[go: up one dir, main page]

JP2839066B2 - Heat pump defrost system - Google Patents

Heat pump defrost system

Info

Publication number
JP2839066B2
JP2839066B2 JP26327093A JP26327093A JP2839066B2 JP 2839066 B2 JP2839066 B2 JP 2839066B2 JP 26327093 A JP26327093 A JP 26327093A JP 26327093 A JP26327093 A JP 26327093A JP 2839066 B2 JP2839066 B2 JP 2839066B2
Authority
JP
Japan
Prior art keywords
defrosting
refrigerant
pressure gas
gas refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26327093A
Other languages
Japanese (ja)
Other versions
JPH07120118A (en
Inventor
駸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP26327093A priority Critical patent/JP2839066B2/en
Publication of JPH07120118A publication Critical patent/JPH07120118A/en
Application granted granted Critical
Publication of JP2839066B2 publication Critical patent/JP2839066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機から送出される
高圧ガス冷媒を凝縮させて加熱対象に放熱する複数の凝
縮器と、それら凝縮器から送出される凝縮冷媒を蒸発さ
せて吸熱する蒸発器と、前記圧縮機から送出される高圧
ガス冷媒を除霜用の熱媒体として、着霜状態となった前
記蒸発器を除霜する除霜手段とを設け、前記除霜手段に
対する高圧ガス冷媒の供給を停止して前記圧縮機からの
高圧ガス冷媒を凝縮器側に供給する通常運転状態と、凝
縮器側への高圧ガス冷媒供給量を減少させて前記除霜手
段に対し前記圧縮機からの高圧ガス冷媒を分流供給する
除霜運転状態とに、冷媒経路を切り換える切換手段を設
けたヒートポンプの除霜システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of condensers for condensing high-pressure gas refrigerant sent from a compressor and radiating heat to an object to be heated, and for evaporating the condensed refrigerant sent from these condensers to absorb heat. An evaporator and a defrosting means for defrosting the frosted evaporator using a high-pressure gaseous refrigerant sent from the compressor as a defrosting heat medium are provided. A normal operation state in which the supply of the refrigerant is stopped to supply the high-pressure gas refrigerant from the compressor to the condenser side, and the supply amount of the high-pressure gas refrigerant to the condenser side is reduced to reduce the amount of the high-pressure gas refrigerant supplied to the compressor. The present invention relates to a defrosting system for a heat pump provided with a switching means for switching a refrigerant path to a defrosting operation state in which a high-pressure gas refrigerant supplied from a diverter is supplied.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプの除霜シス
テムにおいて、除霜手段に対して供給される高圧ガス冷
媒は、複数の凝縮器のうちのいずれかへの高圧ガス冷媒
の供給を順番に停止させて、その分の冷媒を、除霜手段
に対して供給するように構成されていた。
2. Description of the Related Art Conventionally, in this type of heat pump defrosting system, high-pressure gas refrigerant supplied to a defrosting means is supplied to one of a plurality of condensers in order. It was configured to stop and supply the corresponding amount of refrigerant to the defrosting means.

【0003】例えば、複数の凝縮器と複数の蒸発器と
で、複数の独立したヒートポンプ回路が構成され、除霜
運転を行うときには、そのうちのいずれか一つのヒート
ポンプ回路が順番に選択されて、選択されたヒートポン
プ回路の凝縮器への高圧ガス冷媒が、除霜手段に対して
供給されるように構成されていた。
For example, a plurality of condensers and a plurality of evaporators constitute a plurality of independent heat pump circuits, and when performing a defrosting operation, any one of the heat pump circuits is sequentially selected and selected. The high pressure gas refrigerant to the condenser of the heat pump circuit is supplied to the defrosting means.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術によれば、除霜運転を行うときには、加熱対象側
からの運転の要求や加熱対象に対する放熱の必要性に関
係なく、上記選択された凝縮器の運転が停止されるの
で、加熱対象側からの運転の要求や放熱の必要性(以
下、単に「放熱必要度」と言う)が満たされなくなる不
都合が生じていた。
However, according to the above prior art, when the defrosting operation is performed, the above-mentioned selected condensation is performed regardless of the operation request from the object to be heated and the necessity of heat radiation to the object to be heated. Since the operation of the vessel is stopped, there is a problem that the demand for the operation from the side to be heated and the necessity of heat radiation (hereinafter, simply referred to as “radiation necessity”) are not satisfied.

【0005】特に、空調装置などのヒートポンプの除霜
システムの場合には、放熱必要度としての暖房の要求や
加熱温調の必要性などに関係なく、順番に選択された空
調対象域の暖房運転が勝手に停止されてしまうので、ユ
ーザーの暖房要求に対する空調装置としての応答性能が
著しく悪化する不都合があった。
[0005] In particular, in the case of a defrosting system for a heat pump such as an air conditioner, the heating operation of the air conditioning target area selected in order is performed irrespective of the necessity of heating as the degree of heat radiation and the necessity of heating temperature control. Is stopped on its own, so that the response performance of the air conditioner to the user's heating request is significantly deteriorated.

【0006】本発明の目的は、上記従来欠点を解消する
点にある。
An object of the present invention is to eliminate the above-mentioned conventional disadvantages.

【0007】[0007]

【課題を解決するための手段】本発明によるヒートポン
プの除霜システムの第一の特徴構成は、前記加熱対象の
加熱状態に基づき前記凝縮器夫々の放熱必要度を判定す
る判定手段と、通常運転状態から除霜運転状態への切り
換えによる凝縮器側の高圧ガス冷媒減少において、前記
凝縮器夫々の冷媒減少率の比を調整する調整手段と、前
記の除霜運転状態において前記判定手段の判定情報に基
づき、放熱必要度の高い前記凝縮器の冷媒減少率が放熱
必要度の低い前記凝縮器の冷媒減少率よりも小さくなる
ように、前記調整手段を制御する制御手段とを設けた点
にある。
According to a first aspect of the present invention, there is provided a heat pump defrosting system comprising: a judging means for judging a necessity of heat radiation of each of the condensers based on a heating state of the object to be heated; Adjusting means for adjusting the ratio of the refrigerant reduction rate of each of the condensers in the reduction of the high-pressure gas refrigerant on the condenser side by switching from the state to the defrosting operation state, and determination information of the determination means in the defrosting operation state And control means for controlling the adjusting means so that the refrigerant reduction rate of the condenser having a high heat radiation necessity is smaller than the refrigerant reduction rate of the condenser having a low heat radiation necessity. .

【0008】第二の特徴構成は、通常運転状態から除霜
運転状態への切り換えによる凝縮器側の高圧ガス冷媒減
少において、前記凝縮器夫々の冷媒減少率の比を調整す
る調整手段と、前記の除霜運転状態において、前記凝縮
器夫々の冷媒減少率の比が設定比になるように前記調整
手段を制御する制御手段と、前記設定比を人為指令に応
じて変更する変更手段とを設けた点にある。
[0008] A second characteristic configuration is that, when the high-pressure gas refrigerant on the condenser side is reduced by switching from the normal operation state to the defrost operation state, adjusting means for adjusting the ratio of the refrigerant reduction rate of each of the condensers, In the defrosting operation state, control means for controlling the adjusting means so that the ratio of the refrigerant reduction rate of each of the condensers becomes a set ratio, and changing means for changing the set ratio according to an artificial command are provided. It is in the point.

【0009】第三の特徴構成は、通常運転状態から除霜
運転状態への切り換えによる凝縮器側の高圧ガス冷媒減
少において、前記凝縮器夫々の冷媒減少率の比を常に所
定の一定比に規定する規定手段を設けた点にある。
A third characteristic configuration is that when the high pressure gas refrigerant on the condenser side is reduced by switching from the normal operation state to the defrosting operation state, the ratio of the refrigerant reduction rate of each of the condensers is always specified to a predetermined constant ratio. That is, a defining means is provided.

【0010】[0010]

【作用】本発明の第一の特徴構成によれば、除霜運転状
態において凝縮器夫々の冷媒減少率の比を調整する調整
手段が、放熱必要度の高い凝縮器の冷媒減少率が放熱必
要度の低い凝縮器の冷媒減少率よりも小さくなるように
制御されるから、夫々の凝縮器の放熱必要度に対する除
霜運転時の放熱量の低下を、極力抑制することができ
る。
According to the first aspect of the present invention, in the defrosting operation state, the adjusting means for adjusting the ratio of the refrigerant reduction rate of each of the condensers requires the refrigerant reduction rate of the condenser having a high heat radiation necessity to be determined. Since the refrigerant is controlled so as to be smaller than the refrigerant reduction rate of the condenser having a low degree, a decrease in the amount of heat radiation during the defrost operation with respect to the degree of heat radiation of each condenser can be suppressed as much as possible.

【0011】第二の特徴構成によれば、除霜運転状態に
おいて凝縮器夫々の冷媒減少率の比を調整する調整手段
が、凝縮器夫々の冷媒減少率の比が設定比になるように
制御され、設定比を人為指令に応じて変更する変更手段
が設けられているから、夫々の凝縮器の放熱必要度に応
じた人為指令を変更手段に与えることによって、夫々の
凝縮器の放熱必要度に対する除霜運転時の放熱量の低下
を、極力抑制することができる。
According to the second characteristic configuration, the adjusting means for adjusting the ratio of the refrigerant reduction rate of each condenser in the defrosting operation state controls the ratio of the refrigerant reduction rate of each condenser to the set ratio. In addition, since there is provided changing means for changing the set ratio in accordance with the artificial command, by giving the changing means an artificial command in accordance with the heat dissipation requirement of each condenser, the heat dissipation requirement of each condenser is provided. , A decrease in the amount of heat released during the defrosting operation can be suppressed as much as possible.

【0012】第三の特徴構成によれば、除霜運転状態に
おいて凝縮器夫々の冷媒減少率の比を常に所定の一定比
に規定する規定手段が設けられているから、規定手段に
よって一定比に規定される冷媒減少率の比を、夫々の凝
縮器の放熱必要度に応じて決定することによって、夫々
の凝縮器の放熱必要度に対する除霜運転時の放熱量の低
下を、極力抑制することができる。
[0012] According to the third characteristic configuration, the regulating means for always regulating the ratio of the refrigerant reduction rate of each condenser to a predetermined constant ratio in the defrosting operation state is provided. By determining the ratio of the specified refrigerant reduction rate according to the heat radiation necessity of each condenser, it is possible to minimize the decrease in the heat radiation amount during the defrosting operation with respect to the heat radiation necessity of each condenser. Can be.

【0013】[0013]

【発明の効果】本発明の第一の特徴構成によれば、夫々
の凝縮器の放熱必要度に対する除霜運転時の放熱量の低
下を極力抑制することができるから、除霜運転状態にお
いて凝縮器の放熱必要度が満たされなくなる不都合が解
消されたヒートポンプの除霜システムを提供することが
できる。
According to the first characteristic configuration of the present invention, it is possible to minimize the decrease in the amount of heat radiation during the defrosting operation with respect to the heat radiation necessity of each condenser. It is possible to provide a heat pump defrosting system in which the inconvenience that the heat radiation necessity of the vessel is not satisfied is solved.

【0014】第二の特徴構成によれば、夫々の凝縮器の
放熱必要度に応じた人為指令を変更手段に与えることに
よって、夫々の凝縮器の放熱必要度に対する除霜運転時
の放熱量の低下を極力抑制することができるから、除霜
運転状態において凝縮器の放熱必要度が満たされなくな
る不都合が解消されたヒートポンプの除霜システムを提
供することができる。
[0014] According to the second characteristic configuration, an artificial command corresponding to the necessity of heat radiation of each condenser is given to the changing means, so that the heat radiation amount during the defrosting operation with respect to the heat radiation necessity of each condenser is provided. Since the reduction can be suppressed as much as possible, it is possible to provide a heat pump defrosting system in which the inconvenience that the heat radiation requirement of the condenser is not satisfied in the defrosting operation state is eliminated.

【0015】第三の特徴構成によれば、規定手段によっ
て一定比に規定される冷媒減少率の比を夫々の凝縮器の
放熱必要度に応じて決定することによって、夫々の凝縮
器の放熱必要度に対する除霜運転時の放熱量の低下を極
力抑制することができるから、除霜運転状態において凝
縮器の放熱必要度が満たされなくなる不都合が解消され
たヒートポンプの除霜システムを提供することができ
る。
According to the third characteristic configuration, the ratio of the refrigerant reduction rate defined by the defining means to a fixed ratio is determined according to the degree of need for heat radiation of each condenser. Therefore, it is possible to provide a heat pump defrosting system in which the inconvenience that the heat release requirement of the condenser is not satisfied in the defrosting operation state has been eliminated, since a decrease in the amount of heat radiation during the defrosting operation with respect to the temperature can be suppressed as much as possible. it can.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、セパレート型のヒートポンプ式空調装置
を示し、Uoは室外機、Uaは第一空調対象域Zaに対
する第一室内機、Ubは第二空調対象域Zbに対する第
二室内機、Ucは第三空調対象域Zcに対する第三室内
機である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a separate type heat pump air conditioner, where Uo is an outdoor unit, Ua is a first indoor unit for a first air conditioning target area Za, Ub is a second indoor unit for a second air conditioning target area Zb, and Uc is a second indoor unit. The third indoor unit for the three air conditioning target areas Zc.

【0017】室外機Uoには、外気OAを吸放熱対象空
気とする2個の室外熱交換器N1及びN2と、その室外
熱交換器N1及びN2に対して外気OAを通風する室外
ファンF1及びF2と、圧縮機Cmpと、アキュムレー
タAcと、オイルセパレータOsと、受液器Rと、室外
熱交換器N1に対する第一膨張弁ex1、及び、室外熱
交換器N2に対する第二膨張弁ex2とが装備されてい
る。
The outdoor unit Uo has two outdoor heat exchangers N1 and N2 that use the outside air OA as the air to be absorbed and released, and an outdoor fan F1 and an outdoor fan F1 that ventilate the outside air OA to the outdoor heat exchangers N1 and N2. F2, the compressor Cmp, the accumulator Ac, the oil separator Os, the receiver R, the first expansion valve ex1 for the outdoor heat exchanger N1, and the second expansion valve ex2 for the outdoor heat exchanger N2. Equipped.

【0018】v1〜v4は、運転モードに応じて冷媒回
路を切り換える切換弁である。切換弁v1及びv3は、
室外熱交換器N1又はN2からの低圧ガス冷媒Rcをア
キュムレータAcを介して圧縮機Cmpに戻す経路に設
けられている。切換弁v2及びv4は、圧縮機Cmpか
らの高圧ガス冷媒Rhを室外熱交換器N1又はN2に供
給する経路に設けられている。
Reference numerals v1 to v4 denote switching valves for switching the refrigerant circuit according to the operation mode. The switching valves v1 and v3 are
The low pressure gas refrigerant Rc from the outdoor heat exchanger N1 or N2 is provided in a path returning to the compressor Cmp via the accumulator Ac. The switching valves v2 and v4 are provided in a path for supplying the high-pressure gas refrigerant Rh from the compressor Cmp to the outdoor heat exchanger N1 or N2.

【0019】第一膨張弁ex1及び第二膨張弁ex2
は、液冷媒Rwが室外熱交換器N1又はN2に向かって
通流するときには、本来の冷媒膨張手段として機能し、
一方、液冷媒Rwが室外熱交換器N1又はN2から離れ
る側に向かって通流するときには、単に流量調整弁とし
て機能するように、切り換え可能に構成されている。
The first expansion valve ex1 and the second expansion valve ex2
Functions as the original refrigerant expansion means when the liquid refrigerant Rw flows toward the outdoor heat exchanger N1 or N2,
On the other hand, when the liquid refrigerant Rw flows toward the side away from the outdoor heat exchanger N1 or N2, it is configured to be switchable so as to simply function as a flow control valve.

【0020】室外熱交換器N1及びN2には、夫々の冷
媒出口温度T1又はT2を検出する温度センサS1及び
S2が設けられている。
The outdoor heat exchangers N1 and N2 are provided with temperature sensors S1 and S2 for detecting the respective refrigerant outlet temperatures T1 and T2.

【0021】roは、オイルセパレータOsで捕捉され
た圧縮機油を、圧縮機Cmpに吸引される低圧ガス冷媒
Rcに合流させて圧縮機Cmp内に戻すオイル戻し管で
ある。
Reference symbol ro denotes an oil return pipe that joins the compressor oil captured by the oil separator Os with the low-pressure gas refrigerant Rc sucked by the compressor Cmp and returns the refrigerant into the compressor Cmp.

【0022】室外機Uoからは、高圧ガス冷媒Rhを室
内機側に送る高圧ガス主管Ghと、室内機側からの低圧
ガス冷媒Rcを室外機Uoに戻す低圧ガス主管Gcと、
液冷媒Rwを流通させる液主管Wとの3管が延出されて
いる。
From the outdoor unit Uo, a high-pressure gas main pipe Gh for sending the high-pressure gas refrigerant Rh to the indoor unit, a low-pressure gas main pipe Gc for returning the low-pressure gas refrigerant Rc from the indoor unit to the outdoor unit Uo,
Three pipes including a liquid main pipe W through which the liquid refrigerant Rw flows are extended.

【0023】第一、第二及び第三室内機Ua,Ub及び
Ucの夫々には、対応空調対象域Za,Zb及びZcへ
の給気SAa,SAb及びSAcを調整する室内熱交換
器Na,Nb及びNcと、それら室内熱交換器Na,N
b,Ncにより調整した給気SAa,SAb,SAcを
対応の空調対象域Za,Zb,Zcへ送給する給気ファ
ンF3とが装備され、第一室内機Uaには、室内熱交換
器Naに対する第三膨張弁Exaが装備され、第二室内
機Ubには、室内熱交換器Nbに対する第四膨張弁Ex
bが装備され、第三室内機Ucには、室内熱交換器Nc
に対する第五膨張弁Excが装備されている。
Each of the first, second and third indoor units Ua, Ub and Uc is provided with an indoor heat exchanger Na for adjusting air supply SAa, SAb and SAc to the corresponding air conditioning target zones Za, Zb and Zc. Nb and Nc and their indoor heat exchangers Na and N
b, Nc, the air supply fan F3 for supplying the air supply SAa, SAb, SAc adjusted to the corresponding air-conditioning target zones Za, Zb, Zc, and the first indoor unit Ua includes an indoor heat exchanger Na. Is equipped with a third expansion valve Exa for the indoor heat exchanger Nb.
b, and the third indoor unit Uc includes an indoor heat exchanger Nc.
Is equipped with a fifth expansion valve Exc.

【0024】v5及びv6は、運転モードに応じて冷媒
回路を切り換える切換弁である。切換弁v5は、高圧ガ
ス主管Ghからの高圧ガス冷媒Rhを室内熱交換器N
a,Nb又はNcに送る高圧ガス分岐管rhに設けられ
ている。切換弁v6は、室内熱交換器Na,Nb,Nc
からの低圧ガス冷媒Rcを低圧ガス主管Gcへ戻す低圧
ガス還流管rcに設けられている。
V5 and v6 are switching valves for switching the refrigerant circuit according to the operation mode. The switching valve v5 transfers the high-pressure gas refrigerant Rh from the high-pressure gas main pipe Gh to the indoor heat exchanger N.
a, Nb or Nc is provided in the high pressure gas branch pipe rh. The switching valve v6 is connected to the indoor heat exchangers Na, Nb, and Nc.
A low-pressure gas recirculation pipe rc that returns the low-pressure gas refrigerant Rc from the low-pressure gas main pipe Gc to the low-pressure gas main pipe Gc.

【0025】第三、第四及び第五膨張弁Exa,Ex
b,Excは、室内熱交換器Na,Nb,Ncと液主管
Wとの間で液冷媒Rwを通流する液分岐還流管rwに設
けられており、液冷媒Rwが室内熱交換器Na,Nb又
はNcに向かって通流する場合には、本来の冷媒膨張手
段として機能し、一方、液冷媒Rwが液主管Wに向かっ
て通流する場合には、流量調整弁として機能するよう
に、切り換え可能に構成されている。
Third, fourth and fifth expansion valves Exa, Ex
b, Exc are provided in the liquid branch recirculation pipe rw that flows the liquid refrigerant Rw between the indoor heat exchangers Na, Nb, Nc and the liquid main pipe W, and the liquid refrigerant Rw converts the indoor heat exchanger Na, When flowing toward Nb or Nc, it functions as the original refrigerant expansion means, while when the liquid refrigerant Rw flows toward the liquid main pipe W, it functions as a flow regulating valve. It is configured to be switchable.

【0026】室内熱交換器Na,Nb,Ncには、液冷
媒Rwの冷媒出口温度Ta,Tb,Tcを検出する温度
センサSa,Sb,Scが設けられている。
The indoor heat exchangers Na, Nb, Nc are provided with temperature sensors Sa, Sb, Sc for detecting the refrigerant outlet temperatures Ta, Tb, Tc of the liquid refrigerant Rw.

【0027】なお、夫々の高圧ガス分岐管rhは、冷媒
分流器Aを介して高圧ガス主管Ghに接続され、低圧ガ
ス還流管rcは、冷媒合流器Bを介して低圧ガス主管G
cに接続され、液分岐還流管rwは、冷媒分流合流器C
を介して液主管Wに接続されている。また、第四以降の
室内機を設置する場合には、それら第四以降の室内機に
ついても、上記と同様の分岐接続形態で、上記3主管G
h,Gc及びWに対して接続される。
Each high pressure gas branch pipe rh is connected to a high pressure gas main pipe Gh via a refrigerant distributor A, and a low pressure gas recirculation pipe rc is connected to a low pressure gas main pipe G via a refrigerant merger B.
c, and the liquid branch reflux pipe rw is connected to
Is connected to the liquid main pipe W. When the fourth and subsequent indoor units are installed, the fourth main unit and the third main tube G are also connected in the same branch connection form as described above.
h, Gc and W.

【0028】同図1には、室外機Uoの室外熱交換器N
1及びN2を蒸発器Evとして機能させて、通風外気O
Aからの吸熱を行うとともに、これに対し室内機Ua,
Ub,Ucの室内熱交換器Na,Nb,Ncを凝縮器C
dとして機能させて給気SAa,SAb及びSAcを加
熱温調する「暖房モード」の運転状態において、室外熱
交換器N2の除霜運転が行われている状態が示されてい
る。
FIG. 1 shows an outdoor heat exchanger N of an outdoor unit Uo.
1 and N2 function as an evaporator Ev, and
A, while absorbing the heat from the indoor units Ua,
Ub, Uc indoor heat exchangers Na, Nb, Nc are connected to condenser C
In the "heating mode" operating state in which the supply air SAa, SAb and SAc are heated and controlled by functioning as d, a state is shown in which the outdoor heat exchanger N2 is being defrosted.

【0029】除霜運転が行われていない通常の運転状態
の「暖房モード」における具体的冷媒流れを、以下に説
明する。圧縮機Cmpから吐出されオイルセパレータO
sを通過した高圧ガス冷媒Rh(図中、黒塗りの太線で
示す)は、高圧ガス主管Gh及び高圧ガス分岐管rhを
介して各室内機Ua,Ub及びUcの室内熱交換器N
a,Nb,Ncに分配供給されて凝縮され、加熱温調が
行われる。
A specific refrigerant flow in the "heating mode" in a normal operation state in which the defrosting operation is not performed will be described below. Oil separator O discharged from compressor Cmp
s, the high-pressure gas refrigerant Rh (shown by a thick black line in the figure) passing through the high-pressure gas main pipe Gh and the high-pressure gas branch pipe rh passes through the indoor heat exchangers N of the indoor units Ua, Ub, and Uc.
a, Nb, and Nc are distributed and condensed, and the heating temperature is adjusted.

【0030】凝縮器Cdとして機能する室内熱交換器N
a,Nb,Ncから送出された凝縮液冷媒Rw(図中、
ハッチングを施した太線で示す)は、流量調整弁として
機能する第三、第四及び第五膨張弁Exa,Exb,E
xcと、液分岐還流管rw及び液主管Wとを介して室外
機Uoの受液器Rに戻される。受液器Rに戻された凝縮
液冷媒Rwは、本来の冷媒膨張手段として機能する状態
の第一及び第二膨張弁ex1,ex2に分配供給された
のち、蒸発器Evとして機能する室外熱交換器N1及び
N2にて蒸発され、外気OAからの吸熱が行われる。
The indoor heat exchanger N functioning as the condenser Cd
a, Nb, Nc condensed liquid refrigerant Rw (in the figure,
(Thick lines with hatching) indicate third, fourth and fifth expansion valves Exa, Exb, and E functioning as flow control valves.
The liquid is returned to the liquid receiver R of the outdoor unit Uo via xc, the liquid branch reflux pipe rw, and the liquid main pipe W. The condensed liquid refrigerant Rw returned to the receiver R is distributed and supplied to the first and second expansion valves ex1 and ex2 in the state of functioning as the original refrigerant expansion means, and then the outdoor heat exchange functioning as the evaporator Ev It is evaporated in the devices N1 and N2, and heat is absorbed from the outside air OA.

【0031】室外熱交換器N1及びN2から送出される
蒸発低圧ガス冷媒Rc(図中、白抜きの太線で示す)
は、切換弁v1又はv3とアキュムレータAcとを介し
て、圧縮機Cmpに戻される。(なお、図中、黒塗りの
弁は、閉弁状態を示す。)
The evaporative low-pressure gas refrigerant Rc sent from the outdoor heat exchangers N1 and N2 (shown by a thick white line in the figure)
Is returned to the compressor Cmp via the switching valve v1 or v3 and the accumulator Ac. (Note that, in the figure, a black valve indicates a closed state.)

【0032】同図1中、室外熱交換器N2では、除霜運
転が行われている。本実施例のヒートポンプ回路におい
ては、切換弁v3及びv4を切り換えることによって、
圧縮機Cmpからの高圧ガス冷媒Rhが、室外熱交換器
N2に通流されるように構成されており、高圧ガス冷媒
Rhの熱によって、着霜が解霜されるように構成されて
いる。室外熱交換器N1が着霜状態になった場合にも、
切換弁v1及びv2を切り換えることによって、同様に
除霜運転が行われるように構成されている。
In FIG. 1, a defrosting operation is performed in the outdoor heat exchanger N2. In the heat pump circuit of the present embodiment, by switching the switching valves v3 and v4,
The high-pressure gas refrigerant Rh from the compressor Cmp is configured to flow through the outdoor heat exchanger N2, and the frost is defrosted by the heat of the high-pressure gas refrigerant Rh. Even when the outdoor heat exchanger N1 becomes frosted,
By switching the switching valves v1 and v2, the defrosting operation is similarly performed.

【0033】従って、室外熱交換器N1及びN2自体
が、圧縮機Cmpから送出される高圧ガス冷媒Rhを除
霜用の熱媒体として、着霜状態となった蒸発器としての
室外熱交換器N1,N2を除霜する除霜手段1として構
成されている。
Therefore, the outdoor heat exchangers N1 and N2 themselves use the high-pressure gas refrigerant Rh delivered from the compressor Cmp as a heat medium for defrosting, and the outdoor heat exchanger N1 as an evaporator in a frosted state. , N2.

【0034】除霜運転中の室外熱交換器N1又はN2に
通流される高圧ガス冷媒Rhは、室内熱交換器Na,N
b,Ncに供給されている高圧ガス冷媒Rhが削減され
て、分流供給されるように構成されている。従って、切
換弁v1,v2及びv3,v4は、除霜手段1に対する
高圧ガス冷媒Rhの供給を停止して圧縮機Cmpからの
高圧ガス冷媒Rhを凝縮器Cd側に供給する通常運転状
態と、凝縮器Cd側への高圧ガス冷媒供給量を減少させ
て除霜手段1に対し圧縮機Cmpからの高圧ガス冷媒R
hを分流供給する除霜運転状態とに、冷媒経路を切り換
える切換手段2として構成されている。
The high-pressure gas refrigerant Rh flowing through the outdoor heat exchanger N1 or N2 during the defrosting operation is supplied to the indoor heat exchangers Na and N.
The high pressure gas refrigerant Rh supplied to b and Nc is reduced and supplied in a divided flow. Accordingly, the switching valves v1, v2 and v3, v4 stop the supply of the high-pressure gas refrigerant Rh to the defrosting means 1 and supply the high-pressure gas refrigerant Rh from the compressor Cmp to the condenser Cd side, and The supply amount of the high-pressure gas refrigerant to the condenser Cd is reduced, and the high-pressure gas refrigerant R from the compressor Cmp is supplied to the defrosting means 1.
The switching means 2 is configured to switch the refrigerant path to a defrosting operation state in which h is diverted and supplied.

【0035】なお、切換弁v1〜v4の切換操作は、後
述する除霜制御手段101によって制御されており、室
外熱交換器N1と室外熱交換器N2との両方に対して、
同時に除霜運転が行われることがないように制御されて
いる。
The switching operation of the switching valves v1 to v4 is controlled by a defrosting control means 101, which will be described later, and is applied to both the outdoor heat exchanger N1 and the outdoor heat exchanger N2.
Control is performed so that the defrosting operation is not performed at the same time.

【0036】除霜運転中における室内熱交換器Na,N
b,Ncからの高圧ガス冷媒Rhの削減量は、流量調整
弁として機能する第三、第四及び第五膨張弁Exa,E
xb,Excの冷媒通流量の調整によって行われる。
The indoor heat exchangers Na and N during the defrosting operation
The amount of reduction of the high-pressure gas refrigerant Rh from b and Nc is determined by the third, fourth and fifth expansion valves Exa and E functioning as flow control valves.
The adjustment is performed by adjusting the refrigerant flow rates of xb and Exc.

【0037】図2に示すように、切換弁v1〜v4、及
び、第三、第四及び第五膨張弁Exa,Exb,Exc
は、本実施例のヒートポンプ式空調装置の各種運転動作
を制御する制御部Hに接続されている。また、制御部H
には、前述の温度センサS1及びS2と、温度センサS
a,Sb及びScとが接続されている。
As shown in FIG. 2, the switching valves v1 to v4, and the third, fourth and fifth expansion valves Exa, Exb, Exc
Is connected to a control unit H that controls various operation operations of the heat pump air conditioner of the present embodiment. The control unit H
The temperature sensors S1 and S2 and the temperature sensor S
a, Sb and Sc are connected.

【0038】制御部Hは、マイクロコンピュータを主要
部として構成され、内蔵させるソフト・ウェアによっ
て、種々の制御動作が行えるように構成されている。制
御部Hには、その機能として、本実施例のヒートポンプ
式空調装置の除霜運転動作を制御する除霜制御手段10
1が構成されている。
The control section H is mainly composed of a microcomputer, and is configured to perform various control operations by software incorporated therein. The control unit H includes, as a function thereof, a defrost control unit 10 that controls a defrosting operation of the heat pump air conditioner of the present embodiment.
1 is configured.

【0039】除霜制御手段101は、温度センサS1又
はS2の検出冷媒出口温度T1又はT2が、「暖房モー
ド」の運転状態における通常値よりも低い所定温度に低
下するに伴って、室外熱交換器N1又はN2に着霜が発
生していると判別して、切換手段2としての切換弁v1
及びv2、又は、切換弁v3及びv4を操作して、除霜
運転を開始するように構成されている。
The defrosting control means 101 determines whether the temperature T1 or T2 detected by the temperature sensor S1 or S2 has dropped to a predetermined temperature lower than the normal value in the "heating mode" operating state, and the outdoor heat exchange It is determined that frost has occurred on the device N1 or N2, and the switching valve v1 as the switching means 2 is determined.
And v2 or the switching valves v3 and v4 are operated to start the defrosting operation.

【0040】除霜運転が開始されると、除霜制御手段1
01は、温度センサSa,Sb及びScの検出冷媒温度
Ta,Tb及びTcと、所定の設定関数とに基づいて、
検出冷媒温度が高い室内熱交換器の冷媒減少率の方が、
検出冷媒温度が低い室内熱交換器の冷媒減少率よりも大
きくなるように室内熱交換器Na,Nb,Ncの夫々に
対する冷媒通流量を削減すべく、流量調整弁として機能
する第三、第四及び第五膨張弁Exa,Exb,Exc
の冷媒通流量を調整、あるいは、弁開度を全閉状態にし
て、高圧ガス冷媒の供給を停止する。
When the defrosting operation is started, the defrosting control means 1
01 is based on the detected refrigerant temperatures Ta, Tb, and Tc of the temperature sensors Sa, Sb, and Sc, and a predetermined setting function.
The refrigerant decrease rate of the indoor heat exchanger with a higher detected refrigerant temperature is
Third and fourth function as flow control valves to reduce the refrigerant flow rate to each of the indoor heat exchangers Na, Nb, and Nc so that the detected refrigerant temperature is higher than the refrigerant reduction rate of the indoor heat exchanger. And the fifth expansion valve Exa, Exb, Exc
The supply of the high-pressure gas refrigerant is stopped by adjusting the refrigerant flow rate or setting the valve opening to the fully closed state.

【0041】すなわち、検出冷媒温度Ta,Tb又はT
cが低い室内熱交換器Na,Nb又はNcの方が、加熱
温調する空気の温度がより低い状態であると判断される
から、その室内熱交換器Na,Nb又はNcに対する放
熱必要度がより高いと判定して、除霜運転のときには、
冷媒通流量ができるだけ削減されないように調整される
のである。なお、ヒートポンプの冷媒循環量は、圧縮機
Cmpの回転数により逐次変化しているから、除霜制御
手段101は、室内熱交換器Na,Nb及びNcの相互
間の冷媒減少率の比を調整するように構成されている。
That is, the detected refrigerant temperature Ta, Tb or T
Since it is determined that the indoor heat exchangers Na, Nb or Nc having a lower c have a lower temperature of the air to be heated and controlled, the degree of heat radiation to the indoor heat exchangers Na, Nb or Nc is lower. It is determined to be higher, and during the defrosting operation,
The refrigerant flow rate is adjusted so as not to be reduced as much as possible. In addition, since the refrigerant circulation amount of the heat pump changes sequentially according to the rotation speed of the compressor Cmp, the defrost control unit 101 adjusts the ratio of the refrigerant reduction rate among the indoor heat exchangers Na, Nb, and Nc. It is configured to be.

【0042】従って、第三、第四及び第五膨張弁Ex
a,Exb及びExcは、通常運転状態から除霜運転状
態への切り換えによる凝縮器Cd側の高圧ガス冷媒減少
において、凝縮器Cdとしての室内熱交換器Na,N
b,Ncの夫々の冷媒減少率の比を調整する調整手段3
として構成され、温度センサSa,Sb及びScは、加
熱対象としての第一、第二及び第三空調対象域Za,Z
b及びZcの加熱状態に基づき、凝縮器Cdとしての室
内熱交換器Na,Nb及びNc夫々の放熱必要度を判定
する判定手段として構成され、除霜制御手段101は、
温度センサSa,Sb及びScの判定情報に基づき、放
熱必要度の高い室内熱交換器Na,Nb又はNcの冷媒
減少率が放熱必要度の低い室内熱交換器Na,Nb又は
Ncの冷媒減少率よりも小さくなるように、調整手段3
を制御する制御手段として構成されている。
Therefore, the third, fourth and fifth expansion valves Ex
a, Exb and Exc are the indoor heat exchangers Na and N as the condenser Cd when the high pressure gas refrigerant on the condenser Cd side is reduced by switching from the normal operation state to the defrosting operation state.
adjusting means 3 for adjusting the ratio of the refrigerant reduction rate of each of b and Nc
And the temperature sensors Sa, Sb, and Sc include first, second, and third air conditioning target zones Za, Z as heating targets.
Based on the heating states of b and Zc, each of the indoor heat exchangers Na, Nb, and Nc as the condenser Cd is configured as a determination unit that determines a heat radiation necessity.
Based on the determination information of the temperature sensors Sa, Sb, and Sc, the refrigerant reduction rate of the indoor heat exchangers Na, Nb, or Nc having a high heat radiation necessity is the refrigerant reduction rate of the indoor heat exchangers Na, Nb, or Nc having a low heat radiation necessity. Adjusting means 3 so as to be smaller than
Is configured as control means for controlling.

【0043】なお、本実施例において、除霜制御手段1
01は、内蔵されたタイマーによって、所定時間、除霜
運転を行ったのち、自動的に除霜運転を終了するように
構成されている。
In this embodiment, the defrost control means 1
Numeral 01 is configured to perform a defrosting operation for a predetermined time by a built-in timer, and then automatically terminate the defrosting operation.

【0044】制御部Hによるヒートポンプの運転モード
としては、上記の「暖房モード」以外に、「冷房モー
ド」及び「冷暖同時モード」も実施できるように構成さ
れている。
As the operation mode of the heat pump by the control unit H, a "cooling mode" and a "simultaneous cooling / heating mode" can be implemented in addition to the "heating mode".

【0045】「冷房モード」は、室外機Uoの切換弁v
2及びv4を開弁し、且つ、切換弁v1及びv3を閉弁
し、室内機Ua,Ub及びUcの切換弁v6を開弁し、
且つ、切換弁v5を閉弁することによって、室外熱交換
器N1及びN2が凝縮器Cdとして機能し、室内熱交換
器Na,Nb及びNcが蒸発器Evとして機能するよう
に運転される。
The "cooling mode" is the switching valve v of the outdoor unit Uo.
2 and v4 are opened, and the switching valves v1 and v3 are closed, and the switching valves v6 of the indoor units Ua, Ub and Uc are opened,
In addition, by closing the switching valve v5, the outdoor heat exchangers N1 and N2 operate so as to function as the condenser Cd, and the indoor heat exchangers Na, Nb and Nc operate so as to function as the evaporator Ev.

【0046】「冷暖同時モード」は、室内機Ua,Ub
又はUcの夫々の切換弁v5及び切換弁v6の開閉操作
によって、凝縮器Cdとして機能する室内熱交換器N
a,Nb又はNcと、蒸発器Evとして機能する室内熱
交換器Na,Nb又はNcとの両方が存在するように運
転される。なお、「冷暖同時モード」には、「室外熱交
換器を蒸発器Evとして機能させる冷暖同時モード」
と、「室外熱交換器を凝縮器Cdとして機能させる冷暖
同時モード」とがある。
The “simultaneous cooling / heating mode” is a mode in which the indoor units Ua, Ub
Or the indoor heat exchanger N functioning as the condenser Cd by opening and closing the respective switching valves v5 and v6 of Uc.
It is operated such that both a, Nb or Nc and the indoor heat exchanger Na, Nb or Nc functioning as the evaporator Ev are present. The “simultaneous cooling and heating mode” includes “simultaneous cooling and heating mode in which the outdoor heat exchanger functions as the evaporator Ev”.
And a “simultaneous cooling and heating mode in which the outdoor heat exchanger functions as the condenser Cd”.

【0047】〔第一の別実施例〕また、上述の実施例と
同様のヒートポンプ式空調装置において、図3に示すよ
うに、通常運転状態から除霜運転状態への切り換えによ
る凝縮器Cd側の高圧ガス冷媒減少において前記凝縮器
Cdとしての室内熱交換器Na,Nb,Ncの夫々の冷
媒減少率の比を調整する調整手段3が、第一、第二及び
第三膨張弁ex1,ex2及びex3にて構成され、制
御部Hに、除霜運転状態において室内熱交換器Na,N
b及びNc夫々の冷媒減少率の比が設定比になるように
前記調整手段3を制御する除霜制御手段101と、前記
設定比を人為指令に応じて変更する変更手段4が設けら
れても良い。
[First Alternative Embodiment] In a heat pump type air conditioner similar to the above-described embodiment, as shown in FIG. 3, the condenser Cd side is switched from a normal operation state to a defrosting operation state. The adjusting means 3 for adjusting the ratio of the respective refrigerant reduction rates of the indoor heat exchangers Na, Nb, and Nc as the condenser Cd when the high-pressure gas refrigerant is reduced includes first, second, and third expansion valves ex1, ex2, and ex3, the control unit H controls the indoor heat exchangers Na and N in the defrosting operation state.
Defrosting control means 101 for controlling the adjusting means 3 so that the ratio of the refrigerant reduction rate of each of b and Nc becomes a set ratio, and changing means 4 for changing the set ratio in response to an artificial command may be provided. good.

【0048】変更手段4には、室内熱交換器Na,Nb
及びNcの夫々の冷媒減少率をパーセント値で表示する
表示部4aと、室内熱交換器のいずれかを指定して冷媒
減少率を設定変更する指定ボタン4b及び変更ボタン4
cとが備えられている。冷媒減少率の設定比は、室内熱
交換器Na,Nb及びNcの夫々の放熱必要度を考慮し
て、変更手段4を操作することによって人為的に設定さ
れる。
The changing means 4 includes indoor heat exchangers Na and Nb.
And a change button 4b for setting and changing the refrigerant reduction rate by designating any one of the indoor heat exchangers, and a display section 4a for displaying each refrigerant reduction rate as a percentage value.
c is provided. The setting ratio of the refrigerant reduction rate is artificially set by operating the changing means 4 in consideration of the heat radiation necessity of each of the indoor heat exchangers Na, Nb, and Nc.

【0049】除霜制御手段101は、上述の実施例と同
様に、温度センサS1又はS2の検出冷媒出口温度T1
又はT2が、「暖房モード」の運転状態における通常値
よりも低い所定温度に低下するに伴って、除霜運転を開
始する。そして、変更手段4の設定冷媒減少率に従っ
て、調整手段3としての第三、第四及び第五膨張弁Ex
a,Exb,Excの冷媒通流量を制御する。
The defrosting control means 101 detects the refrigerant outlet temperature T1 detected by the temperature sensor S1 or S2 as in the above-described embodiment.
Alternatively, the defrosting operation is started as T2 decreases to a predetermined temperature lower than the normal value in the operation state of the “heating mode”. Then, the third, fourth and fifth expansion valves Ex as the adjusting means 3 are set in accordance with the set refrigerant reduction rate of the changing means 4.
The flow rates of the refrigerants a, Exb, and Exc are controlled.

【0050】〔第二の別実施例〕また、上述の実施例と
同様のヒートポンプ式空調装置において、図4に示すよ
うに、通常運転状態から除霜運転状態への切り換えによ
る凝縮器Cd側の高圧ガス冷媒減少において、凝縮器C
dとしての室内熱交換器Na,Nb,Ncの夫々の冷媒
減少率の比を常に所定の一定比に規定する規定手段5を
設けても良い。
[Second Alternative Embodiment] In a heat pump type air conditioner similar to the above-described embodiment, as shown in FIG. 4, the condenser Cd side is switched from a normal operation state to a defrost operation state. Condenser C
A regulating means 5 for always regulating the ratio of the respective refrigerant reduction rates of the indoor heat exchangers Na, Nb, Nc as d to a predetermined constant ratio may be provided.

【0051】本別実施例において、規定手段5は、オリ
フィスOa,Ob及びOcで構成されている。オリフィ
スOa,Ob及びOcは、室内機Ua,Ub及びUcの
夫々の液分岐還流管rwに設けられている迂回経路sw
に設けられている。
In this embodiment, the defining means 5 comprises orifices Oa, Ob and Oc. The orifices Oa, Ob, and Oc are connected to detour paths sw provided in the liquid branch reflux pipes rw of the indoor units Ua, Ub, and Uc, respectively.
It is provided in.

【0052】迂回経路sw及び液分岐還流管rwには、
前記切換手段2としての切換弁v7及びv8が設けられ
ており、前述の室外機Uoの切換弁v1〜v4と同様に
連動して、冷媒の通流経路を、迂回経路swと液分岐還
流管rwとに、選択的に切り換えるように構成されてい
る。
In the bypass route sw and the liquid branch reflux tube rw,
Switching valves v7 and v8 as the switching means 2 are provided, and in conjunction with the switching valves v1 to v4 of the outdoor unit Uo, the refrigerant flow path is changed to the bypass path sw and the liquid branch return pipe. rw.

【0053】除霜制御手段101は、上述の実施例と同
様に、冷媒温度センサS1又はS2の検出冷媒出口温度
T1又はT2が「暖房モード」の運転状態における通常
値よりも低い所定温度に低下するに伴って、除霜運転を
開始する。除霜運転中、第三、第四及び第五膨張弁Ex
a,Exb及びExcに対しては、通常運転状態のとき
と同様の制御が行われるが、室内熱交換器Na,Nb及
びNcへの冷媒の通流量は、迂回経路swに介裝されて
いるオリフィスOa,Ob及びOcの作用によって、規
定された一定の冷媒減少率の比で削減される。
The defrost control means 101 reduces the detected refrigerant outlet temperature T1 or T2 of the refrigerant temperature sensor S1 or S2 to a predetermined temperature lower than the normal value in the "heating mode" operating state, as in the above-described embodiment. Then, the defrosting operation is started. During the defrosting operation, the third, fourth and fifth expansion valves Ex
The same control as in the normal operation state is performed for a, Exb, and Exc, but the flow rate of the refrigerant to the indoor heat exchangers Na, Nb, and Nc is interposed in the bypass path sw. Due to the action of the orifices Oa, Ob and Oc, the refrigerant is reduced at a specified constant refrigerant reduction ratio.

【0054】〔その他の別実施例〕 (1)加熱対象としての第一、第二及び第三空調対象域
Za,Zb,Zcの加熱状態に基づき、凝縮器Cdとし
ての室内熱交換器Na,Nb及びNc夫々の放熱必要度
を判定する判定手段は、上述の温度センサSa,Sb及
びScに限らず、適宜変更できる。例えば、各空調対象
域Za,Zb及びZcの夫々に設置されているリモコン
装置の設定目標空調温度と、各空調対象域Za,Zb,
Zcの空気温度との偏差に基づいて、放熱必要度が判定
されるように構成されても良い。
[Other Alternative Embodiments] (1) On the basis of the heating state of the first, second and third air conditioning target zones Za, Zb, Zc as heating targets, an indoor heat exchanger Na as a condenser Cd, The determination means for determining the necessity of heat release of each of Nb and Nc is not limited to the above-described temperature sensors Sa, Sb and Sc, and can be changed as appropriate. For example, the target air-conditioning temperature set by the remote controller installed in each of the air-conditioning target areas Za, Zb, and Zc, and the air-conditioning target areas Za, Zb,
The configuration may be such that the heat release necessity is determined based on the deviation of Zc from the air temperature.

【0055】(2)通常運転状態から除霜運転状態への
切り換えによる凝縮器Cd側の高圧ガス冷媒減少におい
て、凝縮器Cdしての室内熱交換器Na,Nb及びNc
夫々の冷媒減少率の比を調整する調整手段3は、上述の
実施例のように、冷媒流量を調整する第三、第四及び第
五膨張弁Exa,Exb及びExcに限らず、室内熱交
換器Na,Nb又はNcへの冷媒の通流を断続する切換
弁v5及びv6で構成されても良い。
(2) When the high pressure gas refrigerant on the condenser Cd side is reduced by switching from the normal operation state to the defrosting operation state, the indoor heat exchangers Na, Nb and Nc as the condenser Cd are used.
The adjusting means 3 for adjusting the ratio of the respective refrigerant reduction rates is not limited to the third, fourth and fifth expansion valves Exa, Exb and Exc for adjusting the refrigerant flow rate as in the above-described embodiment, but also for indoor heat exchange. It may be constituted by switching valves v5 and v6 for interrupting the flow of the refrigerant to the devices Na, Nb or Nc.

【0056】この場合、除霜制御手段101は、凝縮温
度センサSa,Sb及びScの検出冷媒出口温度Ta,
Tb及びTcの値、又は、変更手段4の設定冷媒減少率
に基づいて、放熱必要度が一番低い室内熱交換器Na,
Nb又はNcへの冷媒の通流を切断するように、各室内
機Ua,Ub又はUcの切換弁v5を切換制御する。
In this case, the defrost control means 101 determines the refrigerant outlet temperatures Ta, Ta detected by the condensation temperature sensors Sa, Sb and Sc.
Based on the values of Tb and Tc, or the set refrigerant reduction rate of the changing means 4, the indoor heat exchangers Na, which have the lowest degree of heat radiation,
The switching control of the switching valve v5 of each indoor unit Ua, Ub or Uc is performed so as to cut off the flow of the refrigerant to Nb or Nc.

【0057】(3)除霜手段1は、上述の実施例のよう
に、室外熱交換器N1,N2自体にて構成されるものに
限らず、適宜変更可能である。例えば、高圧ガス冷媒R
hが通流されるヒータが、室外熱交換器N1,N2に近
接して設けられても良いし、高圧ガス冷媒Rhが通流さ
れるヒータによって、除霜用の貯留水が加熱され、着霜
した室外熱交換器N1又はN2に散水されるように構成
されても良い。上記のヒータタイプの除霜手段1の場合
には、室外熱交換器が一台のみで構成されていても、ヒ
ートポンプの運転を停止することなく、除霜運転を行う
ことができる。
(3) The defrosting means 1 is not limited to the one constituted by the outdoor heat exchangers N1 and N2 itself as in the above-described embodiment, but can be changed as appropriate. For example, high pressure gas refrigerant R
The heater through which h flows may be provided in the vicinity of the outdoor heat exchangers N1 and N2, or the defrosting stored water is heated and frosted by the heater through which the high-pressure gas refrigerant Rh flows. It may be configured such that water is sprayed to the outdoor heat exchanger N1 or N2. In the case of the heater-type defrosting means 1 described above, even if only one outdoor heat exchanger is configured, the defrosting operation can be performed without stopping the operation of the heat pump.

【0058】(4)除霜運転の開始は、温度センサS1
又はS2の検出冷媒出口温度T1又はT2に基づく場合
に限らず、適宜変更できる。例えば、冷媒出口圧力の変
化にて着霜を判断して除霜運転を開始しても良いし、タ
イマーなどにより、時間設定で除霜運転を開始しても良
い。また、人為操作により、適宜、除霜運転を開始して
も良い。
(4) The defrosting operation is started by the temperature sensor S1.
Alternatively, the present invention is not limited to the case based on the detected refrigerant outlet temperature T1 or T2 in S2, but can be changed as appropriate. For example, frost formation may be determined based on a change in the refrigerant outlet pressure to start the defrosting operation, or the timer may be used to start the defrosting operation at a set time. Further, the defrosting operation may be appropriately started by a manual operation.

【0059】(5)空調対象域は、第一、第二及び第三
空調対象域Za,Zb及びZcに隔離分割されている必
要はなく、給気SAa,SAb及びSAcが同一の空調
対象域(例えば、同じ部屋)に供給されるように構成さ
れていても良い。
(5) The air-conditioning target area does not need to be divided into the first, second and third air-conditioning target areas Za, Zb and Zc, and the air-conditioning target areas having the same air supply SAa, SAb and SAc. (For example, the same room).

【0060】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
Incidentally, reference numerals are written in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ヒートポンプ式空調装置の全体構成を示す構成
FIG. 1 is a configuration diagram showing the overall configuration of a heat pump air conditioner.

【図2】除霜手段の制御構成を示す説明図FIG. 2 is an explanatory diagram showing a control configuration of a defrosting unit.

【図3】別実施例の除霜手段の制御構成を示す説明図FIG. 3 is an explanatory diagram illustrating a control configuration of a defrosting unit according to another embodiment.

【図4】別実施例の除霜手段の制御構成を示す説明図FIG. 4 is an explanatory diagram showing a control configuration of a defrosting unit according to another embodiment.

【符号の説明】[Explanation of symbols]

Cd 凝縮器 Cmp 圧縮機 Ev 蒸発器 Rh 高圧ガス冷媒 Rw 凝縮冷媒 Sa 判定手段 Sb 判定手段 Sc 判定手段 Za 加熱対象 Zb 加熱対象 Zc 加熱対象 Ta 放熱必要度 Tb 放熱必要度 Tc 放熱必要度 1 除霜手段 2 切換手段 3 調整手段 4 変更手段 5 規定手段 101 制御手段 Cd condenser Cmp compressor Ev evaporator Rh high-pressure gas refrigerant Rw condensed refrigerant Sa determining means Sb determining means Sc determining means Za heating object Zb heating object Zc heating object Ta heat radiation necessity Tb heat radiation necessity Tc heat radiation necessity 1 defrosting means 2 switching means 3 adjusting means 4 changing means 5 defining means 101 control means

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(Cmp)から送出される高圧ガ
ス冷媒(Rh)を凝縮させて加熱対象(Za,Zb,Z
c)に放熱する複数の凝縮器(Cd)と、 それら凝縮器(Cd)から送出される凝縮冷媒(Rw)
を蒸発させて吸熱する蒸発器(Ev)と、 前記圧縮機(Cmp)から送出される高圧ガス冷媒(R
h)を除霜用の熱媒体として、着霜状態となった前記蒸
発器(Ev)を除霜する除霜手段(1)とを設け、 前記除霜手段(1)に対する高圧ガス冷媒(Rh)の供
給を停止して前記圧縮機(Cmp)からの高圧ガス冷媒
(Rh)を凝縮器(Cd)側に供給する通常運転状態
と、凝縮器(Cd)側への高圧ガス冷媒供給量を減少さ
せて前記除霜手段(1)に対し前記圧縮機(Cmp)か
らの高圧ガス冷媒(Rh)を分流供給する除霜運転状態
とに、冷媒経路を切り換える切換手段(2)を設けたヒ
ートポンプの除霜システムであって、 前記加熱対象(Za,Zb,Zc)の加熱状態に基づき
前記凝縮器(Cd)夫々の放熱必要度(Ta,Tb,T
c)を判定する判定手段(Sa,Sb,Sc)と、 通常運転状態から除霜運転状態への切り換えによる凝縮
器(Cd)側の高圧ガス冷媒減少において、前記凝縮器
(Cd)夫々の冷媒減少率の比を調整する調整手段
(3)と、 前記の除霜運転状態において前記判定手段(Sa,S
b,Sc)の判定情報に基づき、放熱必要度(Ta,T
b,Tc)の高い前記凝縮器(Cd)の冷媒減少率が放
熱必要度(Ta,Tb,Tc)の低い前記凝縮器(C
d)の冷媒減少率よりも小さくなるように、前記調整手
段(3)を制御する制御手段(101)とを設けたヒー
トポンプの除霜システム。
1. A high-pressure gas refrigerant (Rh) delivered from a compressor (Cmp) is condensed to be heated (Za, Zb, Z).
c) a plurality of condensers (Cd) which radiate heat, and a condensed refrigerant (Rw) delivered from the condensers (Cd)
(Ev) that evaporates and absorbs heat, and a high-pressure gas refrigerant (R) sent from the compressor (Cmp).
h) as a heat medium for defrosting, a defrosting means (1) for defrosting the frosted evaporator (Ev) is provided, and a high-pressure gas refrigerant (Rh) for the defrosting means (1) is provided. ) Is stopped to supply the high-pressure gas refrigerant (Rh) from the compressor (Cmp) to the condenser (Cd) side and the supply amount of the high-pressure gas refrigerant to the condenser (Cd) side. A heat pump provided with a switching means (2) for switching a refrigerant path to a defrosting operation state in which the high pressure gas refrigerant (Rh) from the compressor (Cmp) is diverted and supplied to the defrosting means (1) in a reduced manner. The defrosting system according to any one of claims 1 to 3, wherein the heat radiation necessities (Ta, Tb, T) of the respective condensers (Cd) are based on the heating state of the objects to be heated (Za, Zb, Zc).
c) determining the high-pressure gas refrigerant on the condenser (Cd) side by switching from the normal operation state to the defrosting operation state, and determining the refrigerant of each of the condensers (Cd). Adjusting means (3) for adjusting the ratio of the reduction rate; and said determining means (Sa, S in said defrosting operation state).
b, Sc), the heat radiation necessity (Ta, T)
b, Tc), the refrigerant reduction rate of the condenser (Cd) is higher than that of the condenser (C) having a lower heat radiation requirement (Ta, Tb, Tc).
A defrost system for a heat pump, comprising: a control means (101) for controlling the adjusting means (3) so as to be smaller than the refrigerant reduction rate of d).
【請求項2】 圧縮機(Cmp)から送出される高圧ガ
ス冷媒(Rh)を凝縮させて加熱対象(Za,Zb,Z
c)に放熱する複数の凝縮器(Cd)と、 それら凝縮器(Cd)から送出される凝縮冷媒(Rw)
を蒸発させて吸熱する蒸発器(Ev)と、 前記圧縮機(Cmp)から送出される高圧ガス冷媒(R
h)を除霜用の熱媒体として、着霜状態となった前記蒸
発器(Ev)を除霜する除霜手段(1)とを設け、 前記除霜手段(1)に対する高圧ガス冷媒(Rh)の供
給を停止して前記圧縮機(Cmp)からの高圧ガス冷媒
(Rh)を凝縮器(Cd)側に供給する通常運転状態
と、凝縮器(Cd)側への高圧ガス冷媒供給量を減少さ
せて前記除霜手段(1)に対し前記圧縮機(Cmp)か
らの高圧ガス冷媒(Rh)を分流供給する除霜運転状態
とに、冷媒経路を切り換える切換手段(2)を設けたヒ
ートポンプの除霜システムであって、 通常運転状態から除霜運転状態への切り換えによる凝縮
器(Cd)側の高圧ガス冷媒減少において、前記凝縮器
(Cd)夫々の冷媒減少率の比を調整する調整手段
(3)と、 前記の除霜運転状態において、前記凝縮器(Cd)夫々
の冷媒減少率の比が設定比になるように前記調整手段
(3)を制御する制御手段(101)と、 前記設定比を人為指令に応じて変更する変更手段(4)
とを設けたヒートポンプの除霜システム。
2. A high-pressure gas refrigerant (Rh) delivered from a compressor (Cmp) is condensed to be heated (Za, Zb, Z).
c) a plurality of condensers (Cd) which radiate heat, and a condensed refrigerant (Rw) delivered from the condensers (Cd)
(Ev) that evaporates and absorbs heat, and a high-pressure gas refrigerant (R) sent from the compressor (Cmp).
h) as a heat medium for defrosting, a defrosting means (1) for defrosting the frosted evaporator (Ev) is provided, and a high-pressure gas refrigerant (Rh) for the defrosting means (1) is provided. ) Is stopped to supply the high-pressure gas refrigerant (Rh) from the compressor (Cmp) to the condenser (Cd) side and the supply amount of the high-pressure gas refrigerant to the condenser (Cd) side. A heat pump provided with a switching means (2) for switching a refrigerant path to a defrosting operation state in which the high pressure gas refrigerant (Rh) from the compressor (Cmp) is diverted and supplied to the defrosting means (1) in a reduced manner. The defrosting system according to the above, wherein when the high pressure gas refrigerant on the condenser (Cd) side is reduced by switching from the normal operation state to the defrosting operation state, the ratio of the refrigerant reduction rate of each of the condensers (Cd) is adjusted. Means (3), in said defrosting operation state, Control means (101) for controlling the adjusting means (3) so that the ratio of the refrigerant reduction rates of the condensers (Cd) becomes a set ratio; and changing means (4) for changing the set ratio in response to an artificial command. )
And a defrosting system for a heat pump.
【請求項3】 圧縮機(Cmp)から送出される高圧ガ
ス冷媒(Rh)を凝縮させて加熱対象(Za,Zb,Z
c)に放熱する複数の凝縮器(Cd)と、 それら凝縮器(Cd)から送出される凝縮冷媒(Rw)
を蒸発させて吸熱する蒸発器(Ev)と、 前記圧縮機(Cmp)から送出される高圧ガス冷媒(R
h)を除霜用の熱媒体として、着霜状態となった前記蒸
発器(Ev)を除霜する除霜手段(1)とを設け、 前記除霜手段(1)に対する高圧ガス冷媒(Rh)の供
給を停止して前記圧縮機(Cmp)からの高圧ガス冷媒
(Rh)を凝縮器(Cd)側に供給する通常運転状態
と、凝縮器(Cd)側への高圧ガス冷媒供給量を減少さ
せて前記除霜手段(1)に対し前記圧縮機(Cmp)か
らの高圧ガス冷媒(Rh)を分流供給する除霜運転状態
とに、冷媒経路を切り換える切換手段(2)を設けたヒ
ートポンプの除霜システムであって、 通常運転状態から除霜運転状態への切り換えによる凝縮
器(Cd)側の高圧ガス冷媒減少において、前記凝縮器
(Cd)夫々の冷媒減少率の比を常に所定の一定比に規
定する規定手段(5)を設けたヒートポンプの除霜シス
テム。
3. A high-pressure gas refrigerant (Rh) delivered from a compressor (Cmp) is condensed to be heated (Za, Zb, Z).
c) a plurality of condensers (Cd) which radiate heat, and a condensed refrigerant (Rw) delivered from the condensers (Cd)
(Ev) that evaporates and absorbs heat, and a high-pressure gas refrigerant (R) sent from the compressor (Cmp).
h) as a heat medium for defrosting, a defrosting means (1) for defrosting the frosted evaporator (Ev) is provided, and a high-pressure gas refrigerant (Rh) for the defrosting means (1) is provided. ) Is stopped to supply the high-pressure gas refrigerant (Rh) from the compressor (Cmp) to the condenser (Cd) side and the supply amount of the high-pressure gas refrigerant to the condenser (Cd) side. A heat pump provided with a switching means (2) for switching a refrigerant path to a defrosting operation state in which the high pressure gas refrigerant (Rh) from the compressor (Cmp) is diverted and supplied to the defrosting means (1) in a reduced manner. In the defrosting system according to the above, when the high pressure gas refrigerant on the condenser (Cd) side is reduced by switching from the normal operation state to the defrosting operation state, the ratio of the refrigerant reduction rate of each of the condensers (Cd) is always set to a predetermined value. A heat pump provided with a defining means (5) for defining a constant ratio Flop defrosting system.
JP26327093A 1993-10-21 1993-10-21 Heat pump defrost system Expired - Lifetime JP2839066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26327093A JP2839066B2 (en) 1993-10-21 1993-10-21 Heat pump defrost system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26327093A JP2839066B2 (en) 1993-10-21 1993-10-21 Heat pump defrost system

Publications (2)

Publication Number Publication Date
JPH07120118A JPH07120118A (en) 1995-05-12
JP2839066B2 true JP2839066B2 (en) 1998-12-16

Family

ID=17387132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26327093A Expired - Lifetime JP2839066B2 (en) 1993-10-21 1993-10-21 Heat pump defrost system

Country Status (1)

Country Link
JP (1) JP2839066B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675927B2 (en) * 2007-03-30 2011-04-27 三菱電機株式会社 Air conditioner
CN202101340U (en) * 2011-05-24 2012-01-04 宁波奥克斯电气有限公司 Heat pump screw-type compression multi-connection central air conditioner device

Also Published As

Publication number Publication date
JPH07120118A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
CN110050162B (en) air conditioner
CN108779938B (en) Air conditioning hot water supply system
JP2008082589A (en) Air conditioner
CN112444000A (en) Air conditioner
KR20190005445A (en) Method for controlling multi-type air conditioner
CN112443999A (en) Air conditioner
US11226112B2 (en) Air-conditioning system
WO2020067152A1 (en) Air-conditioning system
JP2839066B2 (en) Heat pump defrost system
US20230168013A1 (en) Heat pump system with flash defrosting mode
JPH02223757A (en) Air conditioner
JP3485679B2 (en) Air conditioner
JP3675609B2 (en) Operation method of multi-room air conditioner
JPH076714B2 (en) Air conditioner
WO2020066942A1 (en) Air-conditioning system
JP2003028478A (en) Refrigeration equipment
JP2006220332A (en) Combined air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JP3378712B2 (en) Air conditioner
JPH06337152A (en) Multiroom cooling/heating device
JP2508183B2 (en) Air conditioner
JPH086940B2 (en) Building air conditioning system
JP2020051727A (en) Air conditioning system
JP3660120B2 (en) Control method of air conditioner
JP3195991B2 (en) Multi-room air conditioning system