JP2000267031A - Optical scanner - Google Patents
Optical scannerInfo
- Publication number
- JP2000267031A JP2000267031A JP6714499A JP6714499A JP2000267031A JP 2000267031 A JP2000267031 A JP 2000267031A JP 6714499 A JP6714499 A JP 6714499A JP 6714499 A JP6714499 A JP 6714499A JP 2000267031 A JP2000267031 A JP 2000267031A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- scanning
- angle
- scanned
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 133
- 230000004907 flux Effects 0.000 claims abstract description 38
- 230000014509 gene expression Effects 0.000 abstract description 8
- 238000007493 shaping process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 108091008695 photoreceptors Proteins 0.000 description 8
- 239000003086 colorant Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Laser Beam Printer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザプリンタ、
デジタル複写機等に用いられる光走査装置にかかり、特
に、複数光束を用いて複数感光体または同一感光体の異
なる位置を走査し異なる色にて画像を形成するときに光
束を走査する光走査装置に関する。TECHNICAL FIELD The present invention relates to a laser printer,
The present invention relates to an optical scanning device used in a digital copying machine or the like, and in particular, an optical scanning device that scans a plurality of photoconductors or different positions of the same photoconductor using a plurality of light beams and scans the light beams when forming images in different colors. About.
【0002】[0002]
【従来の技術】多色画像を記録するプリンタやデジタル
複写機の走査露光装置として複数光束を単一の偏向器の
異なる反射面を用いて偏向走査し異なる感光体を露光す
る光走査装置が知られている(特開昭59−18861
6号公報参照)。2. Description of the Related Art As a scanning exposure apparatus of a printer or a digital copying machine for recording a multicolor image, there is known an optical scanning apparatus which deflects and scans a plurality of light beams using different reflecting surfaces of a single deflector to expose different photosensitive members. (Japanese Patent Laid-Open No. 59-18861).
No. 6).
【0003】この技術は、図8に示すように、複数感光
体140、142を複数光束L1,L2で露光走査する
光走査装置において、複数の光源からの光束は各々同一
の回転多面鏡等の偏向器110の異なる反射面により偏
向走査し、各光束に対応した複数の結像レンズ120、
122により結像され複数の感光体140、142を露
光走査している。このように、単一の偏向器110での
み複数の感光体140、142を露光走査するので、装
置の低価格化や小型化を図ることができる。この技術で
は、感光体による反射光(ゴースト光)が感光体に再結
像しないように光束を偏向反射面に垂直な平面に対し傾
けて入射させることにより、発生する弓状の走査線湾曲
(所謂Bow)が異なる反射面で走査される複数光束間
で同一となるように各光束の反射面に対する偏向反射面
に垂直な面とのなす角度を略逆に構成している。[0003] In this technique, as shown in FIG. 8, in an optical scanning device for exposing and scanning a plurality of photoconductors 140 and 142 with a plurality of light beams L1 and L2, light beams from a plurality of light sources are respectively provided by the same rotary polygon mirror or the like. A plurality of image forming lenses 120 which perform deflection scanning by different reflection surfaces of the deflector 110 and correspond to each light beam,
The plurality of photoconductors 140 and 142 formed by the image forming unit 122 are exposed and scanned. As described above, since the plurality of photosensitive members 140 and 142 are exposed and scanned only by the single deflector 110, the cost and size of the apparatus can be reduced. In this technique, a luminous flux is incident on a plane perpendicular to the deflecting / reflecting surface at an angle so that reflected light (ghost light) from the photoconductor is not re-imaged on the photoconductor. The angle between the reflection surface of each light beam and the surface perpendicular to the deflecting reflection surface is configured to be substantially opposite so that the so-called Bow) is the same between a plurality of light beams scanned by different reflection surfaces.
【0004】しかしながら、各光束は所定角度を持って
fθレンズへ入射するため光束のねじれや像面湾曲が発
生して均一な光束径(所謂ビーム径)を得ることができ
ない。また、回転多面鏡への入射角度を逆方向にするこ
とで走査線湾曲(Bow)が同一方向となるようにして
その差を抑制するようにしているが、偏向器から被走査
面までの反射による折り返し数によっては、走査線湾曲
が異なる方向になる場合があり、光学設計の自由度が少
ないものであった。However, since each light beam enters the fθ lens at a predetermined angle, the light beam is twisted and the field curvature occurs, so that a uniform light beam diameter (a so-called beam diameter) cannot be obtained. In addition, the angle of incidence on the rotary polygon mirror is set in the opposite direction so that the scanning line curvature (Bow) is in the same direction to suppress the difference. However, the reflection from the deflector to the surface to be scanned is reduced. Depending on the number of folds, the scanning line curvature may be in a different direction, and the degree of freedom in optical design is small.
【0005】また、特開平3−264970号公報に記
載の技術では、単一偏向手段の複数反射面を利用し、各
光束の折り返し数の差を奇数とし、各光束の露光距離を
規定することで偏向器の面倒れによるピッチむらすなわ
ち時間的に変化する走査線の変動方向を同方向とし色ず
れを解消する光走査装置が提案されている。しかしなが
ら、この技術では、走査線湾曲による色ずれの方が大き
く発生し、走査線湾曲差といった時間変動しない色ずれ
を解消することができなかった。In the technique described in Japanese Patent Application Laid-Open No. 3-264970, a plurality of reflection surfaces of a single deflecting means are used, the difference in the number of folds of each light beam is made an odd number, and the exposure distance of each light beam is defined. There has been proposed an optical scanning device which eliminates color shift by setting the pitch unevenness due to the surface tilt of the deflector, that is, the fluctuation direction of the scanning line which changes with time in the same direction. However, in this technique, the color shift due to the scan line curvature is larger, and the color shift that does not fluctuate over time, such as the scan line curve difference, cannot be eliminated.
【0006】ところで、ポリゴンミラーで代表される回
転多面鏡等の偏向器のサイズの小型化、光学性能の左右
対称性確保の点から有利とされている所謂正面入射/ダ
ブルパス走査光学系の技術が知られている(特開平9−
96773号公報参照)。この技術には、主走査方向の
み曲率を有するfθレンズを傾けて配置することにより
ダブルパス光学系の課題である入射光のfθレンズ表面
反射による迷光を防止して安価でかつ良好な光学性能を
確保可能な点も開示されている。Incidentally, there is a so-called front-incident / double-pass scanning optical system which is advantageous in terms of miniaturization of the size of a deflector such as a rotary polygon mirror represented by a polygon mirror and securing left-right symmetry of optical performance. Known (Japanese Unexamined Patent Publication No.
No. 96773). In this technology, an fθ lens having a curvature only in the main scanning direction is arranged at an angle to prevent stray light due to the reflection of the incident light on the fθ lens surface, which is a problem of the double-pass optical system, and secure inexpensive and good optical performance. Possible points are also disclosed.
【0007】このような正面入射走査光学系は、入射光
束と射出光束を分離するため、偏向面に対し副走査方向
に所定角度で入射させる必要があり、その結果、Bow
が生じる。このBOWは、単色の記録装置であれば画像
領域全域で数百μm程度まではほとんど認知されず実使
用上も問題はない。In such a front incidence scanning optical system, in order to separate an incident light beam and an outgoing light beam, it is necessary to make the light enter the deflection surface at a predetermined angle in the sub-scanning direction.
Occurs. This BOW is hardly recognized up to about several hundred μm in the entire image area in the case of a monochrome recording apparatus, and there is no problem in practical use.
【0008】図9及び図10に示すように、対称配置の
正面入射走査光学系によって異なる感光体140,14
2を露光走査し多色画像を形成しようとする場合、複数
光束L1,L2を同一偏向器110の複数反射面で同時
に走査して、異なる感光体140、142を露光走査し
多色画像を形成する。しかしながら、複数感光体14
0、142の各々における走査線ではBowの方向が異
なるものとなる。As shown in FIGS. 9 and 10, photoconductors 140 and 14 differ depending on the symmetrically arranged front incidence scanning optical system.
In order to form a multicolor image by exposing and scanning a plurality of light beams L1 and L2 simultaneously on a plurality of reflecting surfaces of the same deflector 110, and exposing and scanning different photosensitive members 140 and 142 to form a multicolor image. I do. However, multiple photoconductors 14
The direction of Bow is different in each of the scanning lines 0 and 142.
【0009】このため、例えば、図11(A)に示すよ
うに、Bowが生じている走査線の頂点で走査線位置を
合わせた場合、最大、Bowの2倍の走査線湾曲差(△
X)が生じる。また、図11(B)に示すように、Bo
wを重複させて、色ずれが一番小さくなるように走査線
位置を合わせた場合であっても、Bowと同量の走査線
湾曲差△Xが生じる。このため、異なる色で画像を形成
する場合には、色ずれとして認知されかつ画像の中央と
端部で色ずれ量が変化するので、色ムラが生じて良好な
多色画像を得ることができない。For this reason, for example, as shown in FIG. 11A, when the scanning line position is adjusted at the vertex of the scanning line where Bow occurs, the scanning line curvature difference (△) which is twice as large as Bow is maximum.
X) occurs. In addition, as shown in FIG.
Even when w is overlapped and the scanning line position is adjusted to minimize the color shift, the same amount of scanning line curvature difference ΔX as Bow occurs. Therefore, when an image is formed in different colors, the image is recognized as a color shift and the amount of the color shift changes between the center and the end of the image, so that color unevenness occurs and a good multicolor image cannot be obtained. .
【0010】また、特開平2−289816号公報に
は、平行平面板を副走査対応方向に回転することによっ
てBowを補正する技術が開示されている。しかしなが
ら、この技術では、平行平面板を回転することでfθ特
性が変化し、主走査方向の色ずれが生じると共に回転調
整機構が必要になるというさらなる問題が生じる。Japanese Patent Application Laid-Open No. 2-289816 discloses a technique for correcting a bow by rotating a parallel flat plate in a direction corresponding to sub-scanning. However, in this technique, the rotation of the plane-parallel plate changes the fθ characteristic, causing a color shift in the main scanning direction and further requiring a rotation adjustment mechanism.
【0011】また、特開昭59−188616公報に
は、複数の偏向反射面への入射角度を回転多面鏡回転軸
に対し逆方向に傾け、対称に配置された光学系によって
被走査面上で走査線を同一方向に湾曲させ色ずれのない
画像を得る技術が開示されている。しかしながら、各光
束は所定角度を有してfθレンズへ入射されるため、光
束のねじれが発生し均一なビーム径を得ることができな
い。このことは、複数反射面を用いて同時走査する走査
光学系に正面入射光学系を適用する場合、fθレンズへ
の入射角度が大きいため特に顕著となり、大幅なビーム
径不均一が発生する。Japanese Patent Application Laid-Open No. Sho 59-188616 discloses that the angles of incidence on a plurality of deflecting / reflecting surfaces are tilted in the opposite direction with respect to the rotation axis of a rotating polygon mirror, and the optical system arranged symmetrically on the surface to be scanned. A technique is disclosed in which scanning lines are curved in the same direction to obtain an image without color shift. However, since each light beam is incident on the fθ lens at a predetermined angle, the light beam is twisted and a uniform beam diameter cannot be obtained. This is particularly noticeable when a front-incident optical system is applied to a scanning optical system that performs simultaneous scanning using a plurality of reflecting surfaces, because the angle of incidence on the fθ lens is large, and significant nonuniform beam diameter occurs.
【0012】さらに、上記のように、入射光束を副走査
方向に所定角度で入射させる場合には、偏向反射面で反
射されたときに走査端部を走査する光束ほどねじれが発
生し、ビーム径は、走査中央部と走査端部で異なること
になり、実用的ではない。fθレンズの傾け角度とビー
ム径均一性は関係を有しており、fθレンズを傾けるこ
とにより走査領域全域のビーム径を均一にすることがで
きるが、fθレンズを傾けた場合でも、副走査方向のビ
ーム径と、主走査方向のビーム径の差が一致するとは限
らない。Further, as described above, when the incident light beam is made incident at a predetermined angle in the sub-scanning direction, the light beam that scans the scanning end when reflected by the deflecting / reflecting surface is more twisted, and the beam diameter is reduced. Is different between the scanning center portion and the scanning end portion, which is not practical. The tilt angle of the fθ lens and the beam diameter uniformity have a relationship. By tilting the fθ lens, the beam diameter over the entire scanning area can be made uniform. However, even when the fθ lens is tilted, Does not always match the beam diameter in the main scanning direction.
【0013】また、fθレンズの傾け角度と被走査面上
におけるBowとも関係を有している。すなわち、fθ
レンズの傾け角と、光束の偏向反射面への副走査方向入
射角により発生する被走査面上におけるBowが0にな
る角度と、が一致するとは限らず、例えば、fθレンズ
を傾けずに光束の入射角度を傾けたときに発生するBo
wよりさらに大きいBowが逆方向に発生する場合もあ
る。Also, there is a relationship between the tilt angle of the fθ lens and Bow on the surface to be scanned. That is, fθ
The angle of inclination of the lens and the angle at which Bow on the scanned surface generated by the incident angle of the light beam on the deflecting and reflecting surface in the sub-scanning direction does not always coincide, for example, the light beam without tilting the fθ lens Generated when tilting the incident angle of
Bow larger than w may occur in the opposite direction.
【0014】結果的に感光体上のBowはfθレンズの
傾斜角度に依存して変化することになり、レンズ傾斜角
度によっては各光束を逆方向の入射角度で偏向器へ入射
したにも係わらずBowが逆方向に発生して色ずれを補
正できない場合がある。As a result, Bow on the photoreceptor changes depending on the tilt angle of the fθ lens. Depending on the lens tilt angle, each beam is incident on the deflector at an incident angle in the opposite direction. In some cases, Bow occurs in the reverse direction and color shift cannot be corrected.
【0015】また、光学配置の自由度、特に平面ミラー
等のミラーの枚数差の制限は大きな課題である。一般に
複数感光体は偏向器の回転軸に垂直な平面に対し同一側
に配置される。この際露光走査の大きさは光路長と平面
ミラー等のミラーでの折り返し数で略決定する。折り返
し回数を増やして小型化しミラー折り返し回数差を0ま
たは偶数とするためには2枚のミラーを追加しなければ
ならずコスト高になる。Further, the degree of freedom of the optical arrangement, particularly the limitation on the difference in the number of mirrors such as a flat mirror, is a major problem. Generally, a plurality of photoconductors are arranged on the same side with respect to a plane perpendicular to the rotation axis of the deflector. At this time, the size of the exposure scan is substantially determined by the optical path length and the number of folds by a mirror such as a plane mirror. In order to increase the number of folds to reduce the size and reduce the difference in the number of folds to zero or an even number, two mirrors must be added, which increases the cost.
【0016】さらに、走査線湾曲がある走査装置の倒れ
補正光学系に円筒ミラー(シリンドリカルミラー)を用
いた場合、走査中央の光束と走査端部の光束とで円筒ミ
ラーへの入射位置および入射角度が異なるため円筒ミラ
ー折り返し方向によっては副走査方向像面湾曲または共
役点ずれが発生し副走査方向ビーム径が不均一となった
りピッチむらが発生したりして良好な画像を得ることが
できない。Further, when a cylindrical mirror (cylindrical mirror) is used as the tilt correction optical system of a scanning device having a curved scanning line, the position of incidence and the angle of incidence on the cylindrical mirror by the light beam at the center of scanning and the light beam at the scanning end. Therefore, depending on the folding direction of the cylindrical mirror, the curvature of field in the sub-scanning direction or the shift of the conjugate point occurs, and the beam diameter in the sub-scanning direction becomes non-uniform or the pitch becomes uneven, so that a good image cannot be obtained.
【0017】[0017]
【発明が解決しようとする課題】本発明は、上記事実を
考慮し、ビーム径の均一性を維持しつつ被走査面上で複
数光束の走査線湾曲による色ずれや色むらを抑制できる
光走査装置を得ることが目的である。SUMMARY OF THE INVENTION In view of the above, the present invention provides an optical scanning system capable of suppressing color misregistration and color unevenness due to scanning line curvature of a plurality of light beams on a surface to be scanned while maintaining uniform beam diameter. The purpose is to get the device.
【0018】[0018]
【課題を解決するための手段】上記目的を達成するため
に本発明の光走査装置は、少なくとも複数の反射面を備
えて該複数の反射面のうち異なる反射面へ向けて主走査
方向と交差する副走査方向に所定角度だけ光軸が傾くよ
うに入射された複数の光束の各々を前記主走査方向に偏
向走査する偏向手段と、前記複数の光束の各々に対応し
かつ各々偏向走査された光束を光スポットが走査される
ように被走査面上に集束させる複数の走査光学系と、前
記複数の光束の各々に対応しかつ各々偏向走査された光
束を折り返す複数の折返手段と、を備えた光走査装置に
おいて、前記複数光束のうち1光束を基準光束とし、前
記基準光束に対応する走査光学系の光軸と偏向手段の回
転軸に垂直な平面となす角度をβiとし、基準光束の光
路において偏向手段と被走査面との間の折返手段による
折り返し数をNiとし、前記複数光束のうち基準光束以
外の1光束を対象光束とし、該対象光束に対応する走査
光学系の光軸と偏向手段の回転軸に垂直な平面となす角
度をβjとし、対象光束の光路において偏向手段と被走
査面との間の折返手段による折り返し数をNjとすると
き、基準光束と対象光束とは、以下の関係を満たすよう
に構成されることを特徴とする。In order to achieve the above object, an optical scanning apparatus according to the present invention comprises at least a plurality of reflecting surfaces, and intersects a main scanning direction toward a different one of the plurality of reflecting surfaces. Deflecting means for deflecting and scanning each of the plurality of light beams incident in such a manner that the optical axis is inclined by a predetermined angle in the sub-scanning direction in the main scanning direction, and corresponding to each of the plurality of light beams and each of which is deflected and scanned. A plurality of scanning optical systems for focusing the light beam on the surface to be scanned such that the light spot is scanned, and a plurality of folding means corresponding to each of the plurality of light beams and folding the light beam deflected and scanned. In the optical scanning device, one of the plurality of light beams is set as a reference light beam, an angle between the optical axis of the scanning optical system corresponding to the reference light beam and a plane perpendicular to the rotation axis of the deflecting unit is set as βi, Hand deflected in optical path The number of folds by the fold means between the scan light and the scanned surface is Ni, one of the plurality of light beams other than the reference light beam is a target light beam, and the optical axis of the scanning optical system corresponding to the target light beam and the rotation of the deflecting means are rotated. When the angle formed by the plane perpendicular to the axis is βj, and the number of folds by the fold means between the deflecting unit and the scanned surface in the optical path of the target luminous flux is Nj, the following relationship is established between the reference luminous flux and the target luminous flux. It is characterized by being configured to satisfy.
【0019】 (βi×(−1)Ni)/(βj×(−1)Nj)>0 但し、角度は反時計回転方向を正符号としかつ時計回転
方向を負符号とする。すなわち、副走査断面に投影した
光路においてfθレンズ等の走査光学系の光軸から垂直
平面に向かって時計回り方向の回転角度の符号を負、反
時計回り方向の角度の符号を正とする。(Βi × (−1) Ni ) / (βj × (−1) Nj )> 0 where the angle has a positive sign in the counterclockwise direction and a negative sign in the clockwise direction. That is, in the optical path projected on the sub-scan section, the sign of the clockwise rotation angle from the optical axis of the scanning optical system such as the fθ lens toward the vertical plane is negative, and the sign of the counterclockwise angle is positive.
【0020】本発明により、偏向手段および走査光学系
として例えばfθレンズの傾けによって発生する被走査
面上のBowは同一方向となり、被走査面での色ずれ量
を減少もしくは一致させることが可能になる。According to the present invention, Bow on the surface to be scanned caused by, for example, tilting of the fθ lens as the deflecting means and the scanning optical system is in the same direction, and the amount of color shift on the surface to be scanned can be reduced or matched. Become.
【0021】本発明の光走査装置では、前記偏向手段へ
入射される光束は、前記反射面近傍に主走査方向に長い
線像を結像させるアナモフィック光学系によって副走査
方向に集束された光束であり、前記角度βi,βjの絶
対値が大きい光束側の副走査方向の偏向反射面と被走査
面との共役倍率の絶対値を小さく設定することができ
る。In the optical scanning device of the present invention, the light beam incident on the deflecting means is a light beam focused in the sub-scanning direction by an anamorphic optical system for forming a long line image in the main scanning direction near the reflecting surface. In addition, the absolute value of the conjugate magnification between the deflecting reflection surface and the surface to be scanned in the sub-scanning direction on the light beam side where the absolute values of the angles βi and βj are large can be set small.
【0022】fθレンズ等の走査光学系の光軸と、回転
多面鏡等の偏向器の回転軸に垂直な平面となす角度が大
きい場合、発生するBowの量が大きくなる。そこで、
発生するBowが大きい光束の共役倍率をBowの発生
が小さい光束の共役倍率より小さく設定する。これによ
って、図6に示すように、発生するBow差を減少させ
たり、Bow差を0としたりさせることができ、被走査
面上において走査線を略一致させて色ずれを抑制させる
ことができる。When the angle between the optical axis of the scanning optical system such as the fθ lens and the plane perpendicular to the rotation axis of the deflector such as a rotary polygon mirror is large, the amount of Bow generated increases. Therefore,
The conjugate magnification of a light beam having a large Bow is set smaller than the conjugate magnification of a light beam having a small Bow. As a result, as shown in FIG. 6, the generated Bow difference can be reduced or the Bow difference can be set to 0, and the scanning lines can be made substantially coincident with each other on the surface to be scanned, thereby suppressing color shift. .
【0023】本発明の光走査装置では、前記角度βi,
βjに対応する、前記偏向手段へ入射される光束の光軸
が前記偏向手段の回転軸に垂直な平面となす角度をα
i、αjとするとき、基準光束と対象光束とは、{|α
i|>|αj|のとき|βi|<|βj|}の関係を満
たすように構成することができる。In the optical scanning device of the present invention, the angle βi,
The angle between the optical axis of the light beam incident on the deflecting means and the plane perpendicular to the rotation axis of the deflecting means corresponding to βj is α
When i and αj, the reference light beam and the target light beam are {| α
When i |> | αj |, | βi | <| βj |} can be satisfied.
【0024】このように、光束の副走査方向の入射角度
が大きい光束に対応するfθレンズ等の走査光学系の傾
け角度を小さく設定することによって、発生するBow
の大きさを同様にすることができ、より色ずれの小さい
良好な画像を得ることができる。As described above, Bow generated by setting a small inclination angle of a scanning optical system such as an fθ lens corresponding to a light beam having a large incident angle in the sub-scanning direction of the light beam is generated.
Can be made the same, and a good image with less color shift can be obtained.
【0025】また、他の発明の光走査装置は、少なくと
も複数の反射面を備えて該複数の反射面のうち異なる反
射面へ向けて主走査方向と交差する副走査方向に所定角
度だけ光軸が傾くように入射された複数の光束の各々を
前記主走査方向に偏向走査する偏向手段と、前記複数の
光束の各々に対応しかつ各々偏向走査された光束を光ス
ポットが走査されるように被走査面上に集束させる複数
の走査光学系と、前記複数の光束の各々に対応しかつ各
々偏向走査された光束を折り返す複数の折返手段と、を
備えた光走査装置において、前記偏向手段へ入射される
光束は、前記反射面近傍に主走査方向に長い線像を結像
させるアナモフィック光学系によって副走査方向に集束
された光束であり、前記折返手段の少なくとも1つを副
走査方向にのみ曲率を有する円筒ミラーで構成すること
及び副走査方向にのみパワーを有する円筒レンズをさら
に備えることの少なくとも一方によって倒れ補正機能を
有させて、前記複数の光束のうち少なくとも1つの光束
について、前記偏向手段へ入射されるときの光軸が前記
偏向手段の回転軸に垂直な平面となす角度をαとし、対
応する走査光学系の光軸と偏向手段の回転軸に垂直な平
面となす角度をβとし、前記円筒ミラー及び円筒レンズ
の少なくとも一方への光束への入射角度をγとし、前記
偏向手段と円筒ミラー及び円筒レンズの少なくとも一方
との間の折り返し数をMとしたとき、{α×β<0でか
つβ×γ×(−1)M>0、但し、角度は反時計回転方
向を正符号としかつ時計回転方向を負符号とする。すな
わち、副走査断面に投影した光路においてαは入射光束
から回転軸と垂直な平面に向かって反時計方向を正、時
計方向を負とし、γは入射光束から円筒ミラー入射位置
における法線に向かって反時計方向を正、時計方向を負
の符号とする。}関係を満たすように構成したことを特
徴とする。An optical scanning device according to another aspect of the present invention includes at least a plurality of reflecting surfaces, and an optical axis is provided at a predetermined angle in a sub-scanning direction crossing the main scanning direction toward a different one of the plurality of reflecting surfaces. A deflecting unit that deflects and scans each of the plurality of light beams incident so as to be inclined in the main scanning direction, so that the light spots are scanned with the light beams corresponding to each of the plurality of light beams and each of which is deflected and scanned. An optical scanning device comprising: a plurality of scanning optical systems for converging on a surface to be scanned; and a plurality of folding units corresponding to each of the plurality of luminous fluxes, and a plurality of folding-back means for folding the deflected and scanned light fluxes. The incident light beam is a light beam focused in the sub-scanning direction by an anamorphic optical system that forms a long line image in the main scanning direction in the vicinity of the reflection surface. Song And at least one of a cylindrical mirror having power only in the sub-scanning direction and having a tilt correction function, so that at least one of the plurality of light beams is deflected by the deflection means. The angle between the optical axis when the light is incident on the plane perpendicular to the rotation axis of the deflecting means is α, and the angle between the optical axis of the corresponding scanning optical system and the plane perpendicular to the rotation axis of the deflecting means is β. When the incident angle of the light beam to at least one of the cylindrical mirror and the cylindrical lens is γ, and the number of turns between the deflecting means and at least one of the cylindrical mirror and the cylindrical lens is M, {α × β < 0 and β × γ × (−1) M > 0, where the angle has a positive sign in the counterclockwise direction and a negative sign in the clockwise direction. That is, in the optical path projected on the sub-scanning cross section, α is positive in the counterclockwise direction from the incident light beam toward a plane perpendicular to the rotation axis, negative in the clockwise direction, and γ is from the incident light beam to the normal to the cylindrical mirror incident position. The counterclockwise direction is positive and the clockwise direction is negative. } It is characterized in that it is configured to satisfy the relationship.
【0026】本発明によると、偏向手段への光束入射角
とfθレンズ光軸の傾けの方向を異なる方向へ傾けるこ
とによって偏向手段への光束入射が副走査方向に角度を
有することに起因する光束のねじれによるビーム径の不
均一を防止すると同時にfθレンズ傾きにより発生する
円筒ミラー上での走査線の湾曲方向を走査中央光束の円
筒ミラー上副走査入射角に対し走査端部光束の入射角度
を小さくする方向に設定することにより被走査面上での
副走査像画湾曲を抑制し偏向反射面共役位置のずれを防
止することができる。According to the present invention, by inclining the incident angle of the light beam to the deflecting means and the direction of the inclination of the optical axis of the fθ lens in different directions, the light beam incident on the deflecting means has an angle in the sub-scanning direction. In addition to preventing the beam diameter from becoming non-uniform due to the torsion of the lens, the bending direction of the scanning line on the cylindrical mirror caused by the tilt of the fθ lens is determined by the angle of incidence of the scanning end beam relative to the sub-scanning incident angle of the scanning central beam on the cylindrical mirror. By setting the direction to be smaller, the curvature of the sub-scanning image on the surface to be scanned can be suppressed, and the shift of the conjugate position of the deflecting reflection surface can be prevented.
【0027】前記発明の光走査装置では、前記角度αと
前記角度βとの間は、(−0.2>α/β>−0.4)
の関係を満たすように構成することができる。In the optical scanning device according to the present invention, the angle between the angle α and the angle β is (−0.2> α / β> −0.4).
Can be configured to satisfy the following relationship.
【0028】これによって、光束入射角度αで偏向手段
に入射し、偏向走査された光束がfθレンズに対し(α
+β)の角度をもって入射される。このとき角度α、β
を上式を満足するように設定することによって、偏向手
段へ副走査方向に角度を有して入射することによる光束
のねじれによるビーム径の不均一を実使用上問題のない
範囲に押さえることができる。As a result, the light beam incident on the deflecting means at the light beam incident angle α is deflected and scanned, and the light beam is fed to the fθ lens by (α
+ Β). At this time, the angles α and β
Is set so as to satisfy the above expression, it is possible to suppress the nonuniformity of the beam diameter due to the twist of the light beam caused by entering the deflection means at an angle in the sub-scanning direction to a range where there is no problem in practical use. it can.
【0029】このように、本発明によれば、安価/小型
でかつ、複数光束の走査線が被走査面上で同一方向かつ
略同一湾曲量としてBow差による色ずれを防止し、ビ
ーム径の均一性を維持しつつピッチむらを防止した良好
な画像を得ることができる多色画像記録装置を提供する
ことが可能となる。また、本発明によれば、人に認知さ
れ易い色ずれに特に効果を奏し、特別な光学素子を追加
することなく複数光束の走査線が被走査面上で同一方向
かつ略同一湾曲量としてBow差による色ずれ又は色む
らを減少させると同時に被走査面でのビーム径を走査領
域全域にわたって一定とすることができる。As described above, according to the present invention, inexpensive / compact, the scanning lines of a plurality of luminous fluxes have the same direction and substantially the same amount of curvature on the surface to be scanned, thereby preventing color shift due to a Bow difference and reducing the beam diameter. It is possible to provide a multicolor image recording apparatus capable of obtaining a good image in which pitch unevenness is prevented while maintaining uniformity. Further, according to the present invention, the present invention is particularly effective for color misregistration which is easily recognized by humans, and the scanning lines of a plurality of luminous fluxes can be bowed in the same direction and substantially the same amount of curvature on the surface to be scanned without adding a special optical element. At the same time, the color shift or the color unevenness due to the difference can be reduced, and the beam diameter on the surface to be scanned can be kept constant over the entire scanning area.
【0030】また、副走査方向の像面湾曲を補正し共役
点のずれを小さくした良好な倒れ補正性能が得ることが
できる光走査装置を提供することができる。Also, it is possible to provide an optical scanning device capable of correcting the curvature of field in the sub-scanning direction and reducing the shift of the conjugate point to obtain good tilt correction performance.
【0031】[0031]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態の一例を詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
【0032】[第1実施の形態]図2及び図1には、本
発明の実施の形態にかかる光走査装置の概略構成を示し
た。図2は光走査装置の斜視図を示し、図1は光走査装
置を副走査対応方向より見た矢視図(図2の矢印X方向
からみた矢視図)を示している。また、次の表1には本
実施の形態の偏向面24X以降の主要光学データを示し
た。[First Embodiment] FIGS. 2 and 1 show a schematic configuration of an optical scanning device according to an embodiment of the present invention. FIG. 2 is a perspective view of the optical scanning device, and FIG. 1 is a view of the optical scanning device as viewed from the direction corresponding to the sub-scanning direction (a view as viewed from the direction of arrow X in FIG. 2). Table 1 below shows main optical data of the deflecting surface 24X and thereafter of the present embodiment.
【0033】[0033]
【表1】 [Table 1]
【0034】なお、以下の説明では、回転多面鏡24に
よって反射偏向された光束(レーザビーム)の軌跡によ
って形成される面を主走査面、この主走査面と感光体表
面とが交わって形成される方向を主走査方向、該主走査
面に交差(特に直交)する方向を副走査方向とする。ま
た、感光体表面を被走査面とする。In the following description, a surface formed by the trajectory of the light beam (laser beam) reflected and deflected by the rotary polygon mirror 24 is defined as a main scanning surface, and the main scanning surface and the photosensitive member surface are formed so as to intersect with each other. Is defined as a main scanning direction, and a direction intersecting (particularly orthogonal to) the main scanning plane is defined as a sub-scanning direction. In addition, the surface of the photoreceptor is a surface to be scanned.
【0035】図2及び図1に示すように、第1実施の形
態の光走査装置はレーザビーム(レーザ光)である光束
LAを出射する光源10Aと、光束LBを出射する光源
10Bとを備えている。光源10Aの出射側には光束L
Aを略平行とするコリメートレンズ12A、及び通過す
る光束LAを所望のスポット径とする開口部14Aが順
に設けられている。開口部14Aの光束LAの出射側に
は整形光学系16A、反射ミラー18A、及び回転多面
鏡等の偏向器24が順に設けられている。光束LAは、
整形光学系16Aによって副走査方向に集束されて主走
査方向に長い線像となるように光束整形がなされる。整
形光学系16Aから出射された光束LAは、反射ミラー
18Aによって偏向器24の偏向反射面24Xへ向けて
案内される。偏向反射面24Xは、上記線像すなわち整
形光学系16Aによる副走査方向に集束される光束位置
近傍に設けられる。As shown in FIGS. 2 and 1, the optical scanning device according to the first embodiment includes a light source 10A for emitting a light beam LA as a laser beam (laser light) and a light source 10B for emitting a light beam LB. ing. The light flux L is on the emission side of the light source 10A.
A collimating lens 12A that makes A substantially parallel, and an opening 14A that makes the passing light beam LA a desired spot diameter are sequentially provided. A shaping optical system 16A, a reflecting mirror 18A, and a deflector 24 such as a rotating polygon mirror are sequentially provided on the emission side of the light beam LA of the opening 14A. The luminous flux LA is
The light beam is shaped by the shaping optical system 16A so that the light beam is focused in the sub-scanning direction and becomes a long line image in the main scanning direction. The light beam LA emitted from the shaping optical system 16A is guided toward the deflection reflection surface 24X of the deflector 24 by the reflection mirror 18A. The deflecting reflection surface 24X is provided in the vicinity of the above-described line image, that is, the position of the light beam focused in the sub-scanning direction by the shaping optical system 16A.
【0036】なお、本実施の形態では偏向器24を光束
LA,LBの各々を偏向走査する単一の偏向器として用
いる。このため、以下の説明では、光束LA,LBの各
々に対応する偏向反射面24Xを、便宜上24A、24
Bとして説明する。In the present embodiment, the deflector 24 is used as a single deflector for deflecting and scanning each of the light beams LA and LB. For this reason, in the following description, the deflecting / reflecting surfaces 24X corresponding to the light beams LA and LB will be referred to as 24A and 24B for convenience.
B will be described.
【0037】偏向器24によって偏向走査された光束L
Aは、fθレンズ22Aによって感光体34A上すなわ
ち被走査面上に結像される。fθレンズ22Aは、周知
のように、被走査面上を集束スポットが等速度で走査さ
れるように、偏向器24により等角速度で偏向される光
束LAを等速度に変換する機能を有している。なお、光
束LAは整形光学系16Aにより副走査方向に集束作用
を受けた後に偏向器24に対して略正面から入射され
る。このとき、光束LAは入射光束と射出光束を分離す
るために、偏向器24の回転軸CLに対し垂直な平面V
と所定角度をなすよう設定されている。The light beam L deflected and scanned by the deflector 24
A is imaged on the photoreceptor 34A by the fθ lens 22A, that is, on the surface to be scanned. fA lens 22A has a function of converting a light beam LA deflected at a constant angular velocity by the deflector 24 into a constant velocity so that a focused spot is scanned at a constant velocity on the surface to be scanned, as is well known. I have. The light beam LA is incident on the deflector 24 from substantially the front after being converged in the sub-scanning direction by the shaping optical system 16A. At this time, the light beam LA is divided into a plane V perpendicular to the rotation axis CL of the deflector 24 in order to separate the incident light beam and the output light beam.
And a predetermined angle is set.
【0038】偏向器24の光束の出射側には、fθレン
ズ22A、平面ミラー26A、円筒ミラー28A、平面
ミラー30A、開口32A、及び感光体34Aが順に設
けられている。An fθ lens 22A, a plane mirror 26A, a cylindrical mirror 28A, a plane mirror 30A, an opening 32A, and a photoreceptor 34A are provided in this order on the light exit side of the deflector 24.
【0039】偏向反射面24Aにより反射された後の光
束LAは、fθレンズ22Aを通過し平面ミラー26A
により折り返される。この後、円筒ミラー28Aにより
副走査方向に屈折力を受けて、平面ミラー30Aにより
折り返され、開口32Aを通過して感光体34Aを露光
走査する。なお、円筒ミラー28Aでは、主に副走査方
向に結像作用を有し偏向反射面24Aに線状に集束した
光束をfθレンズ22Aとの合成屈折力にて被走査面状
に結像させるためのものである。The light beam LA reflected by the deflecting / reflecting surface 24A passes through the fθ lens 22A and passes through the plane mirror 26A.
Is folded back by Thereafter, the cylindrical mirror 28A receives refracting power in the sub-scanning direction, is turned by the plane mirror 30A, passes through the opening 32A, and scans the photosensitive member 34A by exposure. Note that the cylindrical mirror 28A mainly has an image forming action in the sub-scanning direction, and forms a light beam converged linearly on the deflecting / reflecting surface 24A on the surface to be scanned by a combined refracting power with the fθ lens 22A. belongs to.
【0040】同様に、光源10Bの出射側にはコリメー
トレンズ12B、開口部14B、整形光学系16B、反
射ミラー18B、及び偏向器24が順に設けられてい
る。整形光学系16Bから出射された光束LBは、反射
ミラー18Bによって偏向器24の偏向反射面24Xへ
向けて案内され、偏向器24によって偏向走査された光
束LBは、fθレンズ22B、平面ミラー26B、円筒
ミラー28B、平面ミラー30B、及び開口32Bを介
して感光体34B上すなわち被走査面上に結像される。Similarly, a collimating lens 12B, an opening 14B, a shaping optical system 16B, a reflecting mirror 18B, and a deflector 24 are sequentially provided on the emission side of the light source 10B. The light beam LB emitted from the shaping optical system 16B is guided by the reflecting mirror 18B toward the deflecting / reflecting surface 24X of the deflector 24, and the light beam LB scanned by the deflector 24 is scanned by the fθ lens 22B, the plane mirror 26B, An image is formed on the photosensitive member 34B, that is, on the surface to be scanned, via the cylindrical mirror 28B, the plane mirror 30B, and the opening 32B.
【0041】従って、光束LA,LBは偏向反射面24
A,24Bにより反射された後、その光軸が偏向器24
の回転軸CLに対し垂直な平面Vと所定の角度を持って
配置されたfθレンズ22A,22Bを通過し平面ミラ
ー26A,26Bにより折り返された後、主に副走査方
向に結像作用を持ち偏向反射面に線状に集束した光束を
fθレンズ26A,26Bとの合成屈折力にて被走査面
状に結像させる各光束毎に設けられた円筒ミラー28
A,28Bにより副走査方向に屈折力を受け平面ミラー
30A,30Bにより折り返され感光体34A,34B
を露光走査する。Accordingly, the light beams LA and LB are reflected by the deflecting / reflecting surface 24.
A, after being reflected by 24B, its optical axis is deflector 24
After passing through the fθ lenses 22A and 22B arranged at a predetermined angle with respect to a plane V perpendicular to the rotation axis CL of the optical axis, and being turned back by the plane mirrors 26A and 26B, it has an image forming function mainly in the sub-scanning direction. Cylindrical mirror 28 provided for each light beam that forms a light beam condensed linearly on the deflecting reflection surface on the surface to be scanned by the combined refracting power with fθ lenses 26A and 26B.
A, 28B receive the refracting power in the sub-scanning direction and are folded back by the plane mirrors 30A, 30B, and the photoconductors 34A, 34B
Is exposed and scanned.
【0042】感光体34A,34Bは露光されることに
よって潜像を形成し、各感光体34A,34B上の潜像
に対応して異なる色の現像が行われることで多色の可視
像が得られる。この可視像を同一記録媒体に転写するこ
とで多色プリントを得ることができる。The photoconductors 34A and 34B form a latent image by being exposed to light, and are developed in different colors corresponding to the latent images on the photoconductors 34A and 34B to form a multicolor visible image. can get. By transferring this visible image to the same recording medium, a multicolor print can be obtained.
【0043】ここで、各光学素子に対する光束LA,L
Bの光路がなす角度について説明する。本実施の形態で
は、図1に示すように、光束LAは角度αiをもって上
方(図1の紙面の上方向)から偏向反射面24Aへ入射
され、光束LBは角度αjをもって下方(図1の紙面の
下方向)より偏向反射面24Bへ入射されている。この
各角度の符号は、光束の光路を基準として偏向器24の
回転軸CLに垂直な平面Vに向かう方向が時計回り方向
のときを負、反時計回り方向のときを正とする。本実施
の形態では、光束LAの偏向器24への副走査方向の入
射角度αi=+2.4°、光束LBの偏向器24への副
走査方向の入射角度αj=+1.5°でともに正に設定
されている。Here, the luminous fluxes LA, L for each optical element
The angle formed by the optical path of B will be described. In the present embodiment, as shown in FIG. 1, the light beam LA is incident on the deflecting / reflecting surface 24A at an angle αi from above (upper side of the paper surface of FIG. 1), and the light beam LB is downward at an angle αj (the paper surface of FIG. 1). From the lower side). The sign of each angle is negative when the direction toward the plane V perpendicular to the rotation axis CL of the deflector 24 is clockwise with respect to the optical path of the light beam, and positive when the direction is counterclockwise. In the present embodiment, the incident angle αi of the light beam LA to the deflector 24 in the sub-scanning direction in the sub-scanning direction is + 2.4 °, and the incident angle αj of the light beam LB to the deflector 24 in the sub-scanning direction is both positive. Is set to
【0044】また、本実施の形態では、fθレンズ22
A,22Bによりビーム径が走査中央部と走査端部で差
がでるのを避けるために、fθレンズ22A,22Bの
光軸が偏向面24A,24Bに垂直な面に対し傾くよう
に設置している。ところで、fθレンズの傾け角度とビ
ーム径の均一性とは関係がある。In this embodiment, the fθ lens 22
In order to avoid a difference in beam diameter between the scanning center portion and the scanning end portion due to A and 22B, the optical axes of the fθ lenses 22A and 22B are installed so as to be inclined with respect to a plane perpendicular to the deflecting surfaces 24A and 24B. I have. Incidentally, there is a relationship between the tilt angle of the fθ lens and the uniformity of the beam diameter.
【0045】図3には、fθレンズの傾け角度とビーム
径の均一性との関係を示した。図3から理解されるよう
に、fθレンズ傾け角度β=0のときのビーム径均一性
に示されるように副走査方向の入射角度α=2.4°の
ときで強度が1/e2となる幅(所謂ビーム径)が走査
中央部と走査端部で70μm異なることになり、実用的
ではない。また、この場合、fθレンズを傾けることに
より走査領域全域のビーム径を均一にすることができる
が、図3ではfθレンズの傾け角度β=−8°で副走査
方向(Tan)のビーム径差6μm、主走査方向(Sa
g)のビーム径差0μmとなりビーム不均一性を回避す
ることができない。一方、図3から理解されるように、
fθレンズの傾け角度が6.8°近傍であればビーム径
差は5μm以下に収めることができる。これは実用的な
数値である。FIG. 3 shows the relationship between the tilt angle of the fθ lens and the uniformity of the beam diameter. As can be understood from FIG. 3, as shown in the beam diameter uniformity when the fθ lens tilt angle β = 0, the intensity is 1 / e 2 at the incident angle α = 2.4 ° in the sub-scanning direction. The resulting width (the so-called beam diameter) differs by 70 μm between the central scanning portion and the scanning end portion, which is not practical. In this case, the beam diameter in the entire scanning area can be made uniform by tilting the fθ lens. However, in FIG. 3, the beam diameter difference in the sub-scanning direction (Tan) is obtained at the tilt angle β = −8 ° of the fθ lens. 6 μm in the main scanning direction (Sa
The beam diameter difference of g) is 0 μm, and beam non-uniformity cannot be avoided. On the other hand, as understood from FIG.
If the inclination angle of the fθ lens is around 6.8 °, the beam diameter difference can be kept to 5 μm or less. This is a practical number.
【0046】そこで、本実施の形態では、fθレンズ2
2A,22Bの傾け角度βi,βjとして、光束LAと
光束LBのBowが同一量となりかつ主走査ビーム径差
が10μm以下となるようにβi=−7°、βj=−
7.3°と設定している。各角度の符号は、光軸から偏
向器24の回転軸CLに垂直な平面Vに向かう方向が時
計回り方向のときを負、反時計回り方向のときを正とし
ている。Therefore, in this embodiment, the fθ lens 2
As the inclination angles βi and βj of 2A and 22B, βi = −7 ° and βj = − so that Bow of light beam LA and light beam LB become the same amount and the main scanning beam diameter difference becomes 10 μm or less.
It is set to 7.3 °. The sign of each angle is negative when the direction from the optical axis to the plane V perpendicular to the rotation axis CL of the deflector 24 is clockwise, and positive when the direction is counterclockwise.
【0047】本実施の形態では、fθレンズ22A,2
2Bの各々を傾ける角度βi、βjはともに負に設定さ
れており、偏向器24への斜入射およびfθレンズ22
A,22Bの傾け角によって発生する平面ミラー26
A,26B上のBowは、光束LAは山状になり、光束
LBは谷状になるというように逆形状になる。このため
被走査面上でBowによる色ずれを無くすために、偏向
器以降の光束LA,LBの折り返し数をNi,Njとし
たとき各々3回とする。これによって、被走査面上にお
いてBowは同一方向に設定することができる。In this embodiment, the fθ lenses 22A, 22A
The angles βi and βj for inclining each of the lenses 2B are set to be negative, and oblique incidence on the deflector 24 and the fθ lens 22
Plane mirror 26 generated by the tilt angle of A, 22B
Bow on A and 26B has an inverted shape such that the light beam LA has a mountain shape and the light beam LB has a valley shape. For this reason, in order to eliminate the color shift due to Bow on the surface to be scanned, the number of folds of the light beams LA and LB after the deflector is set to three when Ni and Nj, respectively. Thus, Bow can be set in the same direction on the surface to be scanned.
【0048】このように構成することにより感光体34
A,34B上のBowはfθレンズ22A,22Bを傾
けないとき、光束LAが−55μm、光束LBが−73
μmに対して、fθレンズ22A,22Bの傾けによっ
てBowは光束LA,LBともに+172μmとなり色
ずれをなくすとともに走査中央と走査端部とのビーム径
差を小さくすることができる。With this configuration, the photosensitive member 34
When the fθ lenses 22A and 22B are not tilted, Bow on A and 34B has a light beam LA of −55 μm and a light beam LB of −73.
With the inclination of the fθ lenses 22A and 22B with respect to μm, Bow becomes +172 μm for both the light fluxes LA and LB, eliminating color shift and reducing the beam diameter difference between the scanning center and the scanning end.
【0049】なお、本実施の形態のように、fθレンズ
22A,22Bを傾けることによって、ダブルパス光学
系においてレンズ面による入射光束の表面反射が迷光と
なって被走査面に入射される問題を解消することもでき
る。By tilting the fθ lenses 22A and 22B as in the present embodiment, the problem that the surface reflection of the incident light beam by the lens surface in the double-pass optical system becomes stray light and enters the surface to be scanned can be solved. You can also.
【0050】上記説明した、fθレンズ22A,22B
の傾け角度βi、βj、折り返し数Ni,Njの関係
は、次の(1)式で表すことができる。この(1)式を
満足すれば、被走査面上のBowを同一方向とすること
ができる。The fθ lenses 22A and 22B described above
The relationship between the inclination angles βi, βj and the number of turns Ni, Nj can be expressed by the following equation (1). If this expression (1) is satisfied, Bow on the surface to be scanned can be set in the same direction.
【0051】 βi×(−1)Ni)/(βj×(−1)Nj)>0 …(1) この(1)式は、被走査面上のBowを同一方向に向か
わせる関係を表している。すなわち、正面入射光学系で
はfθレンズを傾ける方向でBowの発生する方向が異
なる。このため、複数の光束の間で、偏向器に対する光
束の方向を変更したり反射により対称像を形成させたり
すれば、Bowの方向を一致させることができる。そこ
で、fθレンズの傾け角が左右逆(βの符号は同符号)
のときは偏向器以降の折り返し数の差を0または偶数と
し、レンズ傾け角が左右同じ(β符号は異符号)の場合
は折り返し数を奇数とすることにより被走査面上のBo
wを同一方向とすることができる。Βi × (−1) Ni ) / (βj × (−1) Nj )> 0 (1) Equation (1) expresses a relationship in which Bow on the surface to be scanned is directed in the same direction. I have. That is, in the front-incidence optical system, the direction in which Bow occurs differs depending on the direction in which the fθ lens is inclined. For this reason, if the direction of the light beam with respect to the deflector is changed or a symmetric image is formed by reflection among a plurality of light beams, the Bow direction can be matched. Therefore, the inclination angle of the fθ lens is reversed left and right (the sign of β is the same sign)
In this case, the difference between the number of folds after the deflector is set to 0 or an even number, and when the lens tilt angle is the same on the left and right (β code is a different sign), the number of folds is set to an odd number, so that Bo on the surface to be scanned is set.
w can be in the same direction.
【0052】また、本実施の形態では、円筒ミラー28
A,28Bによって、副走査方向に結像させると共に倒
れ補正光学系を構成している。このときの円筒ミラー2
8A,28Bへの入射角度γi、γjの符号は、光束の
光路から円筒ミラー28A,28Bの法線へ向かう方向
が時計回り方向のときを負、反時計回り方向を正とする
と、互いに正である。その結果、図1に示すように、光
束LAは下方(図1の紙面の下方向)へ折り返され、光
束LBは上方(図1の紙面の上方向)へ折り返されてい
る。In the present embodiment, the cylindrical mirror 28
A and 28B form an image in the sub-scanning direction and constitute a tilt correction optical system. The cylindrical mirror 2 at this time
The signs of the incident angles γi and γj on the light beams 8A and 28B are negative when the direction from the optical path of the light beam to the normal line of the cylindrical mirrors 28A and 28B is clockwise, and positive when the counterclockwise direction is positive. is there. As a result, as shown in FIG. 1, the light beam LA is folded back (downward in the plane of FIG. 1), and the light beam LB is folded upward (upward in the plane of FIG. 1).
【0053】本実施の形態では、円筒ミラーによる折り
返し角(円筒ミラー28A,28Bへの入射角度γi、
γj)を互いに正となるように設定したことによって、
円筒ミラー上の走査線湾曲により走査中央の光束による
円筒ミラーの入射角に対し、走査端部の光束による円筒
ミラーの入射角を小さくでき、副走査方向の像面湾曲を
補正することができる。これによって、反射面の面倒れ
が120秒時の共役点ずれは約0.2mmとなった。In the present embodiment, the turning angle by the cylindrical mirror (the angle of incidence γi on the cylindrical mirrors 28A and 28B,
By setting γj) to be positive to each other,
Due to the curvature of the scanning line on the cylindrical mirror, the incident angle of the cylindrical mirror due to the light beam at the scanning end can be made smaller than the incident angle of the cylindrical mirror due to the light beam at the scanning center, and the field curvature in the sub-scanning direction can be corrected. As a result, the conjugate point shift when the reflection surface fell 120 seconds was about 0.2 mm.
【0054】この場合、光束の入射角度α、fθレンズ
の傾け角度β、円筒ミラーの入射角度γ、偏向器から円
筒ミラーとの間の折り返し数Mの間の関係は、次の
(2)式で表すことができる。この(2)式を満足すれ
ば、副走査方向の像面湾曲を補正することができる。In this case, the relationship among the incident angle α of the light beam, the inclination angle β of the fθ lens, the incident angle γ of the cylindrical mirror, and the number of turns M between the deflector and the cylindrical mirror is expressed by the following equation (2). Can be represented by If this expression (2) is satisfied, the curvature of field in the sub-scanning direction can be corrected.
【0055】 β×β<0, β×γ×(−1)M>0 …(2) すなわち、α×βが負であることは光束の偏向器への入
射角とfθレンズの傾け角が逆方向に角度を有すること
である。このように、偏向反射面への副走査方向の入射
角αに対しfθレンズの傾け角βを逆方向に傾けること
により、偏向器への斜入射によるビーム径の不均一をf
θレンズの傾けによって補正することができる。Β × β <0, β × γ × (−1) M > 0 (2) That is, when α × β is negative, the angle of incidence of the light beam on the deflector and the angle of inclination of the fθ lens are It is to have an angle in the opposite direction. As described above, by inclining the inclination angle β of the fθ lens in the reverse direction with respect to the incident angle α in the sub-scanning direction on the deflecting reflection surface, the nonuniformity of the beam diameter due to oblique incidence on the deflector is reduced to f.
It can be corrected by tilting the θ lens.
【0056】この場合、走査中央のビーム径と走査端部
のビーム径の差(ビーム径差)を最小にするfθレンズ
の傾け角βは偏向器への副走査方向の入射角αによって
異なる。すなわち入射角αの絶対値(|α|)が大きい
と、ビーム径差を最小にする傾け角βの絶対値(|β
|)もまた大きくなる。このため、ビーム径差を実使用
上問題のない所定値、例えば10μm程度に抑制するた
めには、図3に示すように、偏向面の入射角度αとfθ
レンズの傾け角度βの比(α/β)を−0.2〜−0.
4の間に設定することが望ましい。In this case, the inclination angle β of the fθ lens that minimizes the difference between the beam diameter at the scanning center and the beam diameter at the scanning end (beam diameter difference) differs depending on the incident angle α in the sub-scanning direction to the deflector. That is, when the absolute value (| α |) of the incident angle α is large, the absolute value (| β
|) Also increases. Therefore, in order to suppress the beam diameter difference to a predetermined value which does not cause a problem in practical use, for example, about 10 μm, as shown in FIG.
The ratio of the lens inclination angle β (α / β) is -0.2 to -0.0.
It is desirable to set between 4.
【0057】また、β×γ×(−1)Mの符号が正であ
ることは、ビーム不均一を防止するfθレンズの傾け角
度のときに生じる走査中央の光束と走査端部の光束の円
筒ミラー上での走査線湾曲すなわち入射位置に差がある
ことを利用するものである。すなわち、走査中央の光束
の副走査方向の入射角度より走査端部の光束の副走査方
向の入射角度が小さくなる方向に折り返すことにより、
走査中央の光束に対する円筒ミラーのパワーより走査端
部の光束に対するパワーが小さくなるようにでき、負に
湾曲する副走査方向の像面湾曲を補正して、共役点のず
れを小さくすることができ、良好な倒れ補正性能を得る
ことができる。Further, the fact that the sign of β × γ × (−1) M is positive means that the cylinder of the light beam at the center of scanning and the light beam at the scanning end generated when the fθ lens is inclined at an angle to prevent beam nonuniformity. This is to take advantage of the fact that there is a difference in the scanning line curvature on the mirror, that is, the incident position. That is, by folding back in the direction in which the incident angle of the light beam at the scanning end in the sub-scanning direction is smaller than the incident angle of the light beam at the scanning center in the sub-scanning direction,
The power of the light beam at the scanning end can be made smaller than the power of the cylindrical mirror for the light beam at the scanning center, and the curvature of the image field in the sub-scanning direction that is negatively curved can be corrected to reduce the displacement of the conjugate point. And good tilt correction performance can be obtained.
【0058】なお、本実施の形態では2つの感光体を用
いた場合を説明したが,同じ構成の走査装置および感光
体を追加するか、または図4のように、同一偏向反射面
で2つの光束を走査する走査装置を本実施の形態のよう
に左右で構成することにより4色のフルカラー記録装置
を形成することが可能である。In this embodiment, the case where two photosensitive members are used has been described. However, a scanning device and a photosensitive member having the same configuration are added, or as shown in FIG. A four-color full-color recording apparatus can be formed by configuring the scanning device that scans a light beam on the left and right as in this embodiment.
【0059】図4の光走査装置は、図示は省略したが、
光束LA,La,LB.Lbを出射する光源、コリメー
トレンズ、開口部、整形光学系が順に設けられている。
図示を省略した整形光学系から出射された光束LA,L
aは、反射ミラー18Aによって、光束LB,Lbは、
反射ミラー18Bによって、単一の偏向器24へ案内さ
れ、偏向走査される。光束LA,Laは、fθレンズ2
2Aによって感光体34A,34a上の各々に結像され
る。同様に、光束LB,Lbは、fθレンズ22Bによ
って感光体34B,34b上の各々に結像される。な
お、偏向器24と感光体34A,34aの間には、平面
ミラー26A,26a、円筒ミラー28A,28a、及
び平面ミラー30A,30aが順に設けられている。Although the illustration of the optical scanning device in FIG. 4 is omitted,
Light fluxes LA, La, LB. A light source for emitting Lb, a collimating lens, an opening, and a shaping optical system are provided in this order.
Light beams LA and L emitted from a shaping optical system (not shown)
a, the light beams LB and Lb are reflected by the reflecting mirror 18A.
It is guided to a single deflector 24 by the reflection mirror 18B, and is deflected and scanned. The luminous fluxes LA and La are the fθ lenses 2
An image is formed on each of the photoconductors 34A and 34a by 2A. Similarly, the light beams LB and Lb are imaged on the photoconductors 34B and 34b by the fθ lens 22B. The plane mirrors 26A and 26a, the cylindrical mirrors 28A and 28a, and the plane mirrors 30A and 30a are sequentially provided between the deflector 24 and the photoconductors 34A and 34a.
【0060】従って、光束LA,La,LB,Lbの各
々は偏向器24により偏向走査された後、fθレンズ2
2A,22Bを通過し平面ミラー26A、26a,26
B,26bにより折り返された後、円筒ミラー28A,
28a,28B,28bにより副走査方向に屈折力を受
け平面ミラー30A,30a,30B,30bにより折
り返され感光体34A,34a,34B,34bを露光
走査する。Therefore, each of the light beams LA, La, LB, and Lb is deflected and scanned by the deflector 24,
2A and 22B, and pass through the plane mirrors 26A, 26a and 26
B, 26b, the cylindrical mirrors 28A,
The photosensitive members 34A, 34A, 34B, and 34B receive refracting power in the sub-scanning direction by 28A, 28B, and 28B and are turned back by the plane mirrors 30A, 30A, 30B, and 30B to expose and scan the photosensitive members 34A, 34A, 34B, and 34B.
【0061】感光体34A,34a,34B,34bの
各々が露光されることによって各色に対応する潜像が形
成され、各感光体34A,34a,34B,34b上の
潜像に対応して異なる色の現像が行われることで多色の
可視像が得られる。この可視像を同一記録媒体に転写す
ることで多色プリントを得ることができる。Each of the photoconductors 34A, 34a, 34B and 34b is exposed to form a latent image corresponding to each color, and a different color corresponding to the latent image on each photoconductor 34A, 34a, 34B and 34b. Is carried out to obtain a multicolor visible image. By transferring this visible image to the same recording medium, a multicolor print can be obtained.
【0062】〔第2実施の形態〕本発明の実施の形態に
かかる光走査装置は上記実施の形態と同様の構成であ
り、光学データのみが異なるものである。このため、同
一部部には同一符号を付して詳細な説明を省略する。次
の表2には本実施の形態の偏向面24X以降の主要光学
データを示した。[Second Embodiment] An optical scanning device according to an embodiment of the present invention has the same configuration as that of the above-described embodiment, and differs only in optical data. For this reason, the same components are denoted by the same reference numerals, and detailed description is omitted. Table 2 below shows main optical data after the deflection surface 24X of the present embodiment.
【0063】[0063]
【表2】 [Table 2]
【0064】整形光学系より出射した各光束A、Bはf
θレンズ22A,22Bを通過し偏向器へ入射する。こ
のとき、偏向器への副走査入射角度は第1実施の形態と
同様に、光束LAがαi=+2.4°、αj=+1.5
°である。偏向器24で反射された光束は再びfθレン
ズ22A,22Bを通過し折り返しミラー26A,26
Bで反射される。fθレンズ22A,22Bの傾け角度
はβi=−8°、βj=−5.8°であり、各光束の偏
向器24への入射角度αに応じてビーム径の均一性が最
良となる角度とした。Each of the light beams A and B emitted from the shaping optical system is f
The light passes through the θ lenses 22A and 22B and enters the deflector. At this time, the sub-scanning incident angle to the deflector is the same as in the first embodiment, when the light beam LA is αi = + 2.4 ° and αj = + 1.5.
°. The light beam reflected by the deflector 24 passes through the fθ lenses 22A and 22B again, and is returned to the mirrors 26A and 26A.
B is reflected. lenses 22A and 22B have an inclination angle of βi = −8 ° and βj = −5.8 °, and an angle at which the uniformity of the beam diameter becomes the best according to the incident angle α of each light beam to the deflector 24. did.
【0065】平面ミラー26Aにより反射された光束L
Aは円筒ミラー28Aで反射され、感光体34A上に結
像、露光走査される。円筒ミラー28Aの入射角γi=
+10°、曲率半径は154.32で光束LAの共役倍
率は−0.3である。The light beam L reflected by the plane mirror 26A
A is reflected by the cylindrical mirror 28A, is imaged on the photoreceptor 34A, and is exposed and scanned. Incident angle γi of cylindrical mirror 28A =
+ 10 °, the radius of curvature is 154.32, and the conjugate magnification of the light beam LA is −0.3.
【0066】平面ミラー26Bにより反射された光束L
Bは円筒ミラー28Bで反射され、感光体34B上に結
像、露光走査される。円筒ミラー28Bの入射角γj=
+10°、曲率半径は169.41で光束LBの共役倍
率は−0.35である。The light beam L reflected by the plane mirror 26B
B is reflected by the cylindrical mirror 28B, is imaged on the photoreceptor 34B, and is exposed and scanned. Incident angle γj of cylindrical mirror 28B =
The curvature radius is 169.41 and the conjugate magnification of the light beam LB is -0.35.
【0067】本実施の形態はfθレンズの傾け角度β
i,βjの符号、偏向器24以降の折り返し数Ni,N
jは第1実施の形態と同様で(1)式、(2)式を満た
しており、被走査面上でのBow方向は一致している。
また、入射角αの符号および偏向器24と円筒ミラー2
8との間の折り返し数Mもまた第1実施の形態と同様で
あり、(2)式を満たしており、円筒ミラーの折り返し
角γは副走査方向像面湾曲が小さくなる方向に折り返し
ている。In this embodiment, the inclination angle β of the fθ lens
Signs of i and βj, number of folds Ni and N after deflector 24
j satisfies the expressions (1) and (2) as in the first embodiment, and the bow directions on the surface to be scanned coincide.
The sign of the incident angle α, the deflector 24 and the cylindrical mirror 2
8 is also the same as in the first embodiment, and satisfies the expression (2). The folding angle γ of the cylindrical mirror is folded in the direction in which the field curvature in the sub-scanning direction becomes smaller. .
【0068】ここで、図5には、fθレンズの傾け角度
と被走査面上におけるBowとの関係を示した。光束L
Aのfθレンズ22Aの傾け角度は光束LBより大きい
ため、図5に示すように、光束LA側のBowの発生が
多くなる。そこで、本実施の形態では光束LAの偏向反
射面と被走査面との共役倍率を−0.3とし、光束LB
の共役倍率を−0.35とすることによって、被走査面
上のBowの量を光束LA、光束LB共に120μmと
同一量とした。このようにすることによって、被走査面
上でのBowの方向および大きさを一致させることがで
きる。FIG. 5 shows the relationship between the tilt angle of the fθ lens and Bow on the surface to be scanned. Luminous flux L
Since the inclination angle of the fθ lens 22A of A is larger than the light beam LB, as shown in FIG. 5, the occurrence of Bow on the light beam LA side increases. Therefore, in the present embodiment, the conjugate magnification between the deflection reflecting surface of the light beam LA and the surface to be scanned is -0.3, and the light beam LB
By setting the conjugate magnification of −0.35 to −0.35, the amount of Bow on the surface to be scanned is the same as 120 μm for both the light beam LA and the light beam LB. By doing so, the direction and size of Bow on the surface to be scanned can be matched.
【0069】ところで、共役倍率を異ならせるために
は、いくつかの方法があるが本実施の形態では偏向器か
ら円筒ミラーまでの距離と円筒ミラーから被走査面まで
の距離を異ならせ、被走査面上で結像するように円筒ミ
ラーの曲率半径を合わせることで前記倍率となるように
設定した。By the way, there are several methods for making the conjugate magnification different. In this embodiment, the distance from the deflector to the cylindrical mirror and the distance from the cylindrical mirror to the surface to be scanned are made different from each other. The magnification was set by adjusting the radius of curvature of the cylindrical mirror so as to form an image on the surface.
【0070】本実施の形態では、Bow量を同一とした
が、完全に一致させる必要は無く、Bow差が人の目に
色ずれとして認知できる大きさ以下、例えば1/2画素
以下に軽減させるように共役倍率に差をつけることでも
十分に効果は得ることができる。本実施の形態において
共役倍率を光束LAと光束LBとで異ならせると同一の
ケラレ量の場合、被走査面上ビーム径が光束LAと光束
LBとで異なる場合が発生するが、開口部14A,14
Bの開口幅を異ならせるか、整形光学系の倍率を変化さ
せて総合倍率を光束LAと光束LBとで合わせることで
同一のビーム径を得ることができる。In the present embodiment, the bow amounts are the same. However, it is not necessary to make them completely coincide with each other, and the bow difference is reduced to a size that can be recognized as color misregistration by human eyes, for example, a half pixel or less. A sufficient effect can be obtained even if the conjugate magnification is made different as described above. In the present embodiment, if the conjugate magnification is different between the light beam LA and the light beam LB, the same vignetting amount may cause the beam diameter on the scanned surface to be different between the light beam LA and the light beam LB. 14
The same beam diameter can be obtained by changing the aperture width of B or changing the magnification of the shaping optical system so that the total magnification is matched between the light beam LA and the light beam LB.
【0071】このように、本実施の形態によれば、fθ
レンズ等の走査光学系の光軸と、回転多面鏡等の偏向器
の回転軸に垂直な平面となす角度が大きい場合に、発生
するBowが大きい光束の共役倍率をBowの発生が小
さい光束の共役倍率より小さく設定する。これによっ
て、図6に示すように、発生するBow差を減少させた
り、Bow差を0としたりさせることができ、被走査面
上において走査線を略一致させて色ずれを抑制させるこ
とができる。As described above, according to the present embodiment, fθ
When the angle between the optical axis of a scanning optical system such as a lens and the plane perpendicular to the rotation axis of a deflector such as a rotary polygon mirror is large, the conjugate magnification of the light beam with a large Bow is set to the value of the light beam with a small Bow. Set smaller than the conjugate magnification. As a result, as shown in FIG. 6, the generated Bow difference can be reduced or the Bow difference can be set to 0, and the scanning lines can be made substantially coincident with each other on the surface to be scanned, thereby suppressing color shift. .
【0072】[第3実施の形態〕図7には、本発明の実
施の形態にかかる光走査装置の概略構成を、光走査装置
を副走査対応方向より見た矢視図(図2の矢印X方向か
らみた矢視図)を示しているとして示した。また、次の
表3には本実施の形態の偏向面24X以降の主要光学デ
ータを示した。[Third Embodiment] FIG. 7 shows a schematic configuration of an optical scanning device according to an embodiment of the present invention, as viewed from the direction of the sub-scan corresponding to the optical scanning device (arrow in FIG. 2). (View from the X direction). Further, Table 3 below shows main optical data of the deflecting surface 24X and thereafter of the present embodiment.
【0073】[0073]
【表3】 [Table 3]
【0074】整形光学系より出射した各光束LA、LB
はfθレンズ22A,22Bを通過し偏向器24へ入射
する。このとき、光束LAの偏向面24Aへの副走査入
射角度αi=+2.4°、光束LBの偏向面への副走査
入射角度αj=−2.4で両光束共に紙面上方より偏向
器へ入射している。Each light beam LA, LB emitted from the shaping optical system
Pass through the fθ lenses 22A and 22B and enter the deflector 24. At this time, the sub-scanning incident angle αi of the light beam LA on the deflecting surface 24A and the sub-scanning incident angle αj of the light beam LB on the deflecting surface are both incident on the deflector from above the sheet. are doing.
【0075】偏向器24で反射された光束は再びfθレ
ンス22A,22Bを通過し、折り返しミラー26A,
26Bで反射される。本実施の形態では、fθレンズ2
2A,.22Bの傾け角度はβi=−6.8°、βj=
+6.8°でともに偏向器24の回転軸CLに垂直な平
面Vに対し下方へ角度を有するように設定している。The light beam reflected by the deflector 24 passes through the fθ lenses 22A and 22B again, and is returned to the turning mirrors 26A and 22A.
26B. In the present embodiment, the fθ lens 2
2A,. The inclination angle of 22B is βi = −6.8 °, βj =
Both angles are set so as to have an angle downward with respect to a plane V perpendicular to the rotation axis CL of the deflector 24 at + 6.8 °.
【0076】この場合、平面ミラー26A,26B上で
の走査線湾曲は光束LA,光束LBともに走査中央の高
さが高い山状である。この場合、光束LAと光束LBの
偏向器24以降の折り返し数を差が奇数となるように異
ならせることによって、この走査線の湾曲を被走査面上
で同一方向とすることができる。本実施の形態では光束
LA側の折り返し数Niを2、光束LB側の折り返し数
Njを3とすることで被走査面状のBowを一致させて
いる。In this case, the scanning line curve on the plane mirrors 26A and 26B is a mountain shape in which the height of the scanning center is high for both the light beams LA and LB. In this case, by making the number of turns of the light beam LA and the light beam LB after the deflector 24 different so that the difference becomes an odd number, the curvature of the scanning line can be made the same direction on the surface to be scanned. In the present embodiment, the number of folds Ni on the light beam LA side is set to 2 and the number of folds Nj on the light beam LB side is set to 3, so that the Bow of the surface to be scanned is matched.
【0077】平面ミラー26Aにより反射された光束L
Aは円筒ミラー28Aで反射され、感光体34A上に結
像、露光走査される。円筒ミラー28Aの入射角γi=
+31.6°、曲率半径は220.71で光束LAの共
役倍率は−0.49である。The light beam L reflected by the plane mirror 26A
A is reflected by the cylindrical mirror 28A, is imaged on the photoreceptor 34A, and is exposed and scanned. Incident angle γi of cylindrical mirror 28A =
+ 31.6 °, the radius of curvature is 220.71, and the conjugate magnification of the light beam LA is −0.49.
【0078】光束LAにおいて角度αの符号は正、角度
βの符号は負であり、偏向器24と円筒ミラーとの間の
折り返しMは1となる。これによって円筒ミラーの折り
返し角γを正とすることにより、走査中央の光束の副走
査方向のい入射角度より走査端部の光束の副走査方向の
入射角度が小さくなる方向に折り返され、副走査方向の
像面湾曲が補正されて、共役点湾曲も小さくなる。In the light beam LA, the sign of the angle α is positive and the sign of the angle β is negative, and the turn M between the deflector 24 and the cylindrical mirror is 1. By setting the turning angle γ of the cylindrical mirror to be positive, the light beam at the scanning end is turned in the direction in which the incident angle in the sub-scanning direction is smaller than the incident angle in the sub-scanning direction of the light beam at the center of the scanning direction. The curvature of field in the direction is corrected, and the conjugate point curvature is also reduced.
【0079】平面ミラー26Bにより反射された光束L
Bは円筒ミラー28Bで反射され感光体34B上に結
像、露光走査される。円筒ミラー28Bの入射角γj=
25.87°、8bの曲率半径は208.6で光束LB
の共役倍率は−0.49である。The light beam L reflected by the plane mirror 26B
B is reflected by the cylindrical mirror 28B to form an image on the photoreceptor 34B and is exposed and scanned. Incident angle γj of cylindrical mirror 28B =
25.87 °, radius of curvature of 8b is 208.6, and light beam LB
Has a conjugate magnification of -0.49.
【0080】光束LBにおいて角度αの符号は負、角度
βの符号は正であり、偏向器24と円筒ミラーとの間の
折り返し数Mは2となる。これによって円筒ミラーの折
り返し角γを正とすることにより、走査中央の光束の副
走査方向の入射角度より走査端部の光束の副走査方向の
入射角度が小さくなる方向に折り返され、副走査方向像
面湾曲が補正されて、共役点湾曲も小さくなる。In the light beam LB, the sign of the angle α is negative and the sign of the angle β is positive, and the number of turns M between the deflector 24 and the cylindrical mirror is two. By making the folding angle γ of the cylindrical mirror positive by this, the light beam at the scanning end is folded in a direction in which the incident angle in the sub-scanning direction is smaller than the incident angle in the sub-scanning direction of the light beam at the center of the scanning direction. The curvature of field is corrected, and the conjugate point curvature is also reduced.
【0081】本実施の形態では角度α、βともに異符号
であるが絶対値は同じである。そこで、被走査面上のB
owの量を同一とし方向、量ともに一致させ色ずれをな
くするために光束LA、光束LBともに共役倍率を−
0.49として被走査面上のBowを光束LA,光束L
Bととともに155μmとした。In this embodiment, the angles α and β have opposite signs, but have the same absolute value. Therefore, B on the scanned surface
In order to make the amount of ow the same and to match the direction and the amount to eliminate the color shift, the conjugate magnification of both the light beam LA and the light beam LB is-
Assuming 0.49 as the Bow on the scanned surface, the light flux LA and the light flux L
B and 155 μm.
【0082】本実施の形態によれば、fθレンズの傾け
角度βi,βjの符号、偏向器以降の折り返し数Ni,
Njは第1実施の形態と異なるが(1)式を満たすこと
によって、被走査面でのBow方向は一致させることが
できる。According to the present embodiment, the signs of the inclination angles βi and βj of the fθ lens, the number of turns Ni after the deflector,
Nj is different from that of the first embodiment, but by satisfying the expression (1), the bow directions on the surface to be scanned can be matched.
【0083】また、偏向器への入射角α、の符号、およ
び偏向器と円筒ミラーとの間の折り返しM、、円筒ミラ
ーの折り返し角γもまた第1実施の形態と異なる符号/
数値であるが、(2)式を満たすことによって、副走査
方向像面湾曲が補正することができる。Also, the sign of the angle of incidence α to the deflector, the turn M between the deflector and the cylindrical mirror, and the turn angle γ of the cylindrical mirror are also different from those of the first embodiment.
As a numerical value, the curvature of field in the sub-scanning direction can be corrected by satisfying the expression (2).
【0084】[0084]
【発明の効果】以上説明したように本発明によれば、f
θレンズ等の走査光学系の傾け角度と偏向手段から被走
査面までの折り返し回数を走査光学系の傾けによって発
生するBowが被走査面上で同一方向に湾曲するように
設定することができるため、色ずれの少ない良好なカラ
ー画像を得ることができる、という効果がある。As described above, according to the present invention, f
The inclination angle of the scanning optical system such as the θ lens and the number of times of folding from the deflecting means to the surface to be scanned can be set so that Bow generated by the inclination of the scanning optical system bends in the same direction on the surface to be scanned. Thus, there is an effect that a good color image with little color shift can be obtained.
【0085】また、fθレンズ等の走査光学系の傾け角
が大きい光束に対する偏向手段から被走査面までの共役
倍率を小さく設定することによって、色ずれの量をより
小さくすることができる、という効果がある。Further, by setting a small conjugate magnification from the deflecting means to the surface to be scanned with respect to a light beam having a large inclination angle of a scanning optical system such as an fθ lens, the amount of color misregistration can be further reduced. There is.
【0086】また、偏向手段の偏向反射面への副走査方
向の入射角度が大きい光束側のfθレンズ等の走査光学
系の傾け角度を小さく設定することによって、被走査面
上でのBowの量を一致させ、色ずれの量をより小さく
することかできる、という効果がある。Also, by setting the inclination angle of the scanning optical system such as the fθ lens on the light beam side having a large incident angle in the sub-scanning direction on the deflection reflecting surface of the deflection means to be small, the amount of Bow on the surface to be scanned is reduced. And the amount of color misregistration can be further reduced.
【0087】また、fθレンズ等の走査光学系の傾け角
をビーム均一性が確保できる角度に設定し、円筒ミラー
の折り返し方向を走査中央光束の円筒ミラー等の副走査
方向入射角度より走査端部の光束の副走査方向の入射角
度が小さくなる方向に折り返すことによって、走査中央
の光束に対する円筒ミラー等のパワーより走査端部の光
束に対するパワーが小さくなるようにすることによっ
て、副走査方向の像両湾曲を補正することができる、と
いう効果がある。Further, the tilt angle of the scanning optical system such as the fθ lens is set to an angle at which the beam uniformity can be ensured, and the turning direction of the cylindrical mirror is set such that the scanning center light beam is incident at the scanning end portion from the incident angle in the sub-scanning direction of the cylindrical mirror or the like. By folding back the light beam in the direction in which the incident angle of the light beam in the sub-scanning direction becomes smaller, the power of the light beam at the scanning end is made smaller than the power of the cylindrical mirror and the like for the light beam at the center of the scanning, thereby forming an image in the sub-scanning direction. There is an effect that both curvatures can be corrected.
【0088】また、α/βを−0.2〜−0.4の間に
設定することで走査中央の光束のビーム径と走査端部の
光束のビーム径との差をを実使用に影響の無い程度に小
さくすることができるとともにダブルパス/正面入射光
学系において迷光の発生を防止することができる、とい
う効果がある。By setting α / β between -0.2 and -0.4, the difference between the beam diameter of the light beam at the center of scanning and the beam diameter of the light beam at the scanning end is affected in actual use. And the stray light can be prevented from being generated in the double pass / front incidence optical system.
【図1】第1実施の形態の光走査装置における副走査方
向からみた光学配置を示すイメージ図である。FIG. 1 is an image diagram illustrating an optical arrangement in an optical scanning device according to a first embodiment as viewed from a sub-scanning direction.
【図2】第1実施の形態の光走査装置の概略構成を示す
斜視図である。FIG. 2 is a perspective view illustrating a schematic configuration of the optical scanning device according to the first embodiment.
【図3】fθレンズの傾け角度とビーム径差の変化量と
の関係を示す線図である。FIG. 3 is a diagram showing the relationship between the tilt angle of the fθ lens and the amount of change in the beam diameter difference.
【図4】第1実施の形態の光走査装置を、フルカラー記
録装置に応用した変形例を示し、副走査方向からみた光
学配置を示すイメージ図である。FIG. 4 is an image diagram showing a modified example in which the optical scanning device according to the first embodiment is applied to a full-color recording device, and showing an optical arrangement viewed from a sub-scanning direction.
【図5】fθ傾け角度と被走査面上のBowとの関係を
示す線図である。FIG. 5 is a diagram showing the relationship between the fθ tilt angle and Bow on the surface to be scanned.
【図6】同一方向のBowによる色ずれの説明図であ
る。FIG. 6 is an explanatory diagram of color shift due to Bow in the same direction.
【図7】第3実施の形態にかかる光走査装置の副走査方
向からみた光学配置を示すイメージ図である。FIG. 7 is an image diagram showing an optical arrangement of an optical scanning device according to a third embodiment as viewed from a sub-scanning direction.
【図8】従来の光走査装置の概略構成を示す斜視図であ
る。FIG. 8 is a perspective view showing a schematic configuration of a conventional optical scanning device.
【図9】従来の光走査装置の概略構成の他例を示す斜視
図である。FIG. 9 is a perspective view showing another example of a schematic configuration of a conventional optical scanning device.
【図10】図9の光走査装置を副走査方向からみた光学
配置を示すイメージ図である。FIG. 10 is an image diagram showing an optical arrangement of the optical scanning device of FIG. 9 as viewed from a sub-scanning direction.
【図11】逆方向に発生するBowによる色ずれの説明
図である。FIG. 11 is an explanatory diagram of color misregistration due to Bow occurring in the reverse direction.
10A,10B:光源 12A,12B:コリメーターレンズ 14A,14B:開口部(スリット) 16A,16B:整形光学系(円筒レンズ) 18A,18B:平面ミラー 22A,22B:fθレンズ 24:偏向器(回転多面鏡) 24X,24A,24B:偏向反射面 26A,26B:平面ミラー 28A,28B:円筒ミラー 30A,30B:平面ミラー 34A,34B:感光体 10A, 10B: Light source 12A, 12B: Collimator lens 14A, 14B: Opening (slit) 16A, 16B: Shaping optical system (cylindrical lens) 18A, 18B: Plane mirror 22A, 22B: fθ lens 24: Deflector (rotation) 24X, 24A, 24B: Deflection / reflection surface 26A, 26B: Plane mirror 28A, 28B: Cylindrical mirror 30A, 30B: Plane mirror 34A, 34B: Photoconductor
Claims (5)
の反射面のうち異なる反射面へ向けて主走査方向と交差
する副走査方向に所定角度だけ光軸が傾くように入射さ
れた複数の光束の各々を前記主走査方向に偏向走査する
偏向手段と、前記複数の光束の各々に対応しかつ各々偏
向走査された光束を光スポットが走査されるように被走
査面上に集束させる複数の走査光学系と、前記複数の光
束の各々に対応しかつ各々偏向走査された光束を折り返
す複数の折返手段と、を備えた光走査装置において、 前記複数光束のうち1光束を基準光束とし、前記基準光
束に対応する走査光学系の光軸と偏向手段の回転軸に垂
直な平面となす角度をβiとし、基準光束の光路におい
て偏向手段と被走査面との間の折返手段による折り返し
数をNiとし、 前記複数光束のうち基準光束以外の1光束を対象光束と
し、該対象光束に対応する走査光学系の光軸と偏向手段
の回転軸に垂直な平面となす角度をβjとし、対象光束
の光路において偏向手段と被走査面との間の折返手段に
よる折り返し数をNjとするとき、 基準光束と対象光束とは、以下の関係を満たすように構
成されることを特徴とする光走査装置。 (βi×(−1)Ni)/(βj×(−1)Nj)>0 但し、角度は反時計回転方向を正符号としかつ時計回転
方向を負符号とする。1. A plurality of reflecting surfaces having at least a plurality of reflecting surfaces, the plurality of reflecting surfaces being incident on different ones of the plurality of reflecting surfaces such that an optical axis is inclined by a predetermined angle in a sub-scanning direction intersecting a main scanning direction. Deflecting means for deflecting and scanning each of the light fluxes in the main scanning direction, and a plurality of light fluxes corresponding to each of the plurality of light fluxes and converging the light fluxes respectively deflected and scanned on the surface to be scanned so that the light spot is scanned. A scanning optical system, and an optical scanning device comprising: a plurality of folding units corresponding to each of the plurality of luminous fluxes and folding back the deflected and scanned luminous fluxes; wherein one of the plurality of luminous fluxes is a reference luminous flux; The angle between the optical axis of the scanning optical system corresponding to the reference light beam and the plane perpendicular to the rotation axis of the deflecting means is βi, and the number of folds by the fold means between the deflecting means and the surface to be scanned in the optical path of the reference light beam is Ni And said Of the several light beams, one light beam other than the reference light beam is defined as a target light beam, the angle between the optical axis of the scanning optical system corresponding to the target light beam and a plane perpendicular to the rotation axis of the deflecting means is defined as βj, and the angle is βj. An optical scanning device wherein the reference light flux and the target light flux are configured to satisfy the following relationship, where Nj is the number of turns by the turning means between the means and the surface to be scanned. (Βi × (−1) Ni ) / (βj × (−1) Nj )> 0 where the angle has a positive sign in the counterclockwise direction and a negative sign in the clockwise direction.
反射面近傍に主走査方向に長い線像を結像させるアナモ
フィック光学系によって副走査方向に集束された光束で
あり、前記角度βi,βjの絶対値が大きい光束側の副
走査方向の偏向反射面と被走査面との倍率の絶対値を小
さく設定することを特徴とする請求項1に記載の光走査
装置。2. A light beam incident on the deflecting means is a light beam focused in the sub-scanning direction by an anamorphic optical system that forms a long line image in the main scanning direction in the vicinity of the reflecting surface, and the angle βi, 2. The optical scanning device according to claim 1, wherein the absolute value of the magnification between the deflecting reflection surface and the surface to be scanned in the sub-scanning direction on the light beam side where the absolute value of βj is large is set small.
向手段へ入射される光束の光軸が前記偏向手段の回転軸
に垂直な平面となす角度をαi、αjとするとき、基準
光束と対象光束とは、以下の関係を満たすように構成さ
れることを特徴とする請求項1に記載の光走査装置。 |αi|>|αj|のとき|βi|<|βj|3. A reference light flux, wherein αi and αj are angles at which an optical axis of a light beam incident on the deflecting means corresponding to the angles βi and βj forms a plane perpendicular to a rotation axis of the deflecting means. The optical scanning device according to claim 1, wherein the target light beam is configured to satisfy the following relationship. When | αi |> | αj |, | βi | <| βj |
の反射面のうち異なる反射面へ向けて主走査方向と交差
する副走査方向に所定角度だけ光軸が傾くように入射さ
れた複数の光束の各々を前記主走査方向に偏向走査する
偏向手段と、前記複数の光束の各々に対応しかつ各々偏
向走査された光束を光スポットが走査されるように被走
査面上に集束させる複数の走査光学系と、前記複数の光
束の各々に対応しかつ各々偏向走査された光束を折り返
す複数の折返手段と、を備えた光走査装置において、 前記偏向手段へ入射される光束は、前記反射面近傍に主
走査方向に長い線像を結像させるアナモフィック光学系
によって副走査方向に集束された光束であり、前記折返
手段の少なくとも1つを副走査方向にのみ曲率を有する
円筒ミラーで構成すること及び副走査方向にのみパワー
を有する円筒レンズをさらに備えることの少なくとも一
方によって倒れ補正機能を有させて、 前記複数の光束のうち少なくとも1つの光束について、
前記偏向手段へ入射されるときの光軸が前記偏向手段の
回転軸に垂直な平面となす角度をαとし、対応する走査
光学系の光軸と偏向手段の回転軸に垂直な平面となす角
度をβとし、前記円筒ミラー及び円筒レンズの少なくと
も一方への光束への入射角度をγとし、前記偏向手段と
円筒ミラー及び円筒レンズの少なくとも一方との間の折
り返し数をMとしたとき、 以下の関係を満たすように構成したことを特徴とする光
走査装置。 α×β<0でかつβ×γ×(−1)M>0 但し、角度は反時計回転方向を正符号としかつ時計回転
方向を負符号とする。4. A plurality of reflecting surfaces including at least a plurality of reflecting surfaces, the plurality of reflecting surfaces being incident on different ones of the plurality of reflecting surfaces such that an optical axis is inclined by a predetermined angle in a sub-scanning direction intersecting the main scanning direction. Deflecting means for deflecting and scanning each of the light fluxes in the main scanning direction, and a plurality of light fluxes corresponding to each of the plurality of light fluxes and converging the light fluxes respectively deflected and scanned on the surface to be scanned so that the light spot is scanned. An optical scanning device comprising: a scanning optical system; and a plurality of folding units corresponding to each of the plurality of luminous fluxes and folding back the deflecting-scanned luminous flux. A light beam converged in the sub-scanning direction by an anamorphic optical system that forms a long line image in the main scanning direction in the vicinity, and at least one of the folding means is constituted by a cylindrical mirror having a curvature only in the sub-scanning direction. It and thereby have at least one by inclination correcting function further comprises a cylindrical lens having a power only in the sub-scanning direction, for at least one light flux among the plurality of light beams,
The angle between the optical axis when entering the deflecting means and a plane perpendicular to the rotation axis of the deflecting means is α, and the angle between the optical axis of the corresponding scanning optical system and the plane perpendicular to the rotation axis of the deflecting means. Is β, the incident angle to the light beam to at least one of the cylindrical mirror and the cylindrical lens is γ, and the number of turns between the deflecting means and at least one of the cylindrical mirror and the cylindrical lens is M, An optical scanning device configured to satisfy the relationship. α × β <0 and β × γ × (−1) M > 0 where the angle has a positive sign in the counterclockwise direction and a negative sign in the clockwise direction.
の関係を満たすように構成したことを特徴とする請求項
1または4に記載の光走査装置。 −0.2>α/β>−0.45. The optical scanning device according to claim 1, wherein the angle α and the angle β satisfy the following relationship. −0.2> α / β> −0.4
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6714499A JP2000267031A (en) | 1999-03-12 | 1999-03-12 | Optical scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6714499A JP2000267031A (en) | 1999-03-12 | 1999-03-12 | Optical scanner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000267031A true JP2000267031A (en) | 2000-09-29 |
Family
ID=13336431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6714499A Pending JP2000267031A (en) | 1999-03-12 | 1999-03-12 | Optical scanner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000267031A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005266253A (en) * | 2004-03-18 | 2005-09-29 | Toshiba Corp | Optical scanning device |
EP1619033A1 (en) * | 2004-07-21 | 2006-01-25 | Brother Kogyo Kabushiki Kaisha | Image-forming device and scanning unit for use therein |
EP1852728A1 (en) * | 2006-05-03 | 2007-11-07 | Samsung Electronics Co., Ltd. | Laser scanning unit and color laser printer having the same |
JP2008185959A (en) * | 2007-01-31 | 2008-08-14 | Ricoh Co Ltd | Optical scanning device and image forming device |
JP2008197186A (en) * | 2007-02-09 | 2008-08-28 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
JP2008197187A (en) * | 2007-02-09 | 2008-08-28 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
KR20100080320A (en) * | 2008-12-31 | 2010-07-08 | 삼성전자주식회사 | Light scanning unit |
JP2010156976A (en) * | 2008-12-31 | 2010-07-15 | Samsung Electronics Co Ltd | Light scanning unit |
JP2010256576A (en) * | 2009-04-24 | 2010-11-11 | Kyocera Mita Corp | Optical scanner and image forming apparatus equipped with the same |
US8233209B2 (en) | 2007-01-31 | 2012-07-31 | Ricoh Company, Limited | Optical scanning device and image forming apparatus |
US8773489B2 (en) | 2011-11-21 | 2014-07-08 | Ricoh Company, Ltd. | Optical scanning apparatus and image forming apparatus |
JP2016529535A (en) * | 2013-06-21 | 2016-09-23 | イエーノプティーク オプティカル システムズ ゲーエムベーハー | Scanning device |
-
1999
- 1999-03-12 JP JP6714499A patent/JP2000267031A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005266253A (en) * | 2004-03-18 | 2005-09-29 | Toshiba Corp | Optical scanning device |
EP1619033A1 (en) * | 2004-07-21 | 2006-01-25 | Brother Kogyo Kabushiki Kaisha | Image-forming device and scanning unit for use therein |
US7099061B2 (en) | 2004-07-21 | 2006-08-29 | Brother Kogyo Kabushiki Kaisha | Image-forming device and scanning unit for use therein |
CN100541344C (en) * | 2006-05-03 | 2009-09-16 | 三星电子株式会社 | Laser scanning unit and color laser printer having the same |
EP1852728A1 (en) * | 2006-05-03 | 2007-11-07 | Samsung Electronics Co., Ltd. | Laser scanning unit and color laser printer having the same |
US7633664B2 (en) | 2006-05-03 | 2009-12-15 | Samsung Electronics Co., Ltd. | Laser scanning unit and color laser printer having the same |
JP2008185959A (en) * | 2007-01-31 | 2008-08-14 | Ricoh Co Ltd | Optical scanning device and image forming device |
US8233209B2 (en) | 2007-01-31 | 2012-07-31 | Ricoh Company, Limited | Optical scanning device and image forming apparatus |
JP2008197187A (en) * | 2007-02-09 | 2008-08-28 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
JP2008197186A (en) * | 2007-02-09 | 2008-08-28 | Ricoh Co Ltd | Optical scanner and image forming apparatus |
KR20100080320A (en) * | 2008-12-31 | 2010-07-08 | 삼성전자주식회사 | Light scanning unit |
JP2010156976A (en) * | 2008-12-31 | 2010-07-15 | Samsung Electronics Co Ltd | Light scanning unit |
KR101678976B1 (en) * | 2008-12-31 | 2017-01-02 | 삼성전자주식회사 | Light scanning unit |
JP2010256576A (en) * | 2009-04-24 | 2010-11-11 | Kyocera Mita Corp | Optical scanner and image forming apparatus equipped with the same |
US8773489B2 (en) | 2011-11-21 | 2014-07-08 | Ricoh Company, Ltd. | Optical scanning apparatus and image forming apparatus |
JP2016529535A (en) * | 2013-06-21 | 2016-09-23 | イエーノプティーク オプティカル システムズ ゲーエムベーハー | Scanning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003066356A (en) | Scanning optical device and image forming device using the same | |
JP2000249948A (en) | Multi-beam scanner and image forming device | |
JP2003149573A (en) | Scanning optical system | |
JP3549666B2 (en) | Multi-beam writing optical system | |
JP4363014B2 (en) | Optical scanning apparatus and image forming apparatus | |
JPH07199109A (en) | Raster scanning system | |
JP2000267031A (en) | Optical scanner | |
JP2004070109A (en) | Optical scanner and image forming apparatus using the same | |
JPH0364727A (en) | Light beam scanning optical system | |
JP2002182143A (en) | Optical scanner, multibeam scanner and image forming device | |
JP3197804B2 (en) | Multi-beam scanner | |
JP2004157205A (en) | Scanning optical system | |
JP5269000B2 (en) | Multi-beam scanning optical apparatus and laser beam printer having the same | |
JP2003185957A (en) | Scanning optical system | |
JPH07111509B2 (en) | Optical scanning device | |
JP2756125B2 (en) | Scanning line bending correction method, and scanning optical system in which scanning line bending is corrected by the method | |
JP2002148546A (en) | Optical scanner | |
JPH0618802A (en) | Optical scanning device | |
JPH1020224A (en) | Multibeam scanning optical device | |
JP3697884B2 (en) | Optical scanning device | |
JP2002148546A5 (en) | ||
JP2773593B2 (en) | Light beam scanning optical system | |
JP2002031771A (en) | Multiple-beam scanning optical device | |
US6570696B2 (en) | Optical system for scanning and optical scanning apparatus | |
JP4591442B2 (en) | Optical scanning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20050328 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Effective date: 20051024 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060207 |