、本発明のヒンダードアミン
を用いた場合は、MEAの場合に比較して、吸収液の温
度の上昇によるCO2 吸収量の減少が大きくなっている
ことが分かる。これは吸収液の再生において、MEAを
用いる場合よりも熱エネルギーを節約できることを示し
ている。FIG. 2 shows that when the hindered amine of the present invention is used, the decrease in the amount of CO 2 absorbed by the increase in the temperature of the absorbing solution is larger than that in the case of MEA. This indicates that thermal energy can be saved in the regeneration of the absorbing solution as compared with the case where the MEA is used.
【0035】[0035]
【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスに特定のヒンダードアミン
水溶液を吸収液として用いることにより、CO2 の吸収
速度の点ではMEAと同等あるいはやや低下する程度
で、吸収能力や吸収液の再生エネルギの観点でCO2 を
効率よく除去できることとなった。As described in detail above, the use of a specific hindered amine aqueous solution as an absorbent in flue gas under atmospheric pressure by the method of the present invention makes it possible to reduce the CO 2 absorption rate to the same or slightly lower than MEA. In this way, CO 2 can be efficiently removed from the viewpoint of the absorption capacity and the regeneration energy of the absorbing solution.
【図1】本発明で採用できる工程の一例の説明図。FIG. 1 is a diagram illustrating an example of a process that can be employed in the present invention.
【図2】吸収液濃度30重量%における吸収量(縦軸)
と温度(横軸)の関係を示す図表。FIG. 2 Amount of absorption at an absorption liquid concentration of 30% by weight (vertical axis)
4 is a table showing the relationship between temperature and the temperature (horizontal axis).
1 脱CO2 塔 15 吸収液再生塔 18 再生加熱器1 CO 2 removal tower 15 Absorbent regeneration tower 18 Regeneration heater
フロントページの続き (72)発明者 下條 繁 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 唐崎 睦範 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社 本社内 (72)発明者 飯島 正樹 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社 本社内 (72)発明者 瀬戸 徹 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 光岡 薫明 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 平1−231921(JP,A) 特開 昭53−100171(JP,A) 特開 昭52−63171(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/62 Continued on the front page (72) Inventor Shigeru Shimojo 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Inside Kansai Electric Power Co., Inc. (72) Inventor Mutsunori Karasaki 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Company headquarters (72) Inventor Masaki Iijima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd.Headquarters (72) Inventor Toru Seto 4-622 Kanonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Company Hiroshima Research Laboratory (72) Inventor Kaoru Mitsuoka 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (56) References JP-A-1-231921 (JP, A) JP-A-53-100171 (JP, A) JP-A-52-63171 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53/62
Claims (4)
有し、該第二アミノ基は結合炭素原子を含めて炭素数2
以上の連鎖を有する基に結合したN原子を有するヒンダ
ードアミン(A)(但し、二以上のアミノ基を有するも
のを除く)の水溶液と大気圧下の燃焼排ガスとを接触さ
せることを特徴とする燃焼排ガス中の二酸化炭素の除去
方法。1. A have A alcohol hydroxyl group and a secondary amino group, carbon atoms said second amino groups, including the binding carbon atom 2
More having a N atom bound to a group having a chain Ruhi Sunda <br/> Doamin (A) (excluding those having two or more amino groups) and a combustion exhaust gas under aqueous and atmospheric pressure A method for removing carbon dioxide from combustion exhaust gas, which comprises bringing the carbon dioxide into contact.
ルアミノ−エタノールまたは2−エチルアミノエタノー
ルであることを特徴とする請求項1記載の燃焼排ガス中
の二酸化炭素の除去方法。2. The method according to claim 1, wherein the hindered amine (A) is 2-methyl
Ruamino-ethanol or 2-ethylaminoethanol
The method for removing carbon dioxide in combustion exhaust gas according to claim 1, wherein
及びジ−非置換アルキルアミノブタノールからなる群か
ら選ばれるヒンダードアミン(B)の水溶液と大気圧下
の燃焼排ガスとを接触させることを特徴とする燃焼排ガ
ス中の二酸化炭素の除去方法。 3. A di-unsubstituted alkylaminopropanol.
And di-unsubstituted alkylaminobutanols?
Aqueous solution of hindered amine (B) selected under atmospheric pressure
Combustion exhaust gas, which is brought into contact with the combustion exhaust gas
How to remove carbon dioxide in wastewater.
チルアミノ−1−プロパノールであることを特徴とする
請求項3記載の燃焼排ガス中の二酸化炭素の除去方法。 4. The method according to claim 1, wherein the hindered amine (B) is 3-die.
Characterized by being tylamino-1-propanol
The method for removing carbon dioxide from combustion exhaust gas according to claim 3.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93103027A EP0558019B2 (en) | 1992-02-27 | 1993-02-26 | Method for removing carbon dioxide from combustion exhaust gas |
KR1019930002744A KR0123107B1 (en) | 1992-02-27 | 1993-02-26 | Removal method of carbon dioxide in combustion exhaust gas |
DE69306829T DE69306829T3 (en) | 1992-02-27 | 1993-02-26 | Process for removing carbon dioxide from combustion exhaust gases |
DK93103027T DK0558019T4 (en) | 1992-02-27 | 1993-02-26 | Procedure for Removing Carbon Dioxide from Combustion Exhaust Gas |
US08/867,988 US6036931A (en) | 1992-02-27 | 1997-06-03 | Method for removing carbon dioxide from combustion exhaust gas |
US09/187,168 US6500397B1 (en) | 1992-02-27 | 1998-11-06 | Method for removing carbon dioxide from combustion exhaust gas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4080792 | 1992-02-27 | ||
JP4-40807 | 1992-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05301023A JPH05301023A (en) | 1993-11-16 |
JP2871334B2 true JP2871334B2 (en) | 1999-03-17 |
Family
ID=12590915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4246395A Expired - Lifetime JP2871334B2 (en) | 1992-02-27 | 1992-09-16 | Method of removing carbon dioxide from flue gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2871334B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009001804A1 (en) | 2007-06-28 | 2008-12-31 | Research Institute Of Innovative Technology For The Earth | Method for efficiently recovering carbon dioxide in gas |
WO2011080838A1 (en) | 2009-12-28 | 2011-07-07 | バブコック日立株式会社 | Absorbing solution and recovery method for carbon dioxide |
WO2011121633A1 (en) | 2010-03-29 | 2011-10-06 | 株式会社 東芝 | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
WO2012002394A1 (en) | 2010-06-30 | 2012-01-05 | 財団法人地球環境産業技術研究機構 | Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency |
WO2012169634A1 (en) | 2011-06-09 | 2012-12-13 | 旭化成株式会社 | Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber |
WO2013118819A1 (en) | 2012-02-08 | 2013-08-15 | 公益財団法人地球環境産業技術研究機構 | Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same |
US8545783B2 (en) | 2011-05-30 | 2013-10-01 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
WO2014129400A1 (en) | 2013-02-25 | 2014-08-28 | 公益財団法人地球環境産業技術研究機構 | Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same |
US9409119B2 (en) | 2010-12-22 | 2016-08-09 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
EP3078409A1 (en) | 2015-04-09 | 2016-10-12 | Kabushiki Kaisha Toshiba | Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas |
US9724642B2 (en) | 2013-12-03 | 2017-08-08 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal device, and acid gas removal method |
US10717038B2 (en) | 2015-03-26 | 2020-07-21 | Research Institute Of Innovative Technology For The Earth | Absorbing solution for separating and capturing carbon dioxide, and method for separating and capturing carbon dioxide in which same is used |
US10850227B2 (en) | 2017-11-28 | 2020-12-01 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100418627B1 (en) * | 2001-10-29 | 2004-02-11 | 한국전력공사 | Absorbent for Separating Carbon Dioxide from Gas Mixture |
DE102004011429A1 (en) * | 2004-03-09 | 2005-09-29 | Basf Ag | Process for removing carbon dioxide from gas streams with low carbon dioxide partial pressures |
JP4621575B2 (en) | 2005-10-17 | 2011-01-26 | メタウォーター株式会社 | Gas recovery method and apparatus |
ES2601386T3 (en) * | 2006-05-18 | 2017-02-15 | Basf Se | Carbon dioxide absorption agents with reduced regeneration energy demand |
JP5558036B2 (en) | 2008-09-04 | 2014-07-23 | 株式会社東芝 | Carbon dioxide recovery steam power generation system |
AU2010226936B2 (en) | 2009-10-07 | 2012-03-15 | Kabushiki Kaisha Toshiba | CO2 recovery system and CO2 absorption liquid |
DE102010004070A1 (en) * | 2010-01-05 | 2011-07-07 | Uhde GmbH, 44141 | CO2 removal from gases by means of aqueous amine solution with the addition of a sterically hindered amine |
US8795618B2 (en) * | 2010-03-26 | 2014-08-05 | Babcock & Wilcox Power Generation Group, Inc. | Chemical compounds for the removal of carbon dioxide from gases |
WO2011121635A1 (en) * | 2010-03-29 | 2011-10-06 | 株式会社 東芝 | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
JP5659127B2 (en) * | 2010-12-22 | 2015-01-28 | 株式会社東芝 | Acid gas absorbent, acid gas removal method, and acid gas removal apparatus |
CN103084040B (en) * | 2011-10-28 | 2015-09-23 | 中国石油化工股份有限公司 | A kind of method of absorbing and removing carbon dioxide |
CA2920460C (en) | 2013-08-06 | 2020-03-10 | Chiyoda Corporation | Hydrogen supply system and hydrogen supply method |
JP6925936B2 (en) * | 2017-10-31 | 2021-08-25 | 三菱重工エンジニアリング株式会社 | Acid gas removal device and acid gas removal method |
JPWO2021117623A1 (en) | 2019-12-10 | 2021-06-17 | ||
JP2021124074A (en) * | 2020-02-06 | 2021-08-30 | 株式会社東芝 | Power generation method and power generation system |
WO2023243427A1 (en) | 2022-06-14 | 2023-12-21 | 戸田工業株式会社 | Composite iron oxide particle powder and method for manufacturing same |
JP7479548B1 (en) | 2022-11-02 | 2024-05-08 | artience株式会社 | Carbon dioxide absorption solution and carbon dioxide separation and recovery method |
-
1992
- 1992-09-16 JP JP4246395A patent/JP2871334B2/en not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8419831B2 (en) | 2007-06-28 | 2013-04-16 | Research Institute Of Innovative Technology For The Earth | Method for efficiently recovering carbon dioxide in gas |
WO2009001804A1 (en) | 2007-06-28 | 2008-12-31 | Research Institute Of Innovative Technology For The Earth | Method for efficiently recovering carbon dioxide in gas |
EP2662125A1 (en) | 2007-06-28 | 2013-11-13 | Research Institute Of Innovative Technology For The Earth | Method for efficiently recovering carbon dioxide in gas |
US8741245B2 (en) | 2009-12-28 | 2014-06-03 | Babcock-Hitachi Kabushiki Kaisha | Carbon dioxide-absorbing solution and method of recovering carbon dioxide |
WO2011080838A1 (en) | 2009-12-28 | 2011-07-07 | バブコック日立株式会社 | Absorbing solution and recovery method for carbon dioxide |
US8506913B2 (en) | 2010-03-29 | 2013-08-13 | Kabushiki Kaisha Toshiba | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
WO2011121633A1 (en) | 2010-03-29 | 2011-10-06 | 株式会社 東芝 | Acidic gas absorbent, acidic gas removal device, and acidic gas removal method |
WO2012002394A1 (en) | 2010-06-30 | 2012-01-05 | 財団法人地球環境産業技術研究機構 | Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency |
US9409119B2 (en) | 2010-12-22 | 2016-08-09 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
US8545783B2 (en) | 2011-05-30 | 2013-10-01 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
US9399192B2 (en) | 2011-06-09 | 2016-07-26 | Asahi Kasei Kabushiki Kaisha | Carbon dioxide absorber and carbon dioxide separation/recovery method using the absorber |
WO2012169634A1 (en) | 2011-06-09 | 2012-12-13 | 旭化成株式会社 | Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber |
US9636628B2 (en) | 2012-02-08 | 2017-05-02 | Research Institute Of Innovative Technology For The Earth | Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same |
WO2013118819A1 (en) | 2012-02-08 | 2013-08-15 | 公益財団法人地球環境産業技術研究機構 | Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same |
KR20150121152A (en) | 2013-02-25 | 2015-10-28 | 신닛테츠스미킨 카부시키카이샤 | Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same |
WO2014129400A1 (en) | 2013-02-25 | 2014-08-28 | 公益財団法人地球環境産業技術研究機構 | Liquid for absorbing and collecting carbon dioxide in gas, and method for collecting carbon dioxide with use of same |
US9724642B2 (en) | 2013-12-03 | 2017-08-08 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal device, and acid gas removal method |
US10717038B2 (en) | 2015-03-26 | 2020-07-21 | Research Institute Of Innovative Technology For The Earth | Absorbing solution for separating and capturing carbon dioxide, and method for separating and capturing carbon dioxide in which same is used |
EP3078409A1 (en) | 2015-04-09 | 2016-10-12 | Kabushiki Kaisha Toshiba | Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas |
US10850227B2 (en) | 2017-11-28 | 2020-12-01 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
US11278842B2 (en) | 2017-11-28 | 2022-03-22 | Kabushiki Kaisha Toshiba | Acid gas absorbent, acid gas removal method, and acid gas removal device |
Also Published As
Publication number | Publication date |
---|---|
JPH05301023A (en) | 1993-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2871334B2 (en) | Method of removing carbon dioxide from flue gas | |
EP0880990B1 (en) | Process for removing carbon dioxide from gases | |
JP2895325B2 (en) | Method for removing carbon dioxide in flue gas | |
EP0558019B2 (en) | Method for removing carbon dioxide from combustion exhaust gas | |
US5700437A (en) | Method for removing carbon dioxide from combustion exhaust gas | |
KR0123107B1 (en) | Removal method of carbon dioxide in combustion exhaust gas | |
JP2882950B2 (en) | Method for removing carbon dioxide in flue gas | |
JP3197183B2 (en) | Method for removing carbon dioxide in flue gas | |
JP3761960B2 (en) | Method for removing carbon dioxide in gas | |
JP2871335B2 (en) | Method for removing carbon dioxide in flue gas | |
JP3197173B2 (en) | Method of removing carbon dioxide from flue gas | |
JP2871422B2 (en) | Method for removing carbon dioxide in flue gas | |
JP3276527B2 (en) | How to remove carbon dioxide in gas | |
JP3233809B2 (en) | Method for removing carbon dioxide in flue gas | |
JP2871447B2 (en) | Method for removing carbon dioxide in flue gas | |
JP3426685B2 (en) | Method for removing carbon dioxide in flue gas | |
JPH08257353A (en) | Process for removing carbon dioxide in combustion exhaust gas | |
JPH07313840A (en) | Method for removing carbon dioxide in waste combustion gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080108 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090108 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100108 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110108 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110108 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120108 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 14 |