[go: up one dir, main page]

JP2764505B2 - Electron spectroscopy method and electron spectrometer using the same - Google Patents

Electron spectroscopy method and electron spectrometer using the same

Info

Publication number
JP2764505B2
JP2764505B2 JP4205954A JP20595492A JP2764505B2 JP 2764505 B2 JP2764505 B2 JP 2764505B2 JP 4205954 A JP4205954 A JP 4205954A JP 20595492 A JP20595492 A JP 20595492A JP 2764505 B2 JP2764505 B2 JP 2764505B2
Authority
JP
Japan
Prior art keywords
electron
sample
flight
electrons
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4205954A
Other languages
Japanese (ja)
Other versions
JPH0627058A (en
Inventor
敏尚 富江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4205954A priority Critical patent/JP2764505B2/en
Priority to GB9313950A priority patent/GB2268802B/en
Priority to DE19934322852 priority patent/DE4322852C2/en
Publication of JPH0627058A publication Critical patent/JPH0627058A/en
Priority to US08/380,694 priority patent/US5569916A/en
Application granted granted Critical
Publication of JP2764505B2 publication Critical patent/JP2764505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/085Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/204Sources of radiation source created from radiated target

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、パルス状に発生され
た電子のエネルギー分析を行なう、電子分光装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron spectroscopy apparatus for performing energy analysis of electrons generated in a pulse form.

【0002】[0002]

【従来の技術】光、X線、電子などの照射により、物質
から放出される電子のエネルギー分布には、物質状態に
関する情報が含まれており、電子ビーム照射などにより
発生するオージェ電子分光法等や、紫外線或はX線照射
により発生する光電子を計測する紫外線光電子分光法
(UPS)、軟X線光電子分光法(XPS)などは、物
質状態、特に表面状態の研究に必須の重要な解析手法と
なっている。
2. Description of the Related Art The energy distribution of electrons emitted from a substance by irradiation of light, X-rays, electrons, etc. contains information on the state of the substance, such as Auger electron spectroscopy generated by electron beam irradiation. In addition, ultraviolet photoelectron spectroscopy (UPS), which measures photoelectrons generated by irradiation of ultraviolet rays or X-rays, and soft X-ray photoelectron spectroscopy (XPS), are important analysis methods that are essential for studying material states, especially surface states. It has become.

【0003】従来、電子分光装置としては初期には減速
電場を用いたものが多く用いられ、現在は円筒鏡型エネ
ルギー分析器(CMA)が最も多く用いられている( 参
考文献:M.P.Seah,p.57,"Methods of surface analysi
s",ed.J.M.Walls,(Cambridge University Press,Cambri
dge,1989) 。
[0003] Conventionally, as an electron spectrometer, a device using a deceleration electric field is often used at the beginning, and a cylindrical mirror type energy analyzer (CMA) is most often used at present (see MP Seah, p. 57, "Methods of surface analysi
s ", ed.JMWalls, (Cambridge University Press, Cambri
dge, 1989).

【0004】この方法は、静電場が印加された円筒形の
電極間に、狭い入射スリットを通して電子を入射させる
と、ある特定のエネルギーを持つ電子のみが、狭い出射
スリットを通して測定器に集光される原理を使用して、
静電場の大きさを変えることで、電子のエネルギー分布
を知るものであるが、0.25% の高い分解能の測定下で
も、試料から広い立体角に放出される電子を捉えること
ができるので、それまでの分析器に比べてCMAの感度
は高い。
According to this method, when electrons are made to enter between narrow cylindrical electrodes to which an electrostatic field is applied through a narrow entrance slit, only electrons having a specific energy are focused on a measuring instrument through a narrow exit slit. Using the principle
By knowing the energy distribution of electrons by changing the size of the electrostatic field, it is possible to capture electrons emitted from the sample at a wide solid angle even under high-resolution measurements of 0.25%. The sensitivity of CMA is higher than that of the analyzer.

【0005】ところが、CMAの場合、一つの設定電圧
で測定されるのは、特定のエネルギーの電子のみであ
る。例えば、1/1000の高精度のエネルギー分解能の計測
を行なうとき、残りの999/1000の電子は測定されずに捨
てられており、この極めて低い検出効率のため、長時間
の計測時間を要し、また試料の放射線損傷も問題とな
る。
However, in the case of CMA, only electrons of a specific energy are measured at one set voltage. For example, when measuring at a high energy resolution of 1/1000, the remaining 999/1000 electrons are discarded without being measured, and this extremely low detection efficiency requires a long measurement time. Also, radiation damage to the sample is a problem.

【0006】そこで、計測速度を大きくするものとし
て、図2に示すような静電半球型エネルギー分析器が開
発されている。これは、二つの球面電極R1,R2 間に静電
場を印加すると、入射スリットSから入射された電子の
軌跡が出射面E上に集光されるが、その集光位置は電子
エネルギーに依存するので、出射面上に集光された電子
ビームの空間分布を一次元アレイ或は二次元画像検出器
Dで観測することにより、比較的広いエネルギー範囲の
電子が一度に計測するものであり、この方法によれば例
えばCMAの200 倍程度の速度でエネルギー解析ができ
る。
Therefore, an electrostatic hemispherical energy analyzer as shown in FIG. 2 has been developed to increase the measuring speed. This is because, when an electrostatic field is applied between the two spherical electrodes R1 and R2, the trajectory of the electrons incident from the entrance slit S is converged on the exit surface E, and the converging position depends on the electron energy. Therefore, by observing the spatial distribution of the electron beam condensed on the emission surface with a one-dimensional array or a two-dimensional image detector D, electrons in a relatively wide energy range are measured at one time. According to the method, for example, energy analysis can be performed at about 200 times the speed of CMA.

【0007】[0007]

【発明が解決しようとする課題】しかし、これら従来の
電子分光装置は、シンクロトロン放射施設やX線管から
の紫外線やX線、電子ビーム発生装置からの電子ビーム
など定常照射された試料から発生する電子を測定される
ために設計されており、さらに、多点データを同時に取
り組める。上述の静電半球型分析器においても、一度に
測定できるエネルギー範囲は10% 程度に過ぎない。
However, these conventional electron spectrometers generate from a constantly irradiated sample such as an ultraviolet ray or an X-ray from a synchrotron radiation facility or an X-ray tube, or an electron beam from an electron beam generator. It is designed to measure the number of electrons that are generated, and can also work on multi-point data simultaneously. Even in the above-mentioned electrostatic hemispherical analyzer, the energy range that can be measured at one time is only about 10%.

【0008】また、静電半球型分析器ではある程度のエ
ネルギー分解能を得るには、スリットSに入射する角度
幅αを小さく制限しなければならず、立体角利用効率が
小さいという問題があった。
Further, in order to obtain a certain level of energy resolution in the electrostatic hemispherical analyzer, the angular width α incident on the slit S must be limited to a small value, and there is a problem that the solid angle utilization efficiency is small.

【0009】一方、近年極短パルスレーザーで生成され
るプラズマ或はX線レーザーから高輝度のパルスX線が
得られ、また極短パルスレーザーの高調波発生によるパ
ルス超短波長紫外線が得られようになっており、このよ
うな高輝度パルス線源を用いることにより、電子分光を
利用する分野でも、表面状態の高速現象の観察など多く
の分野が開ける可能性がある。
On the other hand, high-intensity pulsed X-rays can be obtained from plasma or X-ray lasers generated by ultrashort pulse lasers in recent years, and pulsed ultrashort wavelength ultraviolet rays can be obtained by generation of harmonics of ultrashort pulse lasers. By using such a high-intensity pulsed radiation source, many fields such as observation of high-speed phenomena of the surface state may be opened even in the field using electron spectroscopy.

【0010】しかし、これらの高輝度パルス線源も、尖
頭出力は高いものの平均出力はそれほど高くなく、これ
に対して定常照射線源用に設計されている従来の電子分
光装置では、平均出力のみが重要であり、高輝度パルス
線源の高い尖頭出力は測定できない。
However, these high-intensity pulsed radiation sources also have a high peak output but a low average output. On the other hand, in a conventional electron spectroscope designed for a steady irradiation radiation source, the average output is low. Is important, and the high peak power of a high intensity pulsed source cannot be measured.

【0011】そこで、この発明においては上述のような
高輝度パルス線源の特徴を生かした検出効率の高い電子
分光方法とその装置を開発することによって試料表面状
態の高速現象の観察などの新たな応用分野の発展を可能
にさせることを目的とする。
Therefore, in the present invention, by developing an electron spectroscopy method and its apparatus having high detection efficiency utilizing the above-described features of the high-intensity pulsed radiation source, new techniques such as observation of high-speed phenomena of a sample surface state are developed. The purpose is to enable the development of applied fields.

【0012】[0012]

【課題を解決するための手段】この発明では、上記課題
を解決するため、パルスX線乃至パルス超短波長紫外線
を試料に照射し、該試料から放出される電子を所定距離
飛行させ、その飛行時間を測定する電子分光方法を提供
するものである。
According to the present invention, in order to solve the above-mentioned problems, a sample is irradiated with pulsed X-rays or ultra-short wavelength ultraviolet rays, electrons emitted from the sample are caused to fly a predetermined distance, and the flight time is increased. To provide an electron spectroscopy method for measuring the

【0013】更に、この発明においてはパルスX線乃至
パルス超短波長紫外線の照射手段と、パルスX線乃至パ
ルス超短波長紫外線を試料に照射させる際に試料から放
出される電子を所定距離飛行させる飛行路と、その飛行
時間を測定する電子流計測手段からなる電子分光装置を
提供するものである。
Further, according to the present invention, there is provided means for irradiating pulsed X-rays or pulsed ultrashort wavelength ultraviolet light, and a flight path for causing electrons emitted from the sample to fly a predetermined distance when the sample is irradiated with pulsed X-rays or pulsed ultrashort wavelength ultraviolet light. And an electron spectrometer comprising an electron flow measuring means for measuring the time of flight.

【0014】即ち、ある一定の距離を電子が飛行すると
き、その飛行時間は、電子のエネルギーに依存する。そ
こで、電子源から十分に離れた場所において電子流を観
測すれば、その時間変化から、電子エネルギーが分光さ
れる。そして、この時間変化を全て記録することによ
り、発生した電子が無駄に捨てられることなく計測され
ることになり、計測の効率が極めて高くなる。
That is, when an electron flies over a certain distance, the time of flight depends on the energy of the electron. Then, if the electron flow is observed at a place sufficiently distant from the electron source, the electron energy is spectrally analyzed from the time change. Then, by recording all the time changes, the generated electrons are measured without being discarded wastefully, and the efficiency of the measurement becomes extremely high.

【0015】この発明においてはパルスX線照射手段と
しては、極短パルスレーザー生成プラズマ或はX線レー
ザー等を使用することができ、またパルス超短波長紫外
線の照射手段としては超短パルスレーザーの高調波等を
使用することができる。
In the present invention, an ultrashort pulse laser-produced plasma or an X-ray laser can be used as the pulse X-ray irradiating means. Waves and the like can be used.

【0016】なお、この発明のような飛行時間法を可能
にするには、観測すべき飛行時間差に比べて粒子発生の
時間幅を十分に短くする必要がある。例えば300 電子ボ
ルトの電子は、100 ナノ秒(1000 万分の1 秒) で1メー
トルの距離を飛行するが、電子源から1メートルの場所
において、平均300 電子ボルトの電子のエネルギースペ
クトルを1/100 のエネルギー精度で測定するには、電子
流計測には時間分解能2ナノ秒が求められ、電子の発生
もそれより短いパルス幅である必要がある。近年得られ
るようになったパルスX線を用いれば、容易にこの程度
のパルス幅の電子の発生が可能である。
In order to enable the time-of-flight method as in the present invention, it is necessary to make the time width of particle generation sufficiently shorter than the time-of-flight difference to be observed. For example, an electron of 300 eV flies a distance of one meter in 100 nanoseconds (one tenth of a millionth of a second), but at one meter from the electron source, the energy spectrum of an electron of 300 eV averages 1/100. In order to measure with an energy accuracy of, the electron flow measurement requires a time resolution of 2 nanoseconds, and the generation of electrons also requires a shorter pulse width. By using pulsed X-rays that have recently been obtained, it is possible to easily generate electrons having such a pulse width.

【0017】また、この発明においては発生される電子
のパルス幅が一定のとき、電子飛行路の距離を延長して
飛行時間を増大することで、エネルギー分解能を向上さ
せることができる。
In the present invention, when the pulse width of the generated electrons is constant, the energy resolution can be improved by extending the distance of the electron flight path and increasing the flight time.

【0018】更に、飛行路の途中に減速電場を設け、飛
行する電子を減速する、例えば1000電子ボルトの電子を
40電子ボルトに減速することにより、飛行時間が大幅に
増大でき、エネルギー分解能が向上する。
Further, a deceleration electric field is provided in the middle of the flight path to decelerate the flying electrons.
By slowing down to 40 eV, the flight time can be significantly increased and the energy resolution improved.

【0019】なお、X線などによる照射で物質から放出
される電子は、広い立体角に分布するが、飛行路に電場
或は磁場によるレンズを設け、広い立体角に放出される
電子を、遠くに離れて設置された電子流計測器の上にス
リット状或はスポット状に集光させることで、電子の捕
捉率が高められる。
Electrons emitted from a substance by irradiation with X-rays or the like are distributed over a wide solid angle. However, a lens formed by an electric or magnetic field is provided on the flight path to allow electrons emitted at a wide solid angle to travel far. By condensing the light in a slit or spot shape on an electron flow measuring instrument installed at a distance from the target, the trapping rate of electrons can be increased.

【0020】一方、電子の飛行時間を測定する電子流計
測器としては、時間分解能が2ナノ秒程度で、かつ高感
度のものが求められるが、このように高感度の電子流計
測器が求められない場合には、電子流計測器を次のよう
な手段によって構成してもよい。
On the other hand, as an electron flow measuring device for measuring the time of flight of electrons, a device having a time resolution of about 2 nanoseconds and a high sensitivity is required. Such a high sensitivity electron flow measuring device is required. If not, the electron flow measuring device may be constituted by the following means.

【0021】即ち、時間的に掃引された電場を印加する
などの手段で、電子の飛行方向とは異なる、例えば直交
する方向に、電子を偏向することで、飛行時間分布を空
間分布に変換すれば、テレビカメラ或は画像検出器の使
用が可能になり、データ処理が容易になる。
That is, the time-of-flight distribution is converted into a spatial distribution by deflecting the electrons in a direction different from the flight direction of the electrons, for example, in a direction orthogonal to the flight direction of the electrons by means of applying an electric field swept over time. If this is the case, a television camera or an image detector can be used, and data processing becomes easy.

【0022】また、上述のようにスリット或はピンホー
ルなどを通過させて空間的に限定した電子流を掃引偏向
させることで、エネルギー分解能が高く保たれる。
Further, as described above, by sweeping and deflecting a spatially limited electron flow through a slit or a pinhole, the energy resolution is kept high.

【0023】更に、高電圧の印加により電子を高速に加
速する、チャンネルトロン、チャンネルプレート等を用
い、或はこれらを組み合わせるなどの手段を施して電子
流を増倍することにより、極めて微弱な電子流も計測可
能となる。
Further, by applying means such as accelerating electrons at a high speed by applying a high voltage, using a channeltron or a channel plate, or combining them, the electron flow is multiplied to obtain extremely weak electrons. The flow can also be measured.

【0024】なお、チャンネルプレートなどは、その感
度が入射電子のエネルギーに依存することが知られてい
るが、前述の高電圧の印加による電子の加速を、感度の
エネルギー依存性が大きくないエネルギー領域で電子を
加速することにより、データ処理を容易にできる、とい
う利点があるが、その増幅能力の持続時間を極めて短か
くし、それをパルス状に発生する電子流と同期させるこ
とで、更に信号対雑音比が改善できる。
It is known that the sensitivity of a channel plate or the like depends on the energy of incident electrons. However, the acceleration of electrons due to the application of a high voltage is performed in an energy region where the sensitivity does not greatly depend on the energy. There is an advantage that data processing can be facilitated by accelerating electrons at the same time. However, by shortening the duration of the amplification capability and synchronizing it with the pulsed electron flow, the signal pair can be further increased. The noise ratio can be improved.

【0025】[0025]

【発明の効果】この発明によれば、超短パルスX線など
のパルス励起で試料から放出された電子を、極めて高い
検出効率で、しかも高分解能で分光することができ、こ
れにより超短パルスX線などの励起を計測手段とする、
表面状態の高速現像の研究などの新たな応用分野の発達
に寄与することができる。
According to the present invention, electrons emitted from a sample by pulse excitation of an ultrashort pulse X-ray or the like can be separated with extremely high detection efficiency and high resolution. Using excitation of X-rays or the like as measurement means,
It can contribute to the development of new application fields such as research on high-speed development of surface conditions.

【0026】[0026]

【実施例】以下、この発明を図示の実施例に基づいて詳
細に説明する。図1は、この発明の一実施例を示すもの
であり、1は試料、2は極短パルスレーザー生成プラズ
マ等のパルスX線照射器、3は減速用グリット、4は所
定の距離をもって設定された電子流の飛行路、5は電子
流計測器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 shows an embodiment of the present invention, wherein 1 is a sample, 2 is a pulse X-ray irradiator such as plasma generated by an ultrashort pulse laser, 3 is a deceleration grit, and 4 is a predetermined distance. The electron flow path 5 is an electron flow measuring instrument.

【0027】電子流計測器5は、この実施例ではその先
端部にスリット6を設け、スリット6の後方には加速電
場7、偏向用電場8を設け、更に偏向用電場8の後方に
はチャンネルプレート9、蛍光板10、光学レンズ11、カ
メラ12を配置して構成される。
In the present embodiment, the electron flow measuring instrument 5 has a slit 6 at its tip, an accelerating electric field 7 and a deflecting electric field 8 behind the slit 6, and a channel behind the deflecting electric field 8. It is configured by arranging a plate 9, a fluorescent plate 10, an optical lens 11, and a camera 12.

【0028】更に、電子流の飛行路の両側には電子流が
スリット6に集光されるように電子レンズ13を配置す
る。
Further, electron lenses 13 are arranged on both sides of the flight path of the electron flow so that the electron flow is focused on the slit 6.

【0029】ここで、パルスX線照射器2からパルスX
線を試料1に照射すると、試料1の表面よりパルス状の
電子ビームeを発生させる。この電子ビームeをグリッ
ト3で電子エネルギーを調整した後、長い飛行路4を通
過させることにより、スリット6の上で、電子のエネル
ギースペクトルが電子流の時間変化に変換される。
Here, the pulse X-ray from the pulse X-ray irradiator 2
When the line is irradiated on the sample 1, a pulsed electron beam e is generated from the surface of the sample 1. After adjusting the electron energy of the electron beam e with the grit 3, the electron beam e is passed through a long flight path 4, whereby the energy spectrum of the electrons is converted into a time change of the electron flow on the slit 6.

【0030】なお、この実施例では飛行路5の両側に電
子レンズ13が設け、試料1から発生する電子を、電子レ
ンズ13を用いてスリット4の上に集光させることによ
り、電子の捕捉率を高めるようにしてある。
In this embodiment, electron lenses 13 are provided on both sides of the flight path 5, and electrons generated from the sample 1 are condensed on the slit 4 by using the electron lenses 13, so that the electron capture rate is improved. Is to be raised.

【0031】次に十分な飛行時間差を作り出した後、加
速電場7で加速することで、信号を増倍する。また高速
に時間変化する偏向用電場8を印加して、飛行方向と直
交する方向に電子eを偏向させることで、電子流の時間
変化を空間変化に変換し、一次元アレイ或は二次元画像
検出器を用いて、電子のエネルギースペクトルが容易に
記録できるようにする。
Next, after a sufficient time difference is created, the signal is multiplied by accelerating in the accelerating electric field 7. In addition, a time-varying deflection electric field 8 is applied to deflect the electron e in a direction orthogonal to the flight direction, thereby converting the time change of the electron flow into a spatial change, thereby obtaining a one-dimensional array or two-dimensional image. The energy spectrum of the electrons can be easily recorded using a detector.

【0032】更に空間分布に変換された電子エネルギー
分布は、チャンネルプレート9などで増幅し、蛍光板10
で光に変換した後、光学レンズ11などを用いてカメラ12
で観察する。
The electron energy distribution converted into the spatial distribution is amplified by the channel plate 9 or the like, and
After conversion into light, the camera 12
Observe with.

【0033】なお、この場合パルス電圧を印加するなど
して、電子の発生と同期させた短いパルス幅の間だけチ
ャンネルプレートなどが増幅能力を持つようにすること
により、信号対雑音比が向上できる。
In this case, the signal-to-noise ratio can be improved by applying a pulse voltage or the like so that the channel plate or the like has an amplifying ability only for a short pulse width synchronized with the generation of electrons. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す概略図FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】従来使用されていた静電半球型エネルギー分析
器の原理説明図
FIG. 2 is a diagram illustrating the principle of a conventionally used electrostatic hemispherical energy analyzer.

【符号の説明】[Explanation of symbols]

1 試料 2 パルスX線照射器 3 減速用グリット 4 電子流の飛行路 5 電子流計測器 6 スリット 7 加速電場 8 偏向用電場 9 チャンネルプレート 10 蛍光板 11 光学レンズ 12 カメラ 13 電子レンズ e 電子ビーム R1,R2 静電半球型エネルギー分析器を構成する二つの
球面電極 S 入射スリット E 出射面 D 一次元アレイ或は二次元画像検出器 α スリットSに入射する角度幅
REFERENCE SIGNS LIST 1 sample 2 pulse X-ray irradiator 3 deceleration grit 4 electron flow flight path 5 electron flow measuring instrument 6 slit 7 accelerating electric field 8 deflection electric field 9 channel plate 10 fluorescent plate 11 optical lens 12 camera 13 electron lens e electron beam R1, R2 Two spherical electrodes constituting an electrostatic hemispherical energy analyzer S Entrance slit E Emission surface D One-dimensional array or two-dimensional image detector α Angle width incident on slit S

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 極短パルスレーザー生成プラズマより発
生させるパルスX線を試料に照射し、該試料から放出さ
れる電子を所定距離飛行させ、前記試料から放出される
電子のエネルギーに応じた飛行時間差を作り出し、該飛
行時間差に基づく飛行時間分布を測定することにより、
前記試料から放出される電子のエネルギー分布を測定す
ることを特徴とする電子分光方法。
1. A sample is irradiated with pulsed X-rays generated from an ultra-short pulse laser-produced plasma, electrons emitted from the sample are caused to fly a predetermined distance, and emitted from the sample.
A flight time difference corresponding to the electron energy is created ,
By measuring the flight time distribution based on the line time difference,
An electron spectroscopy method comprising measuring an energy distribution of electrons emitted from the sample .
【請求項2】 極短パルスレーザー生成プラズマより発
生されるパルスX線を試料に照射させる照射手段と、該
パルスX線を照射させる際に試料から放出される電子を
所定距離飛行させて、前記試料から放出される電子のエ
ネルギーに応じた飛行時間差を作り出す飛行路と、該飛
行時間差に基づく飛行時間分布を測定することにより前
記試料から放出される電子のエネルギー分布を測定する
電子流計測手段からなることを特徴とする電子分光装
置。
2. An irradiation means for irradiating a sample with pulsed X-rays generated from an ultrashort pulse laser-produced plasma ;
When a pulse X-ray is irradiated, electrons emitted from a sample are caused to fly a predetermined distance, and the electrons emitted from the sample are emitted.
A flight path to create a flight time difference according to the energy, the flight
By measuring the flight time distribution based on the line time difference
Electron spectroscopy apparatus characterized by comprising a electronic flow measurement means for measuring the electron energy distribution emitted from the serial sample.
【請求項3】 飛行路の電子流を減速或は加速する手段
を備えたことを特徴とする請求項2記載の電子分光装
置。
3. An electron spectrometer according to claim 2, further comprising means for decelerating or accelerating an electron flow in a flight path.
【請求項4】 電子流計測手段の先端部にスリット或は
アパーチャーを設け、飛行路の電子流を電場或は磁場に
より上記スリット或はアパーチャーに集光する手段を備
えた請求項2記載の電子分光装置。
4. An electron according to claim 2, wherein a slit or an aperture is provided at a tip portion of the electron flow measuring means, and means for condensing the electron flow on the flight path to the slit or the aperture by an electric field or a magnetic field is provided. Spectroscopy device.
【請求項5】 電子流計測手段が、電子をその飛行方向
とは異なる方向に偏向させる手段を備えた請求項2項記
載の電子分光装置。
5. The electron spectrometer according to claim 2, wherein the electron flow measuring means includes means for deflecting the electrons in a direction different from the flight direction.
【請求項6】 電子流計測手段が高電圧の印加、チャン
ネルトロン、チャンネルプレートその他の方法により、
電子流を増倍させる手段を備えた請求項2項記載の電子
分光装置。
6. The method according to claim 6, wherein the electron flow measuring means uses a high voltage application, a channeltron, a channel plate, or another method.
3. The electron spectrometer according to claim 2, further comprising means for multiplying the electron flow.
【請求項7】 パルス電圧の印加などにより電子流を増
倍させる手段の増倍能力を時間的に変化させる手段を備
えた請求項6項記載の電子分光装置。
7. The electron spectroscopic apparatus according to claim 6, further comprising means for changing the multiplication ability of the means for multiplying the electron flow by applying a pulse voltage or the like with time.
JP4205954A 1992-07-09 1992-07-09 Electron spectroscopy method and electron spectrometer using the same Expired - Lifetime JP2764505B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4205954A JP2764505B2 (en) 1992-07-09 1992-07-09 Electron spectroscopy method and electron spectrometer using the same
GB9313950A GB2268802B (en) 1992-07-09 1993-07-06 Electron spectroscopy apparatus
DE19934322852 DE4322852C2 (en) 1992-07-09 1993-07-08 Electron spectroscopy device
US08/380,694 US5569916A (en) 1992-07-09 1995-01-30 Electron spectroscopy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205954A JP2764505B2 (en) 1992-07-09 1992-07-09 Electron spectroscopy method and electron spectrometer using the same

Publications (2)

Publication Number Publication Date
JPH0627058A JPH0627058A (en) 1994-02-04
JP2764505B2 true JP2764505B2 (en) 1998-06-11

Family

ID=16515457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205954A Expired - Lifetime JP2764505B2 (en) 1992-07-09 1992-07-09 Electron spectroscopy method and electron spectrometer using the same

Country Status (3)

Country Link
JP (1) JP2764505B2 (en)
DE (1) DE4322852C2 (en)
GB (1) GB2268802B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752101B1 (en) * 1996-07-30 1998-10-09 Commissariat Energie Atomique DEVICE FOR GENERATING ULTRA-SHORT X-RAY PULSES
DE19924204A1 (en) * 1999-05-27 2000-11-30 Geesthacht Gkss Forschung Device and method for generating x-rays
US7391036B2 (en) 2002-04-17 2008-06-24 Ebara Corporation Sample surface inspection apparatus and method
JP5110812B2 (en) * 2006-07-14 2012-12-26 日本電子株式会社 Chemical state analysis method and apparatus by Auger electron spectroscopy
CN106198581B (en) * 2016-08-30 2023-04-07 中国工程物理研究院激光聚变研究中心 Ultrashort X-ray double-angle double-color backlight photographing system based on laser-driven solid target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435828A (en) * 1982-04-14 1984-03-06 Battelle Development Corporation Fluorescence laser EXAFS
JPH0225737A (en) * 1988-07-15 1990-01-29 Hitachi Ltd Surface analysis method and device
JPH0718960B2 (en) * 1989-08-25 1995-03-06 株式会社島津製作所 X-ray microscope
JP3152455B2 (en) * 1991-08-02 2001-04-03 浜松ホトニクス株式会社 Energy distribution measurement device for charged particles

Also Published As

Publication number Publication date
DE4322852A1 (en) 1994-01-13
JPH0627058A (en) 1994-02-04
GB2268802A (en) 1994-01-19
DE4322852C2 (en) 1999-10-14
GB2268802B (en) 1995-12-20
GB9313950D0 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
US5444242A (en) Scanning and high resolution electron spectroscopy and imaging
JP2842879B2 (en) Surface analysis method and device
Budil et al. The flexible x‐ray imager
US20130126727A1 (en) Time-of-Flight Electron Energy Analyzer
US5569916A (en) Electron spectroscopy apparatus
US9390887B2 (en) Non-invasive charged particle beam monitor
US5650616A (en) Apparatus and method for analyzing surface
CN111323440A (en) X-ray diffraction diagnostic system
JPH09106780A (en) Apparatus and method for surface analysis
JP2764505B2 (en) Electron spectroscopy method and electron spectrometer using the same
JPS6314459B2 (en)
Glenzer et al. High-energy 4ω probe laser for laser-plasma experiments at Nova
US6897441B2 (en) Reducing chromatic aberration in images formed by emmission electrons
JP3384063B2 (en) Mass spectrometry method and mass spectrometer
KR102041212B1 (en) Measurement system for x-ray spectroscopy and imaging
CN111727489B (en) Momentum-resolved photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy
JP2629594B2 (en) X-ray photoelectron spectroscopy
US20040021069A1 (en) Spectroscopic analyser for surface analysis, and method therefor
Kelly et al. Proposed configurations for a high-repetition-rate position-sensitive atom probe
JP3152455B2 (en) Energy distribution measurement device for charged particles
JPH11149000A (en) Laser Plasma Soft X-ray Energy Measurement System
JP2007157581A (en) Ion analyzer
Andreev et al. A Medium-Range-Energy X-Ray Source Based on an Image Converter Tube
JPS5820103B2 (en) mass spectrometer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term