JP2756125B2 - Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method - Google Patents
Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the methodInfo
- Publication number
- JP2756125B2 JP2756125B2 JP63275709A JP27570988A JP2756125B2 JP 2756125 B2 JP2756125 B2 JP 2756125B2 JP 63275709 A JP63275709 A JP 63275709A JP 27570988 A JP27570988 A JP 27570988A JP 2756125 B2 JP2756125 B2 JP 2756125B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- scanning
- light beam
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Optical Systems Of Projection Type Copiers (AREA)
- Facsimile Scanning Arrangements (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種プリンタ、ファクシミリ等に適用される
走査光学系における走査線の曲がり矯正方法及びこの方
法により走査線の曲がりを矯正された走査光学系に関す
る。Description: BACKGROUND OF THE INVENTION The present invention relates to a method for correcting a scanning line in a scanning optical system applied to various printers, facsimile machines, and the like, and a scanning optical system in which the scanning line is corrected by this method. About the system.
光源から出射される光束を線状に結像させる第1結像
光学系と、この第1結像光学系による結像位置の近傍に
偏向反射面が設定されている光偏向器と、この光偏向器
で偏向された光束により走査される被走査媒体と、上記
光束の光路上であってこの被走査媒体と上記光偏向器と
の間に配設され、上記光偏向器で連続的に偏向される光
束の軌跡面たる偏向面と垂直な面内において上記光偏向
器の偏向反射面と上記被走査媒体とを光学的に共役な関
係に保ちつつ上記光束を上記被走査媒体上に結像させる
第2結像光学系を有する走査光学系が知られている。A first imaging optical system that linearly forms an image of a light beam emitted from a light source, an optical deflector having a deflecting / reflecting surface set in the vicinity of an imaging position of the first imaging optical system, A medium to be scanned which is scanned by the light beam deflected by the deflector, and which is disposed on the optical path of the light beam and between the medium to be scanned and the light deflector, and is continuously deflected by the light deflector. The light beam is imaged on the medium to be scanned while maintaining the optically conjugate relationship between the deflecting reflection surface of the optical deflector and the medium to be scanned in a plane perpendicular to the deflecting surface that is the trajectory surface of the light beam to be scanned. There is known a scanning optical system having a second imaging optical system for causing the scanning.
上記走査光学系の一例を説明した第8図において、光
源1より出射された光束は第1結像光学系としてのシリ
ンドリカルレンズ2により線状に結像される。一方、こ
の結像位置を含むその近傍には光偏向器3の複数の偏向
反射面の一つが回転に応じて順次、位置するように設定
されている。In FIG. 8 illustrating an example of the scanning optical system, a light beam emitted from a light source 1 is linearly imaged by a cylindrical lens 2 as a first image forming optical system. On the other hand, one of the plurality of deflecting and reflecting surfaces of the optical deflector 3 is set so as to be sequentially located according to the rotation in the vicinity including the image forming position.
上記により、偏向反射面4上に結像された線像は第2
結像光学系としてのfθレンズ51及びfθレンズ52を介
して出射することにより被走査媒体上の像面7上に点像
として結像され、且つ、光偏向器3の矢印方向の回転に
応じて直線8上を走査される。この走査を主走査と称
し、その方向を主走査方向X−Xと称する。さらに、像
面7上で主走査方向X−Xに直交する方向での走査を副
走査と称し、その方向を副走査方向Y−Yと称する。As described above, the line image formed on the deflecting reflection surface 4 is the second image.
The light is emitted through an fθ lens 51 and an fθ lens 52 as an imaging optical system to form an image as a point image on an image plane 7 on a medium to be scanned, and according to the rotation of the optical deflector 3 in the arrow direction. Is scanned on a straight line 8. This scanning is called main scanning, and the direction is called main scanning direction XX. Further, scanning in the direction orthogonal to the main scanning direction XX on the image plane 7 is referred to as sub-scanning, and that direction is referred to as sub-scanning direction YY.
このような走査光学系で例えばfθレンズに偏心があ
ると、本来なら直線8の様に走査されるべき走査線は符
号8′で示す如く湾曲した走査線となる。If, for example, the fθ lens is decentered in such a scanning optical system, a scanning line that should be scanned like a straight line 8 is a curved scanning line as indicated by reference numeral 8 ′.
ここで、偏心とは、第9図に示すレンズ輪部に関し、
破線で示すものが偏心のない理想状態のレンズ輪部とす
ると、実線で示す状態に偏心量Sずれていることをい
う。走査線の曲がりに大きく影響する偏心は、主に副走
査方向Y−Yへレンズ面がシフトした如き状況を伴な
う。Here, eccentricity refers to the lens limb shown in FIG.
If the one shown by the broken line is the ideal lens limb without eccentricity, it means that the eccentricity S is shifted to the state shown by the solid line. The eccentricity that greatly affects the scanning line bending is mainly accompanied by a situation where the lens surface is shifted in the sub-scanning direction YY.
第9図中、符号0−0はレンズの光軸を示す。 In FIG. 9, reference numerals 0-0 indicate the optical axis of the lens.
従来のモノクロプリンタ、ファクシミリ等では走査線
曲がりは、約0.2〜0.5mm発生しているが、この程度の値
は許容されていた。In a conventional monochrome printer, facsimile, or the like, the scanning line bending is about 0.2 to 0.5 mm, but such a value is allowed.
しかし、近年幅広プリンタや、高精度の製版プロッ
タ、さらに複数ビームで書き込みを行なうカラープリン
タの開発が行なわれるにつれて走査線曲がりが書き込み
の位置ずれとして画質に影響を及ぼすようになってき
た。However, in recent years, as the development of wide printers, high-precision plate making plotters, and color printers that perform writing with a plurality of beams has been performed, the scanning line bending has affected the image quality as a writing displacement.
例えば、色別の書き込みを行なう走査光学系を用いる
カラープリンタでは第10図(a)に示すように赤、緑、
青画像の各情報を含む各書き込み走査線8Re,8G,8Bが理
想とする直線状の走査線8に対してそれぞれ湾曲して各
々が所謂、走査線の曲がりを生ずることがある。For example, in a color printer using a scanning optical system for performing writing for each color, as shown in FIG.
Each of the writing scanning lines 8Re, 8G, and 8B containing each information of the blue image may be curved with respect to the ideal linear scanning line 8, and each may cause a so-called bending of the scanning line.
走査線8Reは基準となる走査線8に対し副走査方向Y
−Yについて上に曲がり量dR、走査線8Bは副走査方向Y
−Yについて下に曲がり量dBを有しているので、両者の
最大差はdR+dBとなり、この差に応じた色ずれを生ず
る。The scanning line 8Re is in the sub-scanning direction Y with respect to the reference scanning line 8.
The amount of bending dR upward in −Y, the scanning line 8B is in the sub-scanning direction Y
Since −Y has a downward bending amount dB, the maximum difference between them is dR + dB, and a color shift corresponding to this difference occurs.
また、幅広プリンタでは第10図(b)に示す例があ
る。この例は、左右2個のA2サイズ幅用の走査光学系に
よる走査線を組み合わせてA0サイズ幅の書き込みを合成
するもので、基準となる走査線8に対し、副走査方向Y
−Yについて各走査線81,82がそれぞれ互いに異なる向
きに曲がり量d1,d2湾曲しているため、両走査線のつな
ぎ目に相当する仮想ラインN−Nにて合計d1+d2ものつ
なぎ目のずれを生じ画質を損なう。FIG. 10B shows an example of a wide printer. In this example, two scanning lines by the scanning optical system for the A2 size width on the left and right are combined to synthesize the writing of the A0 size width.
Since the scanning lines 81 and 82 are curved in the directions d1 and d2 different from each other with respect to −Y, a total of d1 + d2 seam shifts occur in the virtual line NN corresponding to the seam of the two scanning lines. Impair.
このような色ずれやつなぎ目のずれを解消するには、
レンズの偏心交差及びレンズの取付面の交差を極めて厳
しくする必要がある。To eliminate such color shifts and seam shifts,
It is necessary to make the eccentric intersection of the lens and the intersection of the mounting surface of the lens extremely severe.
しかし、上記交差を厳しくすると今度は加工コストが
高くなり、この主走査光学系を用いた各種の記録装置の
低価格化への要請にそえなくなり問題となっている。However, if the intersection is made strict, the processing cost is increased this time, and there is a problem in that the demand for lowering the price of various recording apparatuses using the main scanning optical system cannot be met.
本発明は、レンズの偏心交差、取付面の交差等を厳格
に管理することなく、従ってコストを押し上げない範囲
で、走査線の曲がりを画質に影響が出ない程度に簡易に
矯正することのできる走査線の曲がり矯正方法を提供す
ることを目的とする。According to the present invention, it is possible to easily correct the bending of the scanning line to such an extent that the image quality is not affected without strictly controlling the eccentric intersection of the lens, the intersection of the mounting surface, and the like, and without increasing the cost. It is an object of the present invention to provide a method for correcting a scan line.
なお、走査線の曲がりは、前記レンズの偏心に起因す
るものの他に、レンズの倒れによるもの、すなわち、レ
ンズ中、主走査方向の任意の軸を中心としてレンズを回
転させることによっても発生する。しかし、この場合の
曲がりは前記副走査方向への偏心と光軸方向への偏心
(レンズ面のずれ)の組合せにより容易に解消すること
ができる。さらに、上記光軸方向への偏心は走査線の曲
がりに与える影響が小さい等のことから問題にならな
い。The bending of the scanning line is caused not only by the eccentricity of the lens but also by tilting of the lens, that is, by rotating the lens about an arbitrary axis in the main scanning direction in the lens. However, the bending in this case can be easily eliminated by a combination of the eccentricity in the sub-scanning direction and the eccentricity in the optical axis direction (shift of the lens surface). Further, the eccentricity in the optical axis direction is not a problem because the influence on the bending of the scanning line is small.
上記目的を達成するために、本発明においては、
(a)光源から出射される光束を線状に結像させる第1
結像光学系と、この第1結像光学系による結像位置の近
傍に偏向反射面が設定されている光偏向器と、この光偏
向器で偏向された光束により走査される被走査媒体と、
上記光束の光路上であってこの被走査媒体と上記光偏向
器との間に配設され、上記光偏向器で連続的に偏向され
る光束の軌跡面たる偏向面と垂直な面内において上記光
偏向器の偏向反射面と上記被走査媒体とを光学的に共役
な関係に保ちつつ上記光束を上記被走査媒体上に結像さ
せる第2結像光学系を有する走査光学系に関し、上記第
2結像光学系中のレンズの偏心に起因する走査線の曲が
りを矯正する方法として、上記光偏向器で偏向される光
束による走査方向と直交する方向に倍率をもち、上記第
2結像光学系のレンズの中、上記倍率が最大のレンズ面
を有するレンズについて、ΔSは矯正量、Kはレンズ面
の倍率で決まる係数、Sはレンズ面の偏心量、添字のn
は、上記第2結像光学系の中、上記倍率が最大のレンズ
面を有するレンズを含む結像光学系を構成するレンズの
レンズ番号、添字の数字は、レンズ面番号とするとき、 ΔS=(Kn1・Sn1+Kn2・Sn2)/(Kn1+Kn2) により求めた計算式で算出された矯正量ΔSで該レンズ
を副走査方向に偏心させた上、固定する構成とし(請求
項1)、(b).光源から出射される光束を線状に結像
させる第1結像光学系と、この第1結像光学系による結
像位置の近傍に偏向反射面が設定されている光偏向器
と、この光偏向器で偏向された光束により走査される被
走査媒体と、上記光束の光路上であってこの被走査媒体
と上記光偏向器との間に配設され、上記光偏向器で連続
的に偏向される光束の軌跡面たる偏向面と垂直な面内に
おいて上記光偏向器の偏向反射面と上記被走査媒体とを
光学的に共役な関係に保ちつつ上記光束を上記被走査媒
体上に結像させる第2結像光学系を有する走査光学系と
して、上記第2結像光学系中のレンズの偏心に起因する
走査線の曲がりを、上記光偏向器で偏向される光束によ
る走査方向と直交する方向に倍率をもち、上記第2結像
光学系のレンズの中、上記倍率が最大のレンズ面を有す
るレンズについて、ΔSは矯正量、Kはレンズ面の倍率
で決まる係数、Sはレンズ面の偏心量、添字のnは、上
記第2結像光学系の中、上記倍率が最大のレンズ面を有
するレンズを含む結像光学系を構成するレンズのレンズ
番号、添字の数字は、レンズ面番号とするとき、 ΔS=(Kn1・Sn1+Kn2・Sn2)/(Kn1+Kn2) により求めた計算式で算出された矯正量ΔSで該レンズ
を副走査方向に偏心させた上、固定する構成とした(請
求項2)。In order to achieve the above object, in the present invention,
(A) First for forming a light beam emitted from a light source into a linear image
An image forming optical system, an optical deflector having a deflecting / reflecting surface set near an image forming position by the first image forming optical system, and a medium to be scanned scanned by a light beam deflected by the optical deflector. ,
On the optical path of the light beam, disposed between the medium to be scanned and the light deflector, and in a plane perpendicular to a deflection surface as a trajectory surface of the light beam continuously deflected by the light deflector. A scanning optical system having a second imaging optical system that forms an image of the light beam on the scanning target medium while maintaining the deflection reflecting surface of the optical deflector and the scanning target medium in an optically conjugate relationship; (2) As a method of correcting the bending of the scanning line due to the eccentricity of the lens in the image forming optical system, the second image forming optical system has a magnification in a direction orthogonal to the scanning direction by the light beam deflected by the optical deflector. Among the lenses of the system, for the lens having the lens surface with the largest magnification, ΔS is the correction amount, K is a coefficient determined by the magnification of the lens surface, S is the eccentricity of the lens surface, and the subscript n
Is the lens number of the lens constituting the imaging optical system including the lens having the lens surface having the largest magnification in the second imaging optical system, and the subscript number is the lens surface number. The lens is decentered in the sub-scanning direction by the correction amount ΔS calculated by the formula obtained by (Kn 1 · Sn 1 + Kn 2 · Sn 2 ) / (Kn 1 + Kn 2 ), and is fixed. Item 1), (b). A first imaging optical system that linearly forms an image of a light beam emitted from a light source, an optical deflector having a deflecting / reflecting surface set in the vicinity of an imaging position of the first imaging optical system, A medium to be scanned which is scanned by the light beam deflected by the deflector, and which is disposed on the optical path of the light beam and between the medium to be scanned and the light deflector, and is continuously deflected by the light deflector. The light beam is imaged on the medium to be scanned while maintaining the optically conjugate relationship between the deflecting reflection surface of the optical deflector and the medium to be scanned in a plane perpendicular to the deflecting surface that is the trajectory surface of the light beam to be scanned. As a scanning optical system having a second imaging optical system, the bending of the scanning line caused by the eccentricity of the lens in the second imaging optical system is orthogonal to the scanning direction of the light beam deflected by the optical deflector. Direction, and the largest magnification among the lenses of the second imaging optical system. For a lens having a lens surface, ΔS is the correction amount, K is a coefficient determined by the magnification of the lens surface, S is the amount of eccentricity of the lens surface, and the suffix n is the second imaging optical system in which the magnification is the largest. When the lens number and the suffix of the lens constituting the imaging optical system including the lens having the lens surface are the lens surface number, ΔS = (Kn 1 · Sn 1 + Kn 2 · Sn 2 ) / (Kn 1 + Kn 2 ) The lens is decentered in the sub-scanning direction by the correction amount ΔS calculated by the calculation formula obtained in the above (2), and is fixed.
走査線の曲がりに最も大きい影響力をもちレンズにつ
いて事後的に設定位置が調整される。The setting position of the lens is adjusted a posteriori with the greatest influence on the scan line bending.
先ず、比較の基準として、偏心がないときの結像関係
を第3図に示す。First, as a reference for comparison, FIG. 3 shows an imaging relationship when there is no eccentricity.
この図は、前記第8図に示した走査光学系を、レンズ
光軸を通り且つ副走査方向の断面(副走査断面)で示し
たものである。This figure shows the scanning optical system shown in FIG. 8 in a section (sub-scanning section) passing through the lens optical axis and in the sub-scanning direction.
図に示す通りfθレンズは符号51,52で示す如く2枚
構成となっている。そして、1枚目のfθレンズ51は片
側が球面51−1、他側がシリンダ面51−2を有し、2枚
目のfθレンズ52は片側がシリンダ面52−1、他側がト
ロイダル面52−2で構成されている。As shown in the figure, the fθ lens has a two-element configuration as indicated by reference numerals 51 and 52. The first fθ lens 51 has a spherical surface 51-1 on one side and a cylinder surface 51-2 on the other side, and the second fθ lens 52 has a cylinder surface 52-1 on one side and a toroidal surface 52-1 on the other side. 2 is comprised.
偏向反射面4に線状(線方向は主走査方向Y−Yであ
り第3図中の紙面に垂直な方向)に結像された光束は、
偏向された上、球面51−1及びトロイダル面52−2によ
るレンズ機能により広げられ、空間上の虚像位置V1に虚
像を結ぶ。なお、レンズ光軸を通る主光線を符号CRで示
している。The luminous flux imaged linearly on the deflecting reflection surface 4 (the direction of the line is the main scanning direction YY and a direction perpendicular to the paper surface in FIG. 3) is
After being deflected, it is expanded by the lens function of the spherical surface 51-1 and the toroidal surface 52-2 to form a virtual image at a virtual image position V1 in space. Note that a principal ray passing through the lens optical axis is denoted by a reference character CR.
この光束が一般には副走査方向Y−Yに一番パワーの
強いトロイダル面52−2により集束されて像面7上の所
定位置8Fに結像される。In general, this light beam is converged by the toroidal surface 52-2 having the highest power in the sub-scanning direction YY and is imaged at a predetermined position 8F on the image surface 7.
光偏向器の回転駆動に応じて偏向反射面4が回動する
と、これに応じて像面7上の光軸は所定位置8Fを通り紙
面に垂直な方向、つまり主走査方向Y−Yに走査される
が、ここではレンズに偏心がないことを前提にしている
ため、走査線の曲がりは生ぜず、従ってこの走査軌跡は
第3図の紙面上に投影したときに、所定位置8Fから外れ
ない。When the deflecting and reflecting surface 4 rotates in response to the rotation of the optical deflector, the optical axis on the image plane 7 scans in a direction perpendicular to the paper surface through the predetermined position 8F, that is, in the main scanning direction Y-Y. However, since it is assumed here that the lens has no eccentricity, the scanning line does not bend, so that this scanning locus does not deviate from the predetermined position 8F when projected on the paper surface of FIG. .
次に、fθレンズ52に関し、そのシリンダ面52−1に
ついては偏心が無く、トロイダル面52−2についての
み、副走査方向Y−Yに偏心量Sだけ偏心した場合を考
える。この場合の結像関係を、偏心が無い場合と共に第
4図に示す。第4図において、偏心の無いトロイドル面
52−2は破線で、偏心したトロイダル面52−2′は実線
で示してある。Next, let us consider a case where the fθ lens 52 has no eccentricity on the cylinder surface 52-1 and is decentered only on the toroidal surface 52-2 by the amount of eccentricity S in the sub-scanning direction YY. FIG. 4 shows the image forming relationship in this case together with the case where there is no eccentricity. In FIG. 4, the toroidal surface without eccentricity
52-2 is indicated by a broken line, and the eccentric toroidal surface 52-2 'is indicated by a solid line.
第4図において、偏心が無い場合を考えると、レンズ
光軸上を進んできた主光線CRはトロイダル面52−2を通
過した後も破線で示す如く直進する。In FIG. 4, considering that there is no eccentricity, the principal ray CR that has advanced on the lens optical axis continues straight after passing through the toroidal surface 52-2 as shown by the broken line.
一方、偏心が有する場合を考えると、主光線CRはトロ
イダル面52−2′を通過したのち、レンズ光軸上、トロ
イダル面52−2の焦点距離f離れた点を通るレンズ光軸
との直交平面上で偏心量Sだけレンズ光軸から副走査方
向Y−Yにずれた位置に進むように曲がる。On the other hand, considering the case of eccentricity, the principal ray CR passes through the toroidal surface 52-2 ', and then is orthogonal to the lens optical axis passing through a point on the lens optical axis away from the focal length f of the toroidal surface 52-2. It bends so as to advance to a position shifted in the sub-scanning direction Y-Y from the lens optical axis by the amount of eccentricity S on the plane.
この副走査方向にのみ曲げられた後の光線を主光線C
と称すれば、副走査断面上、主光線CRと主光線Cとは角
度φをなしている。The light beam after being bent only in the sub-scanning direction is referred to as a main light beam C.
In other words, the principal ray CR and the principal ray C form an angle φ on the sub-scanning cross section.
上記第4図に示した状況を前提に結像関係を他の光学
系も含めて、レンズ光軸を通り且つ副走査断面に直交す
る断面である主走査断面上に表わしたのが第5図であ
る。Assuming the situation shown in FIG. 4 above, the imaging relationship, including other optical systems, is shown on the main scanning section which is a section passing through the lens optical axis and orthogonal to the sub-scanning section. It is.
第5図には、主光線Cがレンズ光軸より像高比0で像
面7上の点8Cに結像している様子と、像高比約1の走査
端部付近で像面7上の点8Rに結像している様子が示され
ている。後者の点8Rの結像に寄与している光線は主光線
Rである。FIG. 5 shows a state in which the principal ray C forms an image at a point 8C on the image plane 7 with an image height ratio of 0 from the lens optical axis, and the image on the image plane 7 near the scanning end having an image height ratio of about 1. It is shown that the image is formed at the point 8R. The ray contributing to the formation of the latter point 8R is the principal ray R.
第5図において、fθレンズ52の最終面たるトロイダ
ル面52−2から像面7までの距離をLCとする。光学的条
件により、主光線C、主光線Rはそれぞれトロイダル面
52−2に対して直角に出射している。ここでトロイダル
面52−2と主光線Cとの交差部を輪部52−2C、トロイダ
ル面52−2と主光線Rとの交差部を輪部52−2Rでそれぞ
れ示す。In FIG. 5, the distance from the toroidal surface 52-2, which is the final surface of the fθ lens 52, to the image surface 7 is denoted by LC. Depending on optical conditions, the principal ray C and the principal ray R are respectively toroidal surfaces.
The light exits at a right angle to 52-2. Here, the intersection between the toroidal surface 52-2 and the principal ray C is indicated by a ring portion 52-2C, and the intersection between the toroidal surface 52-2 and the principal ray R is indicated by a ring portion 52-2R.
そこで、主走査平面上、主光線Rが主光線Cに対して
なす角度を走査角θとし、主光線Cが同平面上、トロイ
ダル面52−2より出射する位置のレンズ光軸方向でのず
れ量をΔとすると、主光線Rがトロイダル面52−2より
出射して像面7上の点8Rに至るまでの距離LRは、LR+
(Δ+LC)/cosθと表わせる。Therefore, the angle formed by the principal ray R with respect to the principal ray C on the principal scanning plane is defined as a scanning angle θ, and the position at which the principal ray C exits from the toroidal surface 52-2 on the same plane in the lens optical axis direction. If the amount is Δ, the distance LR from the time when the principal ray R is emitted from the toroidal surface 52-2 to the point 8R on the image plane 7 is LR +
(Δ + LC) / cosθ.
次に、前記第4図に示す偏心したトロイダル面52−
2′による結像関係を上記第5図の主光線C,主光線Rに
ついて副走査断面に投影すると第6図(a)のようにな
る。Next, the eccentric toroidal surface 52- shown in FIG.
FIG. 6 (a) shows the image forming relationship by 2 'projected onto the sub-scanning cross section with respect to the principal ray C and principal ray R in FIG.
さらに、第6図(a)の要部を拡大して示すと第6図
(b)のようになる。なお、第6図(a)において、偏
心のあるトロイダル面52−2′の中、主光線Cを出射す
る面の輪郭を符号52−2′C、主光線Rを出射する面の
輪郭を符号52−2′Rでそれぞれ示す。FIG. 6B is an enlarged view of a main part of FIG. 6A. In FIG. 6 (a), of the eccentric toroidal surface 52-2 ', the contour of the surface emitting the principal ray C is denoted by reference numeral 52-2'C, and the contour of the surface emitting the principal ray R is denoted by reference numeral. Indicated by 52-2'R.
第6図(a),(b)において、主光線Cは副走査断
面上にあるため第4図と全く同様に示され、レンズ光軸
から角度φだけ曲がっているように示される。ここで、
φ=tan-1(S/f)と表わすことができる(第4図参
照)。In FIGS. 6 (a) and 6 (b), the principal ray C is on the sub-scanning cross-section and is shown exactly as in FIG. 4, and is shown to be bent by an angle φ from the lens optical axis. here,
φ = tan -1 (S / f) (see FIG. 4).
一方、主光線Rが主走査平面となす角度についても主
光線Cと同じに角度φである。これは、主光線は常に第
5図でトロイダル面52−2に直角に出射し、該面のレン
ズパワーは角度θのもとでも不変だからである。しか
し、このような主光線Rを副走査断面へ投影してみると
第7図(a)に示す如く角度φよりも大きく開いた角度
ωで表われる。この角度ωは、ω=tan-1(S/f・cos
θ)で示される。このように、主光線Rはレンズ光線よ
り曲がった様になり、且つレンズ面の輪郭52−2′Rも
ずれ量Δだけずれる。On the other hand, the angle formed by the principal ray R with the main scanning plane is also the angle φ as with the principal ray C. This is because the chief ray always exits at right angles to the toroidal surface 52-2 in FIG. 5, and the lens power on that surface remains unchanged under the angle θ. However, when such a principal ray R is projected onto the sub-scan section, it appears as an angle ω that is larger than the angle φ as shown in FIG. 7A. This angle ω is ω = tan −1 (S / f · cos
θ). As described above, the principal ray R is more curved than the lens ray, and the contour 52-2'R of the lens surface is shifted by the shift amount Δ.
以上説明した第4図乃至第6図をまとめて副走査断面
上に表わすと第7図(a)のようになる。そこで、第7
図(a)により走査線の曲がりがどの様におきるかを考
えてみる。FIG. 7 (a) is a collective representation of the above-described FIGS. 4 to 6 on a sub-scanning cross section. Therefore, the seventh
Consider how the scanning line bends according to FIG.
第7図(a)中、符号「R(回転)」は、第5図にお
けるトロイダル面52−2の孤の中心を中心として第5
図、第6図中の主光線Rを副走査断面上へ角度θだけレ
ンズ光軸寄りに戻す向きに回転し、投影したときに現わ
れる仮想の光線部分を示す。In FIG. 7 (a), the symbol "R (rotation)" indicates the fifth point around the center of the arc of the toroidal surface 52-2 in FIG.
6 shows an imaginary ray portion that appears when the principal ray R in FIG. 6 is rotated and turned back toward the lens optical axis by an angle θ onto the sub-scanning cross section and projected.
上記主光線Rの回転を考えるとき、そのような主光線
Rを生じさせる輪部52−2′Rも同様の態様で回転した
位置に表わされ、この輪郭を符号「52−2′R(回
転)」で示す。この輪郭「52−2′R(回転)」は輪郭
52−2′Cと重なる。When considering the rotation of the principal ray R, the limb 52-2'R that generates such a principal ray R is also shown in a rotated position in a similar manner, and this contour is denoted by a reference numeral "52-2'R ( Rotation) ". This contour "52-2'R (rotation)" is the contour
It overlaps with 52-2'C.
上記回転を考えたときの結像位置は、像面7より(距
離LR−距離LC)だけずれた仮想の像面9になる。そし
て、主光線C、主光線Rは共に主走査断面と角度φをな
しているため、主光線Cの結像位置は主走査断面より副
走査方向Y−YにLC・tanφ離れた位置8′Cとなり、
主光線Rの結像位置は主走査断面より副走査方向Y−Y
にLR・tanφ離れた位置8′Rとなる。The image forming position when the above rotation is considered is a virtual image plane 9 shifted from the image plane 7 by (distance LR−distance LC). Since the principal ray C and the principal ray R both form an angle φ with the main scanning section, the image forming position of the principal ray C is a position 8 ′ that is LC · tan φ away from the main scanning section in the sub-scanning direction YY. C
The imaging position of the main ray R is in the sub-scanning direction Y-Y from the main scanning section.
At the position 8'R separated by LR · tanφ.
上記位置8′Cとレンズ光軸との間の距離と、上記位
置8′Rとレンズ光軸との間隔の差が走査線の曲がり量
dであり、d=(LR−LC)tanφと表わすことができ
る。The difference between the distance between the position 8'C and the optical axis of the lens and the distance between the position 8'R and the optical axis of the lens is the amount of curve d of the scanning line, and is expressed as d = (LR-LC) tanφ. be able to.
この走査線曲がり量dは走査角θを定めることに応じ
て距離LR,LCが定まることにより特定される。The scanning line bending amount d is specified by determining the distances LR and LC in accordance with the determination of the scanning angle θ.
第7図(a)の輪郭52−2′C及び輪郭「52−2′R
(回転)」部分を拡大して示した第7図(b)におい
て、トロイダル面52−2の副走査断面での半径をrとす
るとき、 となる。The contour 52-2'C and the contour "52-2'R" in FIG.
(B) in which the “(rotation)” portion is shown in an enlarged manner, where r is the radius of the toroidal surface 52-2 in the sub-scanning cross section, Becomes
通常S≪rであるから、 となり、前記式におけるtanφは、 となる。従って、tanφは偏心量Sと比例するから走査
線の曲がり量dは で示され、偏心量Sに比例した値となる。Normally S≪r, And tanφ in the above equation is Becomes Therefore, since tan φ is proportional to the amount of eccentricity S, the amount of curve d of the scanning line is And becomes a value proportional to the amount of eccentricity S.
ところで、第5図で主光線R、主光線Rは一般の場
合、必ずしもトロイダル面52−2に対し垂直出射すると
は限らない。そこで垂直出射でない場合も含めて考え
る。By the way, in FIG. 5, the principal ray R and the principal ray R generally do not always exit perpendicularly to the toroidal surface 52-2. Therefore, the case where the light is not emitted vertically is considered.
第5図で輪郭52−2C、輪郭52−2Rでの主光線C、主光
線Rにそった第5図の紙面に垂直な方向での倍率をそれ
ぞれβ52-2(C),β52-2(R)とすると、第7図
(a)の位置8′C,8′Rとレンズ光軸との距離はそれ
ぞれ S(1−β52-2(C)),S(1−β52-2(R)) となり、走査線の曲がり量dは、 d=S{β52-2(R)−β52-2(C)} …(2) と表わせる。In FIG. 5, the magnification in the direction perpendicular to the plane of FIG. 5 along the principal ray C and the principal ray R along the contour 52-2C and the contour 52-2R is β 52-2 (C) and β 52- 2 When (R), Figure 7 position 8'C of (a), each distance between 8'R and lens optical axis S (1-β 52-2 (C )), S (1-β 52 −2 (R)), and the amount of curve d of the scanning line can be expressed as d = S {β 52-2 (R) −β 52-2 (C)} (2).
一方、第5図で主光線Cについては、倍率をβCとし
て、(LC−f)/=βC,主光線Rについては倍率をβR
として (LR−f)/f=βR …(3) と考えられる。On the other hand, in FIG. 5, the magnification of the principal ray C is βC, and (LC−f) / = βC, and the magnification of the principal ray R is βR.
It can be considered that (LR−f) / f = βR (3)
そこで前記(1)式と、上記(3)式よりdについて
解くと、 d=S(βR−βC) …(4) となる。この(4)式をトロイダル面52−2についてあ
てはめれば d=S{β52-2(R)−β52-2(C)} …(5) となり、(2)式と(5)式は等しい。Then, when d is solved from the equations (1) and (3), d = S (βR−βC) (4) When this equation (4) is applied to the toroidal surface 52-2, d = S {β 52-2 (R) −β 52-2 (C)} (5), and equations (2) and (5) are obtained. Are equal.
従って、垂直出射の場合も、そうでない場合も走査線
の曲がり量dに関しては同じ条件式が適用できることと
なる。Therefore, the same conditional expression can be applied to the bending amount d of the scanning line both in the case of vertical emission and in the case of not.
そこで、第1図により、上記条件式を適用して走査光
学系を構成する各レンズ等の影響も考慮した走査線曲が
り量を検討する。Therefore, referring to FIG. 1, the amount of scan line bending considering the influence of each lens constituting the scanning optical system by applying the above conditional expression will be examined.
第1図において、符号VIは第5図に示した各レンズ
面、つまり偏向反射面4,fθレンズ51,fθレンズ52の各
光学面に偏心の無いとき、シリンダ面52−1以前の光学
系で作られる虚像位置、符号VI′は同じく、偏心が有る
ときの虚像位置をそれぞれ示す。従って、虚像位置VI′
を通りレンズ光軸に平行な光CR″と同じく虚像位置VI′
を通る光であってシリンダ面52−1以前の光学系に偏心
があるときの主光線CRが偏心のないトロイダル面52−2
により結像される位置は結像位置8′yとなる。すなわ
ち、結像位置8′yはトロイダル面52−2以前で偏心し
ている光が偏心のないトロイダル面52−2により結像さ
れる位置である。In FIG. 1, reference numeral VI denotes an optical system before the cylinder surface 52-1 when there is no eccentricity in each lens surface shown in FIG. 5, that is, the deflecting / reflecting surface 4, the fθ lens 51, and the fθ lens 52. Similarly, the virtual image position VI ′ indicates the virtual image position when there is eccentricity. Therefore, the virtual image position VI ′
Virtual image position VI 'as in the case of light CR "passing through and parallel to the lens optical axis.
When the optical ray passing through the optical system is decentered in the optical system before the cylinder surface 52-1, the principal ray CR has no decentered toroidal surface 52-2.
Is an imaging position 8'y. That is, the imaging position 8'y is a position where the light decentered before the toroidal surface 52-2 is imaged on the toroidal surface 52-2 without decentering.
すると、レンズの最終面であるトロイダル面52−2よ
りも前のレンズ面による虚像位置の変動は前記各虚像位
置VI,VI′の差で表わされ、且つ、その量は像高比yの
関数S′(y)で表わされ、各光学面の倍率も像高比y
の関数β(y)で表わすことができる。Then, the change in the virtual image position due to the lens surface before the toroidal surface 52-2 which is the final surface of the lens is represented by the difference between the respective virtual image positions VI and VI ', and the amount of the change is the image height ratio y. The magnification of each optical surface is represented by a function S ′ (y), and the image height ratio y
The function β (y) can be expressed as
関数S′(y)と関数β(y)の関係を表わすと、次
のようになる。The relationship between the function S '(y) and the function β (y) is as follows.
S′(y)=β′2(y)・S2+β′51-1(y)・S51-1 +β′51-2(y)・S51-2+β′52-1(y)・S52-1 …(6) 上記(6)式中の各項における添字はレンズ面の符号
(レンズ面番号)を示し、具体的には次のようになる。S ′ (y) = β ′ 2 (y) · S 2 + β ′ 51-1 (y) · S 51-1 + β ′ 51-2 (y) · S 51-2 + β ′ 52-1 (y) · S 52-1 ... (6) The subscript in each term in the above equation (6) indicates the sign of the lens surface (lens surface number), and is specifically as follows.
本例ではβ2=0であるからmをレンズ面番号とし
て、Σβ′m(y)=1となる。 In this example, since β 2 = 0, Σβ′m (y) = 1, where m is the lens surface number.
上記(6)式のS′(y)より、トロイダル52−2が
偏心していないときのレンズ光軸とシリンダ面52−1以
前の光学系に偏心がある場合の光束が、偏心のないトロ
イダル面52−2により結像される位置8′(y)の副走
査方向でのレンズ光軸からの距離をS″(y)として求
めると、 S″(y)=−S′(y){1−β52-2(y)}+S′(y) =S′(y)・β52-2(y) と表わせる。From S ′ (y) in the above equation (6), the luminous flux when the optical axis before the cylinder surface 52-1 and the lens optical axis when the toroidal 52-2 is not decentered has a decentered toroidal surface If the distance from the lens optical axis in the sub-scanning direction of the position 8 '(y) formed by 52-2 in the sub-scanning direction is obtained as S "(y), S" (y) =-S' (y) {1 −β 52-2 (y)} + S ′ (y) = S ′ (y) · β 52-2 (y)
さらに、トロイダル面52−2の偏心がS52-2有った場
合を考えると、 S″(y)={S52-2−S′(y)}{1−β52-2(y)}+S′(y) =S52-2{1−β52-2(y)}+S′(y)・β52-2(y) となる。Further, considering the case where the eccentricity of the toroidal surface 52-2 is S52-2 , S ″ (y) = { S52-2− S ′ (y)} 1- β52-2 (y) } + S ′ (y) = S 52-2 {1−β 52-2 (y)} + S ′ (y) · β 52-2 (y)
これにより、像面7上における主光線Cによる結像位
置と、主光線Rによる結像位置との差、すなわち走査線
の曲がり量dを求めると、前記(2)式より、 d=β52-2(R){S′(R)−S52-2} =β52-2(C){S′(C)−S52-2} この式を各面の偏心の影響が表われる様に変形すると、
次式が得られる。As a result, when the difference between the image formation position by the principal ray C on the image plane 7 and the image formation position by the principal ray R, that is, the amount of curve d of the scanning line is obtained, from the equation (2), d = β 52 -2 (R) {S '(R) -S 52-2 == β 52-2 (C) {S' (C) -S 52-2 } When transformed into
The following equation is obtained.
d=K2・S2+K51-1・S51-1+K51-2・S51-2 +K52-1−S52-1+K52-2・S52-2 …(8) 但し、上式において、係数Kmの各値は次のとおりとす
る。d = K 2 · S 2 + K 51-1 · S 51-1 + K 51-2 · S 51-2 + K 52-1 -S 52-1 + K 52-2 · S 52-2 … (8) In the equation, each value of the coefficient Km is as follows.
以上により、各面の影響の和が全体の走査線の曲がり
の値であることがわかる。 From the above, it can be seen that the sum of the influences of each surface is the value of the curvature of the entire scanning line.
実際のレンズについて考えると、各レンズ面の偏心を
0とすれば走査線の曲がりが無くなることは明らかであ
るが、レンズは、少なくとも2つ以上の面を持つため、
副走査方向の調整を行なっても、両面共の偏心を0とす
ることは、両面の偏心が一致している場合を除き不可能
である。When considering the actual lens, it is clear that if the eccentricity of each lens surface is set to 0, the scanning line will not bend, but since the lens has at least two or more surfaces,
Even if the adjustment in the sub-scanning direction is performed, it is impossible to make the eccentricity of both surfaces zero unless the eccentricities of the two surfaces coincide.
しかし、各レンズを次式のΔSだけ調整し、Sn1+Δ
Sの偏心を強制的に残す様にすると、次の(10)式が得
られる。However, each lens is adjusted by ΔS in the following equation, and Sn 1 + Δ
If the eccentricity of S is forcibly left, the following equation (10) is obtained.
dn=0=Kn1・(Sn1+ΔS)+Kn2・(Sn2+ΔS)…(10) 但し、nはレンズ番号とする。dn = 0 = Kn 1 · (Sn 1 + ΔS) + Kn 2 · (Sn 2 + ΔS) (10) where n is a lens number.
上記(10)式を変形してΔSについて解くと、次の
(11)式を得る。When the above equation (10) is modified and solved for ΔS, the following equation (11) is obtained.
この(11)式を適用すれば各レンズ毎の走査線の曲が
りを解消できる。さらに、全レンズについて上記(11)
式に従う調整をすればd=0にできる。 By applying this equation (11), it is possible to eliminate the bending of the scanning line for each lens. In addition, the above (11) for all lenses
By adjusting according to the equation, d = 0 can be obtained.
次に、走査光学系を構成する各レンズの中、どれを調
整したら最も効果的かについて検討する。Next, it is examined which of the lenses constituting the scanning optical system is most effective to adjust.
前記(8)式よりKmが走査線曲がりの影響度合を表わ
しているので、各面の倍率βを考えるとシリンドリカル
レンズ2の面からシリンダ面52−1までの各面では、各
面共、0≦β≦1(β2=0)となっている。From equation (8), Km represents the degree of influence of the scanning line bending. Therefore, considering the magnification β of each surface, each surface from the surface of the cylindrical lens 2 to the cylinder surface 52-1 has 0 ≦ β ≦ 1 (β 2 = 0).
従って、前記(7)式におけるβ′も0<β′<1と
なる。これに対し、トロイダル面52−2はβ≪−1とな
っている。又、倍率β(R)とβ(C)の差をみると、
|β(R)−β(C)|≪|β(R)+β(C)|/2と
なる。且つ、一般的に倍率βmが大きいものが|β
(R)−β(C)|の値も大である。Therefore, β ′ in the equation (7) also becomes 0 <β ′ <1. On the other hand, the toroidal surface 52-2 has β≪−1. Looking at the difference between the magnifications β (R) and β (C),
| Β (R) −β (C) | ≪ | β (R) + β (C) | / 2. In general, the one having a large magnification βm is | β
(R) -β (C) | is also large.
以上により倍率|βm|の大きな面のKmが大きいこと
は、前記(9)式からも明らかである。From the above, it is apparent from the above equation (9) that the Km of the surface having the large magnification | βm | is large.
このため、|β|の大きな面を含むレンズを動かすこ
とで大部分の走査線の曲がりを調整により解消できるこ
とがわかる。For this reason, it can be seen that the curvature of most scanning lines can be eliminated by adjustment by moving a lens including a large surface of | β |.
次に、実施例の走査光学系について各レンズの諸元が
表−1であるとき走査線の曲がりに対しての影響量を考
える。Next, regarding the scanning optical system of the embodiment, when the specifications of each lens are as shown in Table 1, the influence amount on the bending of the scanning line is considered.
但し、表−1において、主光線Cに関し、偏向反射面
4の回転角は0゜、主光線Rに関し、偏向反射面4の回
転角は16.6゜とする。 However, in Table 1, the rotation angle of the deflecting / reflecting surface 4 is 0 ° for the principal ray C, and 16.6 ° for the principal ray R.
すると、表−1の各レンズ面の倍率は次のようにな
る。Then, the magnification of each lens surface in Table 1 is as follows.
β2(R)=β2(C)=0,β51-1(C)=0.952, β51-1(R)=0.947 ,β51-2(C)=0.887, β51-2(R)=0.871 ,β52-1(C)=0.811, β52-1(R)=0.772 ,β52-2(C)=−5.45, β52-2(R)=−0.604 上記倍率と前記(7)式,(9)式より、 K2=0.11,K51-1=0.03,K51-2=0.10, K52-1=0.35,K52-2=0.59となる。β 2 (R) = β 2 (C) = 0, β 51-1 (C) = 0.952, β 51-1 (R) = 0.947, β 51-2 (C) = 0.887, β 51-2 (R ) = 0.871, β 52-1 (C) = 0.811, β 52-1 (R) = 0.772, β 52-2 (C) = -5.45, β 52-2 (R) = -0.604 7), (9) from the equation, K 2 = 0.11, K 51-1 = 0.03, K 51-2 = 0.10, K 52-1 = 0.35, a K 52-2 = 0.59.
本例でも係数Kの一番大きい面52−2の倍率、β52-2
(C)=−5.45及びβ52-2(R)=−6.04が一番大き
く、その面52−2を含むfθレンズ52を調整するとよ
い。Also in this example, the magnification of the surface 52-2 having the largest coefficient K, β 52-2
(C) = − 5.45 and β 52-2 (R) = − 6.04 are the largest, and it is preferable to adjust the fθ lens 52 including the surface 52-2.
なお、アナモフィク面をもつfθレンズを有する走査
光学系においては、そのfθレンズの最終面にトロイダ
ル面を配置し、この面の倍率をβ≪−1とするのが一般
的である。本例でもトロイダル面52−2を最終面にお
き、前記の通り該面の倍率はβ≪−1である。よって、
このトロイダル面をもつfθレンズ52を調整することが
効果的といえる。In a scanning optical system having an fθ lens having an anamorphic surface, a toroidal surface is generally disposed on the final surface of the fθ lens, and the magnification of this surface is β≪−1. Also in this example, the toroidal surface 52-2 is placed on the final surface, and the magnification of the surface is β≪-1 as described above. Therefore,
It can be said that adjusting the fθ lens 52 having the toroidal surface is effective.
第1図において、関数S′(y)が像高比によらない
値、S′であった場合には、その量だけトロイダル面52
−2を副走査方向Y−Yに移動調整(この調整後のトロ
イダル面を符号52−2″で示す)すれば、像面7上での
結像位置は本来の結像位置たる所定位置8Fより距離K離
れた結像位置8″yに結像し、走査線の曲がりも発生し
ない。これは、トロイダル面に偏心があるときに、この
偏心の量だけfθレンズ52を移動すれば走査線の曲がり
を解消できることを意味する。In FIG. 1, when the function S ′ (y) is a value S ′ that does not depend on the image height ratio, the toroidal surface 52 is added by that amount.
-2 in the sub-scanning direction Y-Y (the toroidal surface after this adjustment is indicated by reference numeral 52-2 "), the image forming position on the image surface 7 becomes the predetermined position 8F which is the original image forming position. An image is formed at an image formation position 8 ″ y which is further away by a distance K, and the scanning line does not bend. This means that, when the toroidal surface has eccentricity, the bending of the scanning line can be eliminated by moving the fθ lens 52 by the amount of the eccentricity.
なお、上述の如く結像位置は所定位置8Fから距離Kだ
け離れる。しかし、この種走査光学系では一般にレンズ
最終面と結像位置との間には光路折り曲げミラーMが設
けられて、光線を結像位置へ導く手法が採られるのでこ
のミラーMの角度を微調節することにより結像位置8″
yを所定位置8Fへ移すことができる。Note that, as described above, the imaging position is separated from the predetermined position 8F by the distance K. However, in this type of scanning optical system, an optical path bending mirror M is generally provided between the final lens surface and the image forming position, and a method of guiding light rays to the image forming position is employed. Therefore, the angle of the mirror M is finely adjusted. The image forming position 8 ″
y can be moved to the predetermined position 8F.
この結像位置の調節により、結像点がレンズ光軸方向
へ若干ずれるが、像面7とミラーMとの距離が、結像位
置8′yから所定位置8F間の距離Kに対し十分長けれ
ば、結像点の光軸方向へのずれは無視できる。Due to the adjustment of the image forming position, the image forming point is slightly shifted in the lens optical axis direction, but the distance between the image plane 7 and the mirror M is sufficiently longer than the distance K between the image forming position 8'y and the predetermined position 8F. In this case, the shift of the imaging point in the optical axis direction can be ignored.
さらに具体的には、上記例において、S52-1=0.1mm,S
52-2=−0.08mmとした場合、前記(11)式及び前記K
52-1=0.35,K52-2=0.59よりΔS=0.34mmが求まる。More specifically, in the above example, S 52-1 = 0.1 mm, S
When 52-2 = −0.08 mm, the above equation (11) and the above K
ΔS = 0.34 mm is obtained from 52-1 = 0.35 and K 52-2 = 0.59.
従って、fθレンズ52を偏心が無いとした場合の理想
位置から0.34nm副走査方向に移動調整すればd52≒0と
することができる。Therefore, if the fθ lens 52 is moved and adjusted in the sub-scanning direction by 0.34 nm from the ideal position when there is no eccentricity, d 52 ≒ 0 can be obtained.
これにより、走査線の曲がりはシリンドリカルレンズ
2、fθレンズ51の影響で発生するものだけとなり、し
かもその量は殆んど無視できる程度なので、fθレンズ
52の調整のみで十分に走査線の曲がりの問題を解消でき
る。As a result, the bending of the scanning line is caused only by the effect of the cylindrical lens 2 and the fθ lens 51, and the amount thereof is almost negligible.
Only the adjustment of 52 can sufficiently solve the problem of the scanning line bending.
以上により、レンズ単品の偏心公差、取付面の偏心公
差を緩くしても、走査線の曲がり量を小さく調整するこ
とが可能であることがわかる。From the above, it can be seen that even if the eccentricity tolerance of the single lens and the eccentricity tolerance of the mounting surface are loosened, it is possible to adjust the bending amount of the scanning line to be small.
次に、第2図を参照しつつ具体的な調整方法の一例を
紹介する。Next, an example of a specific adjustment method will be introduced with reference to FIG.
第2図(a)において、符号520は偏心のない理想的
なfθレンズを示す。In FIG. 2A, reference numeral 520 denotes an ideal fθ lens without eccentricity.
このfθレンズの主径線(母線)から外径部、つまり
取付面までの寸法をHとする。そして、この主径線を理
想光軸0−0に合致させた状態でハウジング400上に該
fθレンズ520が取付けられているものとする。このよ
うな状態を想定して基準状態とする。The dimension from the main diameter line (generating line) to the outer diameter portion, that is, the mounting surface of the fθ lens is H. Then, it is assumed that the fθ lens 520 is mounted on the housing 400 in a state where the main diameter line coincides with the ideal optical axis 0-0. This state is assumed as a reference state.
さて、本発明を実施するには予め、ハウジング4000の
上面をハウジング400のそれよりも寸法hだけ低く設定
しておく。この寸法hは次のように定める。つまり、走
査光学系を構成する各レンズ単品の両面の偏心の最大公
差より得られる最大調整量を±ΔSMAXとするとき、h≧
|ΔSMAX|を満足する任意の値とする。このようにすれ
ば寸法hのスペーサの厚さの範囲であらゆる調整に対処
できる。By the way, in order to implement the present invention, the upper surface of the housing 4000 is set to be smaller than that of the housing 400 by the dimension h in advance. This dimension h is determined as follows. That is, when the maximum adjustment amount obtained from the maximum tolerance of the eccentricity of both surfaces of each lens constituting the scanning optical system is ± ΔS MAX , h ≧
| ΔS MAX | is an arbitrary value that satisfies | In this way, any adjustment can be dealt with in the range of the thickness of the spacer having the dimension h.
そして、さらに第2図(b)に示す如く、このハウジ
ング4000上に設定されるべき具体的なfθレンズ520Aに
ついて該レンズ両面の偏心量がSa,Sbであって、その時
の調整量が上げ方向にΔS(但し、ΔS<|ΔSMAX|)
として得られたとすれば、スペーサ50の厚さは、SP=h
+ΔSとして求まり、この厚さのスペーサを介在させ
て、レンズを固定することにより走査線の曲がりを矯正
できる。Further, as shown in FIG. 2 (b), the eccentricity of both surfaces of the specific fθ lens 520A to be set on the housing 4000 is Sa, Sb, and the adjustment amount at that time is in the ascending direction. To ΔS (however, ΔS <| ΔS MAX |)
Is obtained, the thickness of the spacer 50 is SP = h
+ ΔS, and the curvature of the scanning line can be corrected by fixing the lens with a spacer of this thickness interposed.
第2図(c)の例はfθレンズ520Bについて、調整量
が下げ方向にΔS′(但しΔS′<|ΔSMAX|)として
得られた場合であり、このときのスペーサ50′の厚さ
は、SP′=h−ΔS′として求まり、上記に準じて調整
を行なうことにより走査線の曲がりを矯正できる。FIG. 2C shows an example in which the adjustment amount of the fθ lens 520B is obtained as ΔS ′ (where ΔS ′ <| ΔS MAX |) in the decreasing direction, and the thickness of the spacer 50 ′ at this time is , SP ′ = h−ΔS ′, and by performing the adjustment in accordance with the above, it is possible to correct the bending of the scanning line.
本発明によれば、レンズの偏心公差、取付面の公差等
を厳格に管理することなく、従ってコストを押し上げな
い範囲で、走査線の曲がりを画質に影響が出ない程度に
簡易に矯正することができる。According to the present invention, it is possible to easily correct the bending of the scanning line to such an extent that the image quality is not affected, without strictly controlling the eccentricity tolerance of the lens, the tolerance of the mounting surface, and the like, so that the cost is not increased. Can be.
第1図、第2図は本発明を説明するための図、第3図は
走査光学系の平面図、第4図はレンズに偏心がある場合
及びない場合の結像関係を説明した図、第5図は各走査
光を主走査断面へ投影した図、第6図、第7図は同上図
の走査光を副走査断に投影した図、第8図は本発明の実
施に適する走査光学系の斜視図、第9図はレンズの偏心
を説明した図、第10図は従来の走査光学系により生じて
いた走査線の曲がりについて説明した図である。 51……fθレンズ、52−2……トロイダル面、X−X…
…主走査方向、Y−Y……副走査方向。1 and 2 are views for explaining the present invention, FIG. 3 is a plan view of a scanning optical system, FIG. 4 is a view for explaining an image forming relationship when a lens has and does not have eccentricity, FIG. 5 is a diagram in which each scanning light is projected onto the main scanning section, FIGS. 6 and 7 are diagrams in which the scanning light in the above figure is projected in the sub-scanning cut, and FIG. 8 is a scanning optical system suitable for carrying out the present invention. FIG. 9 is a diagram illustrating the eccentricity of the lens, and FIG. 10 is a diagram illustrating the bending of the scanning line caused by the conventional scanning optical system. 51: fθ lens, 52-2: toroidal surface, XX:
... main scanning direction, Y-Y ... sub-scanning direction.
Claims (2)
る第1結像光学系と、この第1結像光学系による結像位
置の近傍に偏向反射面が設定されている光偏向器と、こ
の光偏向器で偏向された光束により走査される被走査媒
体と、上記光束の光路上であってこの被走査媒体と上記
光偏向器との間に配設され、上記光偏向器で連続的に偏
向される光束の軌跡面たる偏向面と垂直な面内において
上記光偏向器の偏向反射面と上記被走査媒体とを光学的
に共役な関係に保ちつつ上記光束を上記被走査媒体上に
結像させる第2結像光学系を有する走査光学系に関し、
上記第2結像光学系中のレンズの偏心に起因する走査線
の曲がりを矯正する方法であって、 上記光偏向器で偏向される光束による走査方向と直交す
る方向に倍率をもち、上記第2結像光学系のレンズの
中、上記倍率が最大のレンズ面を有するレンズについ
て、 ΔSは、矯正量、 Kは、レンズ面の倍率で決まる係数、 Sは、レンズ面の偏心量 添字のnは、上記第2結像光学系の中、上記倍率が最大
のレンズ面を有するレンズを含む結像光学系を構成する
レンズのレンズ番号、 添字の数字は、レンズ面番号、 とするとき、 ΔS=(Kn1・Sn1+Kn2・Sn2)/(Kn1+Kn2) により求めた計算式で算出された矯正量ΔSで該レンズ
を副走査方向に偏心させた上、固定することを特徴とす
る走査線の曲がり矯正方法。A first image-forming optical system for linearly forming an image of a light beam emitted from a light source; and a light deflection surface having a deflecting / reflecting surface set near an image-forming position of the first image-forming optical system. An optical deflector disposed on the optical path of the light beam between the medium to be scanned and the optical deflector, and a scanning medium to be scanned by the light beam deflected by the optical deflector; The light beam is scanned by the light beam while maintaining the optically conjugate relationship between the deflecting reflection surface of the optical deflector and the medium to be scanned in a plane perpendicular to the deflecting surface which is the trajectory surface of the light beam continuously deflected by A scanning optical system having a second imaging optical system for forming an image on a medium,
A method of correcting a scan line bending caused by the eccentricity of a lens in the second imaging optical system, comprising: a magnification in a direction orthogonal to a scanning direction by a light beam deflected by the optical deflector; Among the lenses of the two imaging optical systems, for the lens having the lens surface with the largest magnification, ΔS is the correction amount, K is a coefficient determined by the magnification of the lens surface, and S is the eccentricity of the lens surface. Is the lens number of the lens constituting the imaging optical system including the lens having the lens surface with the largest magnification in the second imaging optical system, and the subscript number is the lens surface number. = (Kn 1 · Sn 1 + Kn 2 · Sn 2 ) / (Kn 1 + Kn 2 ) The lens is decentered in the sub-scanning direction by the correction amount ΔS calculated by the calculation formula, and then fixed. Correction method of the scanning line.
る第1結像光学系と、この第1結像光学系による結像位
置の近傍に偏向反射面が設定されている光偏向器と、こ
の光偏向器で偏向された光束により走査される被走査媒
体と、上記光束の光路上であってこの被走査媒体と上記
光偏向器との間に配設され、上記光偏向器で連続的に偏
向される光束の軌跡面たる偏向面と垂直な面内において
上記光偏向器の偏向反射面と上記被走査媒体とを光学的
に共役な関係に保ちつつ上記光束を上記被走査媒体上に
結像させる第2結像光学系を有する走査光学系であっ
て、 上記第2結像光学系中のレンズの偏心に起因する走査線
の曲がりを、 上記光偏向器で偏向される光束による走査方向と直交す
る方向に倍率をもち、上記第2結像光学系のレンズの
中、上記倍率が最大のレンズ面を有するレンズについ
て、 ΔSは、矯正量、 Kは、レンズ面の倍率で決まる係数、 Sは、レンズ面の偏心量 添字のnは、上記第2結像光学系の中、上記倍率が最大
のレンズ面を有するレンズを含む結像光学系を構成する
レンズのレンズ番号、 添字の数字は、レンズ面番号、 とするとき、 ΔS=(Kn1・Sn1+Kn2・Sn2)/(Kn1+Kn2) により求めた計算式で算出された矯正量ΔSで該レンズ
を副走査方向に偏心させた上、固定することを特徴とす
る走査光学系。2. A first image forming optical system for forming a light beam emitted from a light source into a linear image, and a light deflecting surface having a deflecting / reflecting surface set near an image forming position of the first image forming optical system. An optical deflector disposed on the optical path of the light beam between the medium to be scanned and the optical deflector, and a scanning medium to be scanned by the light beam deflected by the optical deflector; The light beam is scanned by the light beam while maintaining the optically conjugate relationship between the deflecting reflection surface of the optical deflector and the medium to be scanned in a plane perpendicular to the deflecting surface which is the trajectory surface of the light beam continuously deflected by A scanning optical system having a second imaging optical system for forming an image on a medium, wherein a bending of a scanning line caused by eccentricity of a lens in the second imaging optical system is deflected by the optical deflector. The lens has a magnification in a direction orthogonal to the scanning direction by the light beam, and is located inside the lens of the second imaging optical system. For the lens having the lens surface with the largest magnification, ΔS is the correction amount, K is a coefficient determined by the magnification of the lens surface, S is the amount of eccentricity of the lens surface, and the subscript n is the value of the second imaging optical system. Where, the lens number of the lens forming the imaging optical system including the lens having the lens surface having the largest magnification, the subscript number is the lens surface number, and ΔS = (Kn 1 · Sn 1 + Kn 2 · A scanning optical system characterized in that the lens is decentered in the sub-scanning direction by a correction amount ΔS calculated by a formula obtained from (Sn 2 ) / (Kn 1 + Kn 2 ) and then fixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63275709A JP2756125B2 (en) | 1988-10-31 | 1988-10-31 | Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63275709A JP2756125B2 (en) | 1988-10-31 | 1988-10-31 | Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02120819A JPH02120819A (en) | 1990-05-08 |
JP2756125B2 true JP2756125B2 (en) | 1998-05-25 |
Family
ID=17559275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63275709A Expired - Fee Related JP2756125B2 (en) | 1988-10-31 | 1988-10-31 | Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2756125B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7800806B1 (en) | 2009-03-31 | 2010-09-21 | E-Pin Optical Industry Co., Ltd. | Two-element Fθ lens with short focal distance for laser scanning unit |
US7817320B1 (en) | 2009-06-25 | 2010-10-19 | E-Pin Optical Industry Co., Ltd. | Two-element fθ lens with short focal distance for laser scanning unit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3188053B2 (en) * | 1993-06-28 | 2001-07-16 | 株式会社東芝 | Optical scanning device |
EP0816894A3 (en) | 1996-07-01 | 1999-01-20 | Seiko Epson Corporation | Optical scanning apparatus |
-
1988
- 1988-10-31 JP JP63275709A patent/JP2756125B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7800806B1 (en) | 2009-03-31 | 2010-09-21 | E-Pin Optical Industry Co., Ltd. | Two-element Fθ lens with short focal distance for laser scanning unit |
US7817320B1 (en) | 2009-06-25 | 2010-10-19 | E-Pin Optical Industry Co., Ltd. | Two-element fθ lens with short focal distance for laser scanning unit |
Also Published As
Publication number | Publication date |
---|---|
JPH02120819A (en) | 1990-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4885573B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP3330248B2 (en) | Optical scanning device, image forming device, and image reading device | |
JPH10197821A (en) | Scanning optical instrument | |
US6803942B2 (en) | Light scanning device and image forming apparatus using the same | |
JP4659277B2 (en) | Optical scanning device and image forming apparatus using the same | |
US6999218B2 (en) | Light scanning apparatus and image forming apparatus | |
JPH0534612A (en) | Optical device for image forming device | |
US5583559A (en) | Light beam optical scanning system having an fθ mirror | |
JP2003005113A (en) | Scanning optical system | |
JP2000267031A (en) | Optical scanner | |
JP2756125B2 (en) | Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method | |
JPH06148556A (en) | Optical-scanning device | |
US6108115A (en) | Scanning optical system | |
JP2002148546A (en) | Optical scanner | |
JP2931181B2 (en) | Optical scanning device | |
JP2773593B2 (en) | Light beam scanning optical system | |
JP2002148546A5 (en) | ||
JP2002031771A (en) | Multiple-beam scanning optical device | |
JP4591442B2 (en) | Optical scanning device | |
JP3470040B2 (en) | Color image forming equipment | |
JP3915300B2 (en) | Optical scanning device | |
JP2000180780A (en) | Optical scanner | |
JP2750597B2 (en) | High density scanning device | |
JPH09105859A (en) | Scanning optical system | |
JPH01200220A (en) | Light beam scanning optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |