JP2781325B2 - Method for producing medium and high carbon martensitic stainless steel strip having fine carbides - Google Patents
Method for producing medium and high carbon martensitic stainless steel strip having fine carbidesInfo
- Publication number
- JP2781325B2 JP2781325B2 JP14636193A JP14636193A JP2781325B2 JP 2781325 B2 JP2781325 B2 JP 2781325B2 JP 14636193 A JP14636193 A JP 14636193A JP 14636193 A JP14636193 A JP 14636193A JP 2781325 B2 JP2781325 B2 JP 2781325B2
- Authority
- JP
- Japan
- Prior art keywords
- hours
- slab
- temperature
- steel strip
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、切れ味の良い刃物、特
に剃刀や医療用刃物等の材料に使用される中、高炭素マ
ルテンサイト系ステンレス鋼帯の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high carbon martensitic stainless steel strip, which is used as a material for sharp blades, particularly razors and medical blades.
【0002】[0002]
【従来の技術】上記の用途に供される中、高炭素マルテ
ンサイト系ステンレス鋼は、主として13wt%Cr−0.3 〜
0.7 wt%C鋼が用いられている。この中、高炭素マルテ
ンサイト系ステンレス鋼から製造される刃物の特性は、
鋼中の炭化物の大きさによって左右される。すなわち、
均一で微細な球状炭化物組織とする必要がある。しかし
ながら、中、高炭素マルテンサイト系ステンレス鋼は、
凝固が完了した時点で巨大な炭化物を晶出し、製品刃物
中に粒径が10μmの巨大炭化物として残り、これが刃物
としての切れ味を損なう原因となっている。2. Description of the Related Art Among the above applications, high carbon martensitic stainless steels are mainly composed of 13 wt% Cr-0.3
0.7 wt% C steel is used. Among these, the characteristics of the cutting tool manufactured from high carbon martensitic stainless steel are as follows:
It depends on the size of the carbides in the steel. That is,
It is necessary to have a uniform and fine spherical carbide structure. However, medium and high carbon martensitic stainless steels
When solidification is completed, a huge carbide is crystallized and remains as a large carbide having a particle size of 10 μm in the product blade, which causes a loss of sharpness as the blade.
【0003】上記の不利を回避するため、特開昭58−18
9322号公報では、エレクトロスラグ溶解で鋼塊を製造し
た後、熱間圧延での加熱温度を規制して熱間圧延、焼鈍
を行うことにより、均一で微細な球状炭化物組織を得る
ことが提案されている。しかし、この手法では、安価な
材料を容易に製造することは困難である。In order to avoid the above disadvantage, Japanese Patent Application Laid-Open No. 58-18 / 1983
No. 9322 proposes to obtain a uniform and fine spherical carbide structure by producing a steel ingot by electroslag melting and then performing hot rolling and annealing while controlling the heating temperature in hot rolling. ing. However, it is difficult to easily manufacture an inexpensive material by this method.
【0004】また、特公平3−13292 号公報には、Cr:
10〜20wt%およびC:0.5 〜1.2 wt%を含む高炭素マル
テンサイト系ステンレス鋼を1100℃〜固相線温度の範囲
に加熱した後冷却し、常温での母相を準安定オーステナ
イト組織とすることにより、冷間圧延性に優れ、さらに
冷間圧延後の焼入れ処理で均一かつ微細な球状炭化物組
織となる、高炭素マルテンサイト系ステンレス鋼の製造
方法が開示されている。In Japanese Patent Publication No. 3-13292, Cr:
A high carbon martensitic stainless steel containing 10 to 20 wt% and C: 0.5 to 1.2 wt% is heated to a temperature in the range of 1100 ° C. to the solidus temperature and then cooled, and the parent phase at room temperature is made to have a metastable austenitic structure. Thus, there is disclosed a method for producing a high carbon martensitic stainless steel which is excellent in cold rollability and furthermore has a uniform and fine spherical carbide structure by quenching after cold rolling.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、特公平
3−13292 号公報に開示の処理は、粒径が20μm未満の
巨大炭化物の析出を回避するのが難しいため、刃物用材
料としては不十分であった。However, the treatment disclosed in Japanese Patent Publication No. 3-13292 is insufficient as a material for cutting tools because it is difficult to avoid precipitation of giant carbide having a particle size of less than 20 μm. there were.
【0006】そこで、本発明は、上記の問題点を解消
し、均一かつ極めて微細な球状炭化物を有する中、高炭
素マルテンサイト系ステンレス鋼帯の製造方法について
提案することを目的とする。Accordingly, an object of the present invention is to solve the above problems and propose a method for producing a high carbon martensitic stainless steel strip having uniform and extremely fine spherical carbides.
【0007】[0007]
【課題を解決するための手段】本発明者らは、溶製、連
続鋳造、熱間圧延そして冷間圧延に至る製造工程におい
て、凝固完了時に生じる巨大な炭化物である、 (Fe,Cr)
23C6 を微細化する方法について種々検討したところ、
(Fe,Cr)23C6 は強固であるが、以下の手法によって、
連続鋳造によって製造したスラブをマルテンサイト変態
割れをまねくことなしに、鋼中炭化物を微細均一化し得
ることが判明した。Means for Solving the Problems The present inventors have found that (Fe, Cr) which is a huge carbide produced at the time of solidification completion in the production process from smelting, continuous casting, hot rolling and cold rolling.
After various studies on the method of miniaturizing 23 C 6 ,
(Fe, Cr) 23 C 6 is strong, but by the following method,
It has been found that carbides in steel can be made fine and uniform without causing martensitic transformation cracks in slabs produced by continuous casting.
【0008】すなわち、スラブ段階で (Fe,Cr)23C6 を
γ領域に保持することにより、 (Fe,Cr)23C6 の一部が
固溶するとともに、 (Fe,Cr)23C6 の界面エネルギーが
高いことから (Fe,Cr)23C6 自身が球状化し、大きな炭
化物が減少し、さらに、スラブを熱間加工して加工歪み
を付与することにより、 (Fe,Cr)23C6 の固溶および冷
却時の微細球状化が促進されることを知見し、本発明を
完成した。Namely, by holding slab stage (Fe, Cr) 23 of C 6 to γ region, (Fe, Cr) with partially forms a solid solution of 23 C 6, (Fe, Cr ) 23 C 6 (Fe, Cr) 23 C 6 itself is spheroidized due to its high interfacial energy, and large carbides are reduced. Further, by subjecting the slab to hot working to impart working strain, (Fe, Cr) 23 C The present inventors have found that solid solution of No. 6 and fine spheroidization upon cooling are promoted, and the present invention has been completed.
【0009】本発明は、鋳造後の鋳片を(凝固温度−20
℃)〜(凝固温度−50℃)の温度域に10〜30時間加熱保
持後、Mf 点直上からMs 点+100 ℃までの温度域に冷
却し、その後パーライト領域まで再加熱して0.5 〜20時
間保持したのち表面手入れを施し、次いで1100〜1250℃
に加熱して0.5 〜5時間保持したのち熱間圧延を行い、
引き続き焼鈍、そして冷間圧延を行うことを特徴とする
中、高炭素マルテンサイト系ステンレス鋼の微細炭化物
鋼帯の製造方法である。According to the present invention, the cast slab is cast (solidification temperature −20).
° C.) ~ (after 10-30 hours of heating maintained at a temperature range of solidification temperature -50 ° C.), then cooled to a temperature range from just above M f point to the M s point +100 ° C., reheated to 0.5 until then pearlite region After holding for 20 hours, apply surface care, then 1100-1250 ° C
And then hot-rolled for 0.5 to 5 hours,
A method for producing a fine carbide steel strip of high carbon martensitic stainless steel, characterized by successively performing annealing and cold rolling.
【0010】また、本発明は、上記の工程に先立って、
鋳造後の鋳片に5〜40%の熱間加工を施すことを特徴と
する中、高炭素マルテンサイト系ステンレス鋼の微細炭
化物鋼帯の製造方法である。[0010] Further, the present invention, prior to the above steps,
A method for producing a fine carbide steel strip of high carbon martensitic stainless steel, characterized in that a slab after casting is subjected to hot working of 5 to 40%.
【0011】[0011]
【作用】凝固時に生じた巨大炭化物 (Fe,Cr)23C6 は、
まず、鋳片を(凝固温度−20℃)〜(凝固温度−50℃)
の温度で10〜30時間加熱保持することによって、炭化物
の一部を固溶し、次いでMf 点直上からMs 点+100 ℃
までの温度域に冷却することによって、炭化物を球状化
して微細化を促進し、マルテンサイト変態割れを防止し
た上で、熱間圧延、そして焼鈍および冷間圧延を施すこ
とによって、均一かつ極めて微細な球状化炭化物組織と
する。[Function] Giant carbide (Fe, Cr) 23 C 6 generated during solidification is
First, the slab is (solidification temperature -20 ℃) ~ (solidification temperature -50 ℃)
By heating and holding at a temperature of 10 to 30 hours, a part of the carbide is dissolved, and then from above the M f point to the M s point + 100 ° C.
By cooling to the temperature range up to, the carbides are spheroidized to promote the refinement and prevent martensitic transformation cracks, and then subjected to hot rolling, annealing and cold rolling to obtain uniform and extremely fine particles. Spheroidized carbide structure.
【0012】次に、上記の製造条件の各限定理由につい
て述べる。鋳片の加熱温度の上限を(凝固温度−20℃)
としたのは、(凝固温度−20℃)より高い温度に加熱す
ると、鋼のミクロ偏析部が溶融して脆化するためであ
る。一方、下限は、炭化物 (Fe,Cr)23C6 の固溶を効率
良く促進するための温度域を実験により求めたところ、
(凝固温度−50℃)以上は必要であることが判明したた
め、(凝固温度−50℃)とした。また、炭化物の固溶に
は上記温度域で10時間以上の保持が必要であり、一方加
熱時間が30時間をこえても炭化物の微細化効果に差がな
いため、加熱時間は10〜30時間の範囲に限定した。Next, the reasons for limiting the above manufacturing conditions will be described. The upper limit of the slab heating temperature (solidification temperature -20 ℃)
The reason for this is that when heated to a temperature higher than (solidification temperature −20 ° C.), the microsegregated portion of the steel melts and becomes brittle. On the other hand, the lower limit was obtained by experiments on a temperature range for efficiently promoting solid solution of carbide (Fe, Cr) 23 C 6 .
(Coagulation temperature −50 ° C.) Since it was found necessary to be more than (coagulation temperature −50 ° C.), it was set to (coagulation temperature −50 ° C.) In addition, the solid solution of carbide requires holding for 10 hours or more in the above temperature range.On the other hand, even if the heating time exceeds 30 hours, there is no difference in the effect of refining carbide, so the heating time is 10 to 30 hours. Limited to the range.
【0013】次に、Mf 点直上からMs 点+100 ℃まで
の温度域に冷却するのは、鋳片にマルテンサイト変態割
れを招くことなしに、効率良くパーライト組織に変化さ
せるためである。Next, the cooling to the temperature range from just above the M f point to the M s point + 100 ° C. is intended to efficiently change the slab to a pearlite structure without causing martensitic transformation cracks in the slab.
【0014】さらに、パーライト領域での保持時間を0.
5 〜20時間としたのは、パーライトに変えるためには0.
5 時間以上が必要であり、一方20時間をこえると、その
効果が飽和するため、0.5 〜20時間に限定した。Further, the holding time in the pearlite area is set to 0.
The time of 5 to 20 hours is 0 to change to perlite.
More than 5 hours is required, while if it exceeds 20 hours, the effect is saturated, so it was limited to 0.5 to 20 hours.
【0015】引き続く熱間圧延時のスラブ加熱温度を11
00〜1250℃および保持時間を0.5 〜5時間としたのは、
加熱温度が1100℃未満または保持時間が0.5 時間未満で
は圧延が不可能であり、一方加熱温度が1250℃をこえる
かまたは保持時間が5時間をこえるとスケールロス等の
損失が大きくなるため、1100〜1250℃の範囲に0.5 〜5
時間保持することとした。The slab heating temperature during the subsequent hot rolling is set to 11
The reason for setting the temperature at 00 to 1250 ° C. and the holding time at 0.5 to 5 hours is that
If the heating temperature is less than 1100 ° C or the holding time is less than 0.5 hours, rolling cannot be performed.On the other hand, if the heating temperature exceeds 1250 ° C or the holding time exceeds 5 hours, loss such as scale loss becomes large. 0.5 to 5 in the range of ~ 1250 ° C
It was decided to hold for a time.
【0016】また、上記の工程に先立って、熱間加工を
施すことでより一層の炭化物の均一微細化が可能であ
る。すなわち、均一微細化を促進するためには5%以上
の加工歪みを与える必要があり、一方40%をこえて加工
しても、その効果が飽和するため、熱間加工率は5〜40
%とする。Further, by performing hot working prior to the above-described steps, it is possible to further finely uniform the carbide. That is, in order to promote uniform miniaturization, it is necessary to give a processing strain of 5% or more. On the other hand, even if the processing exceeds 40%, the effect is saturated.
%.
【0017】[0017]
実施例1 連続鋳造法によって、C:0.67wt%、Cr:13wt%、Si:
0.3 wt%およびMn:0.4 wt%を含み残部鉄および不可避
的不純物の組成になり、凝固温度:1300℃、パーライト
領域:620 〜730 ℃、Ms 点:210 ℃およびMf 点:80
℃であるマルテンサイト系ステンレス鋼スラブを製造し
た。スラブ寸法は、厚み:195 mm、幅:970 mmおよび長
さ:7000mmで、重量は約10tであった。Example 1 By continuous casting, C: 0.67 wt%, Cr: 13 wt%, Si:
Becomes 0.4 composition of wt% hints balance iron and unavoidable impurities, the solidification temperature:: 0.3 wt% and Mn 1300 ° C., pearlite area: 620 ~730 ℃, M s point: 210 ° C. and M f point: 80
A martensitic stainless steel slab having a temperature of ℃ was produced. The dimensions of the slab were 195 mm in thickness, 970 mm in width, and 7000 mm in length, and the weight was about 10 t.
【0018】このスラブを冷却することなく均熱炉に装
入し、700 ℃で1時間保持した後、50℃/hの昇温速度
で1250℃に加熱して15時間保持した。その後、均熱炉か
らスラブを抽出し、その表面温度が200 ℃になるまで放
冷した。次いで、500 ℃に保持した炉にスラブを再度装
入し、50℃/hの昇温速度で700 ℃に加熱して10時間保
持した。次に、炉からスラブを抽出して常温まで放冷し
てから、スラブの表面手入れを実施し、熱間圧延に先立
って1200℃の加熱炉内に3時間保持し、次いで熱間圧延
によって厚さ:4mmおよび幅:960 mmの熱延鋼帯とし
た。The slab was placed in a soaking furnace without cooling, kept at 700 ° C. for 1 hour, and then heated to 1250 ° C. at a heating rate of 50 ° C./h and kept for 15 hours. Thereafter, the slab was extracted from the soaking furnace and allowed to cool to a surface temperature of 200 ° C. Next, the slab was charged again into the furnace maintained at 500 ° C., heated to 700 ° C. at a rate of 50 ° C./h, and maintained for 10 hours. Next, the slab is extracted from the furnace, allowed to cool to room temperature, and the surface of the slab is cleaned, and held in a heating furnace at 1200 ° C. for 3 hours prior to hot rolling, and then thickened by hot rolling. A hot-rolled steel strip having a length of 4 mm and a width of 960 mm was used.
【0019】また、比較として、従来法に従う熱延鋼帯
を製造した。すなわち、上記と同様のスラブに施す表面
手入れを、Ms 点以上の温度で完了し、次いでスラブを
1200℃の加熱炉に装入して3時間保持し、その後熱間圧
延によって厚さ:4mmおよび幅:960 mmの熱延鋼帯とし
た。For comparison, a hot-rolled steel strip according to a conventional method was manufactured. That is, the same surface treatment as described above for the slab is completed at a temperature equal to or higher than the M s point.
It was placed in a heating furnace at 1200 ° C. and maintained for 3 hours, and then hot-rolled into a hot-rolled steel strip having a thickness of 4 mm and a width of 960 mm.
【0020】かくして得られた、各熱延鋼帯に720 ℃で
15時間保持する焼鈍を施し、酸洗後冷間圧延を施す工程
を繰り返して、厚さ:1.2 mmおよび幅:960 mmの冷延鋼
帯とした。この冷延鋼帯から試料を採取し、この試料の
表層および厚み中心の組織を、5000倍の倍率とした走査
型電子顕微鏡によって観察した。この観察組織をトレー
スした後、画像処理によって個々の炭化物の面積を測定
し、この測定結果から、個々の炭化物の円相当径処理に
よって、粒径分布を算出した。この算出結果を、試料表
層部は図1に、および厚み中心部は図2に、それぞれ本
発明法によって得られた試料と従来法によって得られた
試料とを対比して示す。Each hot-rolled steel strip thus obtained was heated at 720 ° C.
The process of annealing for 15 hours, and performing cold rolling after pickling was repeated to obtain a cold-rolled steel strip having a thickness of 1.2 mm and a width of 960 mm. A sample was taken from the cold-rolled steel strip, and the structure of the surface layer and the center of the thickness of the sample was observed by a scanning electron microscope with a magnification of 5000 times. After tracing the observed structure, the area of each carbide was measured by image processing, and from this measurement result, the particle size distribution was calculated by processing the equivalent circle diameter of each carbide. The calculation results are shown in FIG. 1 for the surface layer portion of the sample and in FIG. 2 for the center portion of the thickness, respectively, comparing the sample obtained by the method of the present invention with the sample obtained by the conventional method.
【0021】同図から、従来法において、炭化物の粒径
分布は0.4 〜0.6 μmで最大となり、また炭化物の最大
径は1.4 〜1.6 μmになり、しかも試料の表層部と中心
部との粒径分布が大きく異なっていることがわかる。こ
れに対して、本発明法によれば、粒径分布は0.2 〜0.4
μmで最大となり、また炭化物の最大径は1.0 μm以下
になり、しかも、試料の表層部と中心部との粒径分布が
均一であった。From the figure, it can be seen that in the conventional method, the particle size distribution of the carbide is maximum at 0.4 to 0.6 μm, the maximum diameter of the carbide is 1.4 to 1.6 μm, and the particle size of the surface layer and the center of the sample is large. It can be seen that the distribution is significantly different. In contrast, according to the method of the present invention, the particle size distribution is 0.2 to 0.4.
The maximum was at μm, the maximum diameter of the carbide was 1.0 μm or less, and the particle size distribution was uniform between the surface layer and the center of the sample.
【0022】実施例2 実施例1と同様のマルテンサイト系ステンレス鋼スラブ
を製造した。なお、スラブ寸法は、厚み:195 mm、幅:
970 mmおよび長さ:6000mmで、重量は約8.7 tであっ
た。このスラブを冷却することなく均熱炉に装入し、12
00℃の加熱炉で3時間保持した後、熱間圧延によって、
厚み:145 mm、幅:970 mmおよび長さ:8000mm のスラ
ブとした。すなわち、25.6%の熱間加工を施した。Example 2 The same martensitic stainless steel slab as in Example 1 was produced. The dimensions of the slab are as follows: thickness: 195 mm, width:
It was 970 mm and length: 6000 mm and weighed about 8.7 t. This slab is charged to a soaking furnace without cooling,
After holding in a heating furnace of 00 ° C. for 3 hours, by hot rolling,
The slab was 145 mm thick, 970 mm wide and 8000 mm long. That is, hot working of 25.6% was performed.
【0023】その後、スラブを600 ℃まで放冷してか
ら、均熱炉に装入して700 ℃で1時間保持した後、50℃
/hの昇温速度で1250℃に加熱して15時間保持した。そ
の後、均熱炉からスラブを抽出し、その表面温度が200
℃になるまで放冷した。次いで、500 ℃に保持した炉に
スラブを再度装入し、50℃/hの昇温速度で700 ℃に加
熱して10時間保持した。次に、炉からスラブを抽出して
常温まで放冷してから、スラブの表面手入れを実施し、
熱間圧延に先立って1200℃の加熱炉内に3時間保持し、
次いで熱間圧延によって厚さ:4mmおよび幅:960 mmの
熱延鋼帯とした。また、比較として、上記実施例1と同
様の、従来法に従う熱延鋼帯を製造した。Thereafter, the slab was allowed to cool to 600 ° C., and then placed in a soaking furnace and maintained at 700 ° C. for 1 hour.
/ H and heated at 1250 ° C for 15 hours. After that, the slab was extracted from the soaking furnace, and the surface temperature was 200
The mixture was allowed to cool to ℃. Next, the slab was charged again into the furnace maintained at 500 ° C., heated to 700 ° C. at a rate of 50 ° C./h, and maintained for 10 hours. Next, after extracting the slab from the furnace and allowing it to cool to room temperature, perform surface care of the slab,
Prior to hot rolling, hold in a heating furnace at 1200 ° C for 3 hours,
Next, a hot-rolled steel strip having a thickness of 4 mm and a width of 960 mm was formed by hot rolling. As a comparison, a hot-rolled steel strip according to the conventional method similar to that of Example 1 was manufactured.
【0024】かくして得られた、各鋼帯を720 ℃で15時
間保持する焼鈍を施し、酸洗後冷間圧延を施す工程を繰
り返して、厚さ:1.2 mmおよび幅:960 mmの冷延鋼帯と
した。この冷延鋼帯から試料を採取し、この試料の表層
および厚み中心の組織を、5000倍の倍率とした走査型電
子顕微鏡によって観察した。この観察組織をトレースし
た後、画像処理によって個々の炭化物の面積を測定し、
この測定結果から、個々の炭化物の円相当径処理によっ
て、粒径分布を算出した。この算出結果を、試料表層部
は図3に、および厚み中心部は図4に、それぞれ本発明
法によって得られた試料と従来法によって得られた試料
とを対比して示す。The steps of annealing each steel strip thus obtained at 720 ° C. for 15 hours, pickling and cold rolling are repeated to obtain a cold-rolled steel having a thickness of 1.2 mm and a width of 960 mm. It was a band. A sample was taken from the cold-rolled steel strip, and the structure of the surface layer and the center of the thickness of the sample was observed by a scanning electron microscope with a magnification of 5000 times. After tracing this observed tissue, the area of each carbide was measured by image processing,
From this measurement result, the particle size distribution was calculated by treating each carbide with a circle-equivalent diameter. The calculation results are shown in FIG. 3 for the surface layer portion of the sample and in FIG. 4 for the center portion of the thickness, in comparison with the sample obtained by the method of the present invention and the sample obtained by the conventional method.
【0025】同図から、本発明法によれば、0.2 〜0.4
μm粒径の炭化物の構成比率が増大し、また炭化物粒径
は0.4 〜1.0 μmの範囲が減少し、従って炭化物の微細
化が一段と促進され、試料の表層部と中心部との粒径分
布における均一性も向上した。From the figure, it can be seen that according to the method of the present invention, 0.2-0.4
The composition ratio of carbide having a particle size of μm increases, and the particle size of the carbide decreases in the range of 0.4 to 1.0 μm, so that the refinement of the carbide is further promoted, and the particle size distribution between the surface layer and the center of the sample is increased. Uniformity has also improved.
【0026】実施例3 本発明による効果をさらに明確にするため、以下の製造
を実施した。実施例1に準じ連続鋳造法によって、C:
0.67wt%、Cr:13wt%、Si:0.3 wt%およびMn:0.4 wt
%を含み残部鉄および不可避的不純物の組成になり、凝
固温度:1300℃、パーライト領域:620 〜730 ℃、Ms
点:210 ℃およびMf 点:80℃であるマルテンサイト系
ステンレス鋼スラブを製造した。スラブ寸法は、厚み:
195 mm、幅:970 mmおよび長さ:7000mmで、重量は約10
tとなるものを4スラブ製造した。Example 3 In order to further clarify the effects of the present invention, the following production was carried out. According to the continuous casting method according to Example 1, C:
0.67wt%, Cr: 13wt%, Si: 0.3wt% and Mn: 0.4wt
%, With the balance being iron and inevitable impurities, solidification temperature: 1300 ° C, pearlite region: 620-730 ° C, M s
A martensitic stainless steel slab having a point: 210 ° C. and an M f point: 80 ° C. was produced. Slab dimensions are thickness:
195 mm, width: 970 mm and length: 7000 mm, weight about 10
Four slabs were produced for the material t.
【0027】これらのスラブを冷却することなく均熱炉
に装入し、700 ℃で1時間保持した後、50℃/hの昇温
速度で表1のAの加熱温度にそれぞれ加熱し、表1のB
の時間にそれぞれ保持し、その後、均熱炉からスラブを
抽出し、その表面温度が表1のCの温度になるまでそれ
ぞれ放冷した。ついで、500 ℃に保持した炉にスラブを
再度装入し、50℃/hの昇温速度で表1のDの加熱温度
にそれぞれ加熱し、同じくEの保持時間にそれぞれ保持
した。次に、炉からスラブを抽出して常温まで放冷して
から、スラブの表面手入れを実施した。ここで、いずれ
のスラブもマルテンサイト変態割れを生ずることはなか
ったが、スラブNo. bのみが、スラブ加熱温度が凝固温
度に近いためスラブ表面の粒界酸化による割れが生じ、
通常のスラブ表面手入れで疵が除去できなかったので、
スラブNo. bのみ引続く処理を中止した。そこで、スラ
ブNo. a,c,dについて、熱間圧延に先立って1200℃
の加熱炉内に3時間保持し、次いで熱間圧延によって厚
さ:4mmおよび幅:960 mmの熱延鋼帯とした。These slabs were placed in a soaking furnace without cooling, kept at 700 ° C. for 1 hour, and then heated at a heating rate of 50 ° C./h to the heating temperature of A in Table 1, respectively. 1 B
After that, the slab was extracted from the soaking furnace and allowed to cool until the surface temperature reached the temperature of C in Table 1. Then, the slab was charged again into the furnace maintained at 500 ° C., heated at a heating rate of 50 ° C./h to each of the heating temperatures of D in Table 1, and maintained at the same holding time of E. Next, the slab was extracted from the furnace and allowed to cool to room temperature, and then the surface of the slab was cleaned. Here, none of the slabs caused martensitic transformation cracking, but only slab No. b was cracked by grain boundary oxidation of the slab surface because the slab heating temperature was close to the solidification temperature,
As the scratches could not be removed by normal slab surface care,
Subsequent processing was stopped only for slab No. b. Therefore, for slab Nos. A, c and d, 1200 ° C prior to hot rolling
For 3 hours, and then hot-rolled to form a hot-rolled steel strip having a thickness of 4 mm and a width of 960 mm.
【0028】かくして得られた、各鋼帯を720 ℃で15時
間保持する焼鈍を施し、酸洗後冷間圧延を施す工程を繰
り返して、厚さ:1.2 mmおよび幅:960 mmの冷延鋼帯と
した。この冷延鋼帯から試料を採取し、この試料の表層
および厚み中心の組織を、5000倍の倍率とした走査型電
子顕微鏡によって観察した。この観察組織をトレースし
た後、画像処理によって個々の炭化物の面積を測定し、
この測定結果から、個々の炭化物の円相当径処理によっ
て、粒径分布を算出した。その結果を表2に示す。スラ
ブNo. a,cから得られた鋼帯の炭化物の粒径分布は実
施例1と同等の結果であったが、スラブNo. dから得ら
れた鋼帯の炭化物の粒径分布は、スラブ加熱温度が1150
℃と低いため、炭化物の十分な固溶促進が図れず、従来
法と同等であった。The steps of annealing each steel strip thus obtained at 720 ° C. for 15 hours, pickling and cold rolling are repeated to obtain a cold-rolled steel having a thickness of 1.2 mm and a width of 960 mm. It was a band. A sample was taken from the cold-rolled steel strip, and the structure of the surface layer and the center of the thickness of the sample was observed by a scanning electron microscope with a magnification of 5000 times. After tracing this observed tissue, the area of each carbide was measured by image processing,
From this measurement result, the particle size distribution was calculated by treating each carbide with a circle-equivalent diameter. Table 2 shows the results. The grain size distribution of carbide in the steel strip obtained from slab Nos. A and c was the same as that in Example 1, but the grain size distribution of carbide in the steel strip obtained from slab No. d was Heating temperature is 1150
Since the temperature was as low as ° C., sufficient promotion of solid solution of carbides could not be achieved, which was equivalent to the conventional method.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【発明の効果】以上説明したように、本発明法によれ
ば、中、高炭素マルテンサイト系ステンレス鋼帯の炭化
物を均一かつ極めて微細にすることができ、しかも炭化
物の最大粒径を1.0 μm以下にすることが可能である。
従って、例えば、刃物に用いた場合にその刃こぼれの極
めて少ない、切れ味の優れた刃物用材料を、大量かつ安
価に製造し得る。As described above, according to the method of the present invention, the carbide of the medium- and high-carbon martensitic stainless steel strip can be made uniform and extremely fine, and the maximum particle size of the carbide is 1.0 μm. It can be:
Therefore, for example, when used for a blade, the blade material with extremely small blade spill and excellent sharpness can be manufactured in large quantities and at low cost.
【図1】炭化物粒径分布を示す図である。FIG. 1 is a diagram showing a carbide particle size distribution.
【図2】炭化物粒径分布を示す図である。FIG. 2 is a diagram showing a carbide particle size distribution.
【図3】炭化物粒径分布を示す図である。FIG. 3 is a diagram showing a carbide particle size distribution.
【図4】炭化物粒径分布を示す図である。FIG. 4 is a diagram showing a carbide particle size distribution.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 9/46 C21D 8/00 - 8/02 C21D 7/13 C21D 6/00 102──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C21D 9/46 C21D 8/00-8/02 C21D 7/13 C21D 6/00 102
Claims (2)
固温度−50℃)の温度域に10〜30時間加熱保持後、Mf
点直上からMs 点+100 ℃までの温度域に冷却し、その
後パーライト領域まで再加熱して0.5 〜20時間保持した
のち表面手入れを施し、次いで1100〜1250℃に加熱して
0.5 〜5時間保持したのち熱間圧延を行い、引き続き焼
鈍、そして冷間圧延を行うことを特徴とする中、高炭素
マルテンサイト系ステンレス鋼の微細炭化物鋼帯の製造
方法。The slab after casting is heated and maintained in a temperature range of (solidification temperature -20 ° C) to (solidification temperature -50 ° C) for 10 to 30 hours, and then the M f
Cooled to a temperature range of from just above a point to M s point +100 ° C., subjected to subsequent reheating to surface care After for 0.5 to 20 hours to pearlite region, then heated to 1100 to 1250 ° C.
A method for producing a fine carbide steel strip of high carbon martensitic stainless steel, characterized in that hot rolling is performed after holding for 0.5 to 5 hours, followed by annealing and cold rolling.
た後、(凝固温度−20℃)〜(凝固温度−50℃)の温度
域に10〜30時間加熱保持後、Mf 点直上からMs 点+10
0 ℃までの温度域に冷却し、その後パーライト領域まで
再加熱して0.5 〜20時間保持したのち表面手入れを施
し、次いで1100〜1250℃に加熱して0.5 〜5時間保持し
たのち熱間圧延を行い、引き続き焼鈍、そして冷間圧延
を行うことを特徴とする中、高炭素マルテンサイト系ス
テンレス鋼の微細炭化物鋼帯の製造方法。2. The cast slab is subjected to hot working of 5 to 40%, and then is heated and maintained in a temperature range of (solidification temperature -20 ° C) to (solidification temperature -50 ° C) for 10 to 30 hours. , M s point +10 from just above the M f point
After cooling to a temperature range of up to 0 ° C., reheating to the pearlite area and holding for 0.5 to 20 hours, the surface was treated, then heating to 1100 to 1250 ° C. and holding for 0.5 to 5 hours, followed by hot rolling. , Followed by annealing and cold rolling. A method for producing a fine carbon steel strip of high carbon martensitic stainless steel, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14636193A JP2781325B2 (en) | 1993-06-17 | 1993-06-17 | Method for producing medium and high carbon martensitic stainless steel strip having fine carbides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14636193A JP2781325B2 (en) | 1993-06-17 | 1993-06-17 | Method for producing medium and high carbon martensitic stainless steel strip having fine carbides |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH073333A JPH073333A (en) | 1995-01-06 |
JP2781325B2 true JP2781325B2 (en) | 1998-07-30 |
Family
ID=15405986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14636193A Expired - Lifetime JP2781325B2 (en) | 1993-06-17 | 1993-06-17 | Method for producing medium and high carbon martensitic stainless steel strip having fine carbides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2781325B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100321028B1 (en) * | 1997-09-11 | 2002-04-17 | 이구택 | Method of manufacturing martensitic stainless steel sheet capable of preventing laminate |
US6273973B1 (en) * | 1999-12-02 | 2001-08-14 | Ati Properties, Inc. | Steelmaking process |
FR2951197B1 (en) * | 2009-10-12 | 2011-11-25 | Snecma | HOMOGENIZATION OF STAINLESS STEEL MARTENSITIC STEELS AFTER REFUSION UNDER DAIRY |
-
1993
- 1993-06-17 JP JP14636193A patent/JP2781325B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH073333A (en) | 1995-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10273756A (en) | Cold tool made of casting, and its production | |
JP3354163B2 (en) | Stainless steel for razor and method for producing the same | |
JP3527641B2 (en) | Steel wire with excellent cold workability | |
JP2004100016A (en) | Rolled wire rod for bearing and drawn wire rod | |
JP2781325B2 (en) | Method for producing medium and high carbon martensitic stainless steel strip having fine carbides | |
JP3031484B2 (en) | Method for producing steel wire rod or steel bar having spheroidized structure | |
JP2002155316A (en) | Method for producing high carbon martensitic stainless steel sheet | |
JP7134052B2 (en) | MARTENSITE STAINLESS STEEL MATERIAL AND MANUFACTURING METHOD THEREOF AND SLIDING MEMBER | |
KR19980052456A (en) | Method for manufacturing cold-rolled wire rod with excellent spheroidizing heat treatment | |
JP3620099B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JPS6320412A (en) | Hot working method for austenitic stainless steel containing mo and n | |
JPH0570685B2 (en) | ||
JP2625572B2 (en) | Heat treatment method for cast steel products | |
JPH0819462B2 (en) | Method for producing duplex stainless steel sheet with excellent pitting corrosion resistance | |
JPH0617504B2 (en) | Method for producing high-carbon martensitic stainless steel suitable for quenching treatment | |
JP4517459B2 (en) | Manufacturing method of steel material having ultrafine martensite structure | |
JP7196837B2 (en) | Method for manufacturing steel strip for cutlery and steel strip for cutlery | |
JP2002143909A (en) | Roll made of high speed tool steel having high spalling resistance and its production method | |
JPH0525548A (en) | Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality | |
JP2648709B2 (en) | Method for producing high carbon content martensitic stainless steel sheet | |
JP2002285243A (en) | Method for heat treatment of hot-rolled steel strip | |
JPH10298646A (en) | Manufacturing method of stainless steel sheet | |
JPS583919A (en) | Manufacture of steel wire rod | |
JPS591631A (en) | Manufacture of steel material | |
JPS583928A (en) | Manufacture of steel wire rod |