[go: up one dir, main page]

JP2751740B2 - Integrated circuit cooling structure - Google Patents

Integrated circuit cooling structure

Info

Publication number
JP2751740B2
JP2751740B2 JP4165768A JP16576892A JP2751740B2 JP 2751740 B2 JP2751740 B2 JP 2751740B2 JP 4165768 A JP4165768 A JP 4165768A JP 16576892 A JP16576892 A JP 16576892A JP 2751740 B2 JP2751740 B2 JP 2751740B2
Authority
JP
Japan
Prior art keywords
integrated circuit
refrigerant
cylindrical
fin
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4165768A
Other languages
Japanese (ja)
Other versions
JPH065754A (en
Inventor
実 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4165768A priority Critical patent/JP2751740B2/en
Priority to DE69321501T priority patent/DE69321501T2/en
Priority to EP93300671A priority patent/EP0560478B1/en
Priority to CA002088747A priority patent/CA2088747C/en
Publication of JPH065754A publication Critical patent/JPH065754A/en
Priority to US08/396,900 priority patent/US5491363A/en
Application granted granted Critical
Publication of JP2751740B2 publication Critical patent/JP2751740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液冷を用いた電子機器等
に使用される集積回路の冷却構造体に関し、特に絶縁性
冷媒を用いてノズルから直接冷媒を噴出することによっ
て冷却を行う浸漬噴流冷却の構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for an integrated circuit used in electronic equipment or the like using liquid cooling, and more particularly to an immersion for cooling by jetting a refrigerant directly from a nozzle using an insulating refrigerant. The present invention relates to a jet cooling structure.

【0002】[0002]

【従来の技術】通常、浸漬噴流冷却は集積回路チップ、
または集積回路チップ放熱面にヒートシンクを装着した
状態で絶縁性液体に浸し、集積回路チップ、またはヒー
トシンクの上にノズルから冷媒を噴出させる構造であ
る。図5に、この種の従来の浸漬噴流冷却の冷媒の供給
構造の一例を示す。このように、従来の浸漬噴流冷却の
冷媒の供給構造は、容器入口から入った冷媒を一度に基
板上の全集積回路チップに供給する構造であった。容器
に入った冷媒は、流路入口7を通って、基板上にある全
部の集積回路チップ1の上に各ノズルから一度に噴出さ
れる。その後、冷媒はノズルから噴出された量と同じだ
け容器の外へと流出する。
2. Description of the Related Art Generally, immersion jet cooling is used for integrated circuit chips,
Alternatively, the heat sink is mounted on the heat dissipation surface of the integrated circuit chip, and the heat sink is immersed in an insulating liquid, and the coolant is ejected from the nozzle onto the integrated circuit chip or the heat sink. FIG. 5 shows an example of such a conventional immersion jet cooling refrigerant supply structure. As described above, the conventional coolant supply structure for immersion jet cooling has a structure in which the coolant entering from the container inlet is supplied to all the integrated circuit chips on the substrate at one time. The coolant that has entered the container is blown out from each nozzle at a time through all the integrated circuit chips 1 on the substrate through the flow path inlet 7. After that, the refrigerant flows out of the container by the same amount as that ejected from the nozzle.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の集積回
路の冷却構造体では、容器入口流量は基板上に存在する
集積回路チップの消費電力に比例して増大する。このた
め、集積回路チップの発熱密度が増えると冷媒供給装置
や配管が大型化し、冷媒そのものも大量に必要となると
いう問題が生じる。
In the above-described conventional cooling structure for an integrated circuit, the flow rate at the inlet of the container increases in proportion to the power consumption of the integrated circuit chip existing on the substrate. For this reason, when the heat generation density of the integrated circuit chip increases, a problem arises in that the refrigerant supply device and the piping become large, and a large amount of the refrigerant itself is required.

【0004】また、基板上の集積回路チップ1やヒート
シンクが全て冷媒に浸されているため、基板や集積回路
チップを交換する際の組み立て、解体作業が複雑化して
しまう。
[0004] Further, since the integrated circuit chip 1 and the heat sink on the substrate are all immersed in the refrigerant, the assembly and disassembly operations when replacing the substrate and the integrated circuit chip are complicated.

【0005】[0005]

【課題を解決するための手段】本発明の冷却構造体は、
沸点の低い絶縁性の冷媒を用いて、ノズルから直接冷媒
を噴出し、衝突させて冷却を行う集積回路の冷却構造体
において、集積回路チップに、フィン側壁に小径の孔を
開け、さらに前記ノズルが通るだけの孔を開けた上蓋を
有する円筒型フィンが装着された熱伝導性の良い材料か
らなる平板を接続し、また前記フィンの上部には絶縁性
の冷媒が流れる流路を持つ、熱伝導性の良い材料からな
るコールドプレートを設け、さらに前記平板に対する位
置には円筒側フィンを取り囲むように円筒型のコールド
プレートの壁を設置し、円筒型のコールドプレートの壁
と前記平板との間は薄板バネを介して固着されることを
特徴とした構造を有し、また、絶縁性の冷媒は前記コー
ルドプレートに設けた流路入口を通って、先端が前記円
筒型フィンの内部に届くだけの長さを持ち、各々の集積
回路に垂直に対向するように設けられたノズルから噴出
された後、前記円筒型フィンの側壁の小径の孔を通っ
て、前記コールドプレートの開けられた流路出口から流
出し、次の集積回路チップに対する流路入口へと向かう
ことを特徴とする。
The cooling structure according to the present invention comprises:
In a cooling structure of an integrated circuit that uses a low-boiling insulating refrigerant to directly blow out the refrigerant from a nozzle and cause the refrigerant to collide, a small-diameter hole is formed in a fin side wall of the integrated circuit chip, and A flat plate made of a material having good thermal conductivity is attached to which a cylindrical fin having an upper lid with a hole through which the hole passes is provided. A cold plate made of a material having good conductivity is provided, and a cylindrical cold plate wall is provided at a position corresponding to the flat plate so as to surround the cylindrical fin, and a wall between the cylindrical cold plate wall and the flat plate is provided. Has a structure characterized in that it is fixed via a thin plate spring, and the insulating refrigerant passes through a flow path inlet provided in the cold plate, and the tip thereof is inside the cylindrical fin. After being ejected from a nozzle having a length enough to reach and vertically provided to each integrated circuit, the cold plate was opened through a small-diameter hole in the side wall of the cylindrical fin. It is characterized by flowing out of the flow path outlet and heading to the flow path entrance for the next integrated circuit chip.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0007】図1は本発明の集積回路の冷却構造の一実
施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a cooling structure for an integrated circuit according to the present invention.

【0008】図中1は集積回路チップであり、そのチッ
プ放熱面はフィン側壁に小径の孔5を開けた円筒型フィ
ン4が装着された熱伝導の良い材料からなる平板3と、
半田または熱伝導性接着剤2により接続されている。ま
たフィン上部には絶縁性冷媒が流れるように流路入口7
と流路出口8を設けた熱伝導性の良い材料からなるコー
ルドプレート12を設置してある。
In FIG. 1, reference numeral 1 denotes an integrated circuit chip, the chip heat radiating surface of which is a flat plate 3 made of a material having good heat conductivity and having a cylindrical fin 4 having a small-diameter hole 5 formed in a fin side wall;
They are connected by solder or a thermally conductive adhesive 2. The flow path inlet 7 is provided above the fins so that the insulating refrigerant flows.
And a cold plate 12 made of a material having good thermal conductivity and provided with a flow path outlet 8.

【0009】流路入口7は先端が円筒型フィン4の上蓋
に開けられた孔を通って円筒型フィン4の内部に届くだ
けの長さを持ち、集積回路チップ1の垂直に対向するよ
うに設けらえたノズル6に接続されている。また、集積
回路チップ1に対するコールドプレート12には円筒型
の壁11を設置し、平板3とコールドプレート12の円
筒型の壁11とは、薄板バネ9を介して接続されてい
る。そしてこの両者で作られる内側空間に冷却槽10が
形成され、流路出口8はコールドプレート12に設置し
た流路を介して次の冷却槽の流路入口に接続される。
The channel inlet 7 has such a length that the end reaches the inside of the cylindrical fin 4 through a hole formed in the upper lid of the cylindrical fin 4, and is vertically opposed to the integrated circuit chip 1. It is connected to the nozzle 6 provided. Further, a cylindrical wall 11 is provided on the cold plate 12 for the integrated circuit chip 1, and the flat plate 3 and the cylindrical wall 11 of the cold plate 12 are connected via a thin plate spring 9. A cooling bath 10 is formed in the inner space formed by the two, and the flow passage outlet 8 is connected to a flow passage inlet of the next cooling bath via a flow passage provided in the cold plate 12.

【0010】図2は薄板バネ9の形状例、および円筒型
フィン4を装着した平板3の詳細図を示す。薄板バネ9
は薄い円盤リングであり、リング断面はリングの内側か
ら外側に向かう途中の凸部(または凹部)を持つように
形成され、リング内側には円筒型フィン4を装着した平
板3を接続し、さらにリング外側はコールドプレート1
2の円筒型の壁11に接続される。
FIG. 2 shows a detailed example of the shape of the thin plate spring 9 and the flat plate 3 on which the cylindrical fin 4 is mounted. Thin leaf spring 9
Is a thin disk ring, the cross section of the ring is formed to have a convex part (or concave part) on the way from the inside to the outside of the ring, and the inside of the ring is connected with the flat plate 3 on which the cylindrical fin 4 is mounted. Cold plate 1 outside the ring
It is connected to two cylindrical walls 11.

【0011】図3は、図1に示した集積回路の冷却構造
体を用いた場合の冷媒の循環の様子を示した冷却構造断
面図である。炭化フッ素など絶縁性の冷媒は図中の矢印
の方向に沿って進む。流路入口7を通ってノズル6から
冷媒層へ噴出された冷媒は、平板3に衝突し、円筒型フ
ィン4を側壁に開けられた小径の孔5から、フィンの外
へと流出する。流出した冷媒はその後、流路出口8を通
って次の冷却槽への向かう。
FIG. 3 is a sectional view of the cooling structure showing the state of circulation of the refrigerant when the cooling structure of the integrated circuit shown in FIG. 1 is used. An insulating refrigerant such as fluorine carbide travels in the direction of the arrow in the figure. The refrigerant ejected from the nozzle 6 to the refrigerant layer through the passage inlet 7 collides with the flat plate 3 and flows out of the fins through the small-diameter holes 5 formed in the side walls of the cylindrical fins 4. The outflowing refrigerant then flows to the next cooling tank through the flow path outlet 8.

【0012】薄板バネ9は、リング中央部に凸部(また
は凹部)が形成された柔軟なバネのため、基板に実装す
る際、各集積回路チップ1の高さや傾きのバラツキが吸
収でき、確実に集積回路チップ1の放熱面全体の平板3
を装着することができる。そして、さらに集積回路チッ
プ1の発熱によって生じた熱膨張による応力緩和も行
う。
Since the thin plate spring 9 is a flexible spring having a convex portion (or concave portion) formed in the center of the ring, it can absorb variations in height and inclination of each integrated circuit chip 1 when mounted on a substrate, and can be reliably mounted. The flat plate 3 on the entire heat dissipation surface of the integrated circuit chip 1
Can be attached. Further, stress relaxation due to thermal expansion caused by heat generation of the integrated circuit chip 1 is also performed.

【0013】また、本構造体では、薄板バネ9を介して
平板3とコールドプレート12の円筒型の壁11が接続
されており、どちらか一方を圧接することにより、絶縁
性の冷媒に浸漬している部分(冷却槽部分)と、集積回
路チップとを容易に分離できる。このため、集積回路チ
ップを搭載する際の組み立て、あるいは解体作業が簡易
化でき、基板や集積回路チップの交換などが簡単に行え
る。
Further, in the present structure, the flat plate 3 and the cylindrical wall 11 of the cold plate 12 are connected via the thin plate spring 9, and one of them is immersed in an insulating refrigerant by press-contacting one of them. (Cooling tank portion) and the integrated circuit chip can be easily separated. For this reason, assembly or disassembly work when mounting the integrated circuit chip can be simplified, and replacement of the substrate or the integrated circuit chip can be easily performed.

【0014】ところで、低沸点の絶縁性の冷媒を用いる
浸漬冷却は、集積回路のチップの発熱によって冷媒を沸
騰させ冷却を行う。このため、フィンからの気化熱を効
率良く奪うには、沸騰によって生じた気泡をいかに速や
かに除去するかが重要である。
By the way, in immersion cooling using a low-boiling-point insulating refrigerant, cooling is performed by causing the refrigerant to boil by the heat generated by the chips of the integrated circuit. For this reason, in order to efficiently remove heat of vaporization from the fins, it is important how quickly bubbles generated by boiling are removed.

【0015】本冷却構造体では、ノズル6が円筒型フィ
ン4の上蓋に開けられた孔13から円筒型フィン4の内
部に入り込んでいる。円筒型フィン4には上蓋が設けら
れているため、ノズル6から噴出された冷媒は平板3に
衝突した後、その跳ね返りが円筒型フィン4の上から流
出することなく、強制的にフィン4の側壁に開けられた
小径の孔5からフィン外部へ流出する。小径の孔5は伝
熱面積を増大し、さらに沸騰によって生じる気泡の安定
な発生点を与える。このため冷媒はフィンの全伝熱面に
接触でき、伝熱面に生じた気泡を微小なうちに一掃する
ことができる。
In the present cooling structure, the nozzle 6 enters the inside of the cylindrical fin 4 through a hole 13 formed in the upper lid of the cylindrical fin 4. Since the cylindrical fin 4 is provided with an upper lid, the refrigerant ejected from the nozzle 6 collides with the flat plate 3, and the rebound does not flow out of the cylindrical fin 4. It flows out of the fin through the small hole 5 formed in the side wall. The small-diameter holes 5 increase the heat transfer area and provide a stable point of generation of bubbles generated by boiling. For this reason, the refrigerant can contact all the heat transfer surfaces of the fins, and can eliminate bubbles generated on the heat transfer surface in a very small amount.

【0016】さらに、本冷却構造体は、冷却槽10の周
りをコールドプレート12の円筒型の壁11で囲んでい
るため、気泡を冷却しやすく、冷媒の気泡を速やかに液
化することができる。このため熱交換が効率良く行える
ため冷却効率が上がり、同時に気泡発生による容器内の
圧力増大も抑えることができる。
Further, in the present cooling structure, since the cooling tank 10 is surrounded by the cylindrical wall 11 of the cold plate 12, the air bubbles are easily cooled, and the air bubbles of the refrigerant can be quickly liquefied. Therefore, the heat exchange can be performed efficiently, so that the cooling efficiency is improved, and at the same time, the pressure increase in the container due to the generation of bubbles can be suppressed.

【0017】図4は、図1における薄板バネ9とコール
ドプレート12の円筒型の壁11の代りに、ベローズ1
4を用いた本発明の他の実施例である。平板3とコール
ドプレート12の間にベローズ14を有することによっ
て、薄板バネ9を用いた時と同様の効果をもつ。
FIG. 4 shows a bellows 1 instead of the thin plate spring 9 and the cylindrical wall 11 of the cold plate 12 shown in FIG.
4 is another embodiment of the present invention using No. 4. Providing the bellows 14 between the flat plate 3 and the cold plate 12 has the same effect as when the thin plate spring 9 is used.

【0018】[0018]

【発明の効果】以上説明したように、本発明の冷却構造
体は、浸漬噴流冷却の際、冷媒供給装置や配管の大型化
が避けられ、冷媒の必要量を小量にでき、さらに熱応力
の緩和や、冷却装置の解体、組立を良くすることができ
る。
As described above, in the cooling structure of the present invention, the size of the refrigerant supply device and the piping can be prevented from being increased, the required amount of the refrigerant can be reduced, and the thermal stress can be reduced. And the disassembly and assembly of the cooling device can be improved.

【0019】さらに、沸騰によって生じた気泡が速やか
に液化されるため、冷却効率が良く、冷却装置内の圧力
の増大を防ぐ効果がある。
Further, since the bubbles generated by the boiling are quickly liquefied, the cooling efficiency is good and the pressure in the cooling device is prevented from increasing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】図1における薄板バネと円筒型フィンの詳細図
である。
FIG. 2 is a detailed view of a thin plate spring and a cylindrical fin in FIG. 1;

【図3】図1に示した浸漬噴流冷却構造体を用いた場合
の冷媒の循環の様子を示した断面図である。
FIG. 3 is a cross-sectional view showing a state of circulation of a refrigerant when the immersion jet cooling structure shown in FIG. 1 is used.

【図4】本発明の他の実施例を断面図である。FIG. 4 is a sectional view of another embodiment of the present invention.

【図5】従来の浸漬噴流冷却構造体における冷媒の循環
の様子を示した断面図である。
FIG. 5 is a sectional view showing a state of circulation of a refrigerant in a conventional immersion jet cooling structure.

【符号の説明】[Explanation of symbols]

1 集積回路チップ 2 半田または熱電動性接着剤 3 熱電動性の良い材料からなる平板 4 円筒型フィン 5 小径の孔 6 ノズル 7 流路入口 8 流路出口 9 薄板バネ 10 冷却槽 11 壁 12 コールドプレート 13 孔 14 ベローズ DESCRIPTION OF SYMBOLS 1 Integrated circuit chip 2 Solder or thermoelectric adhesive 3 Flat plate made of a material with good thermoelectric property 4 Cylindrical fin 5 Small diameter hole 6 Nozzle 7 Flow path inlet 8 Flow path exit 9 Thin plate spring 10 Cooling tank 11 Wall 12 Cold Plate 13 holes 14 Bellows

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 沸点の低い絶縁性の冷媒を用いて、ノズ
ルから直接冷媒を噴出し、衝突させて冷却を行う集積回
路の冷却構造体において、 集積回路チップに、フィン側壁に小径の孔を開け、さら
に前記ノズルが通るだけの孔を開けた上蓋を有する円筒
型フィンが装着された熱伝導性の良い材料からなる平板
を接続し、また前記フィンの上部には絶縁性の冷媒が流
れる流路を持つ、熱伝導性の良い材料からなるコールド
プレートを設け、さらに前記平板に対する位置には円筒
側フィンを取り囲むように円筒型のコールドプレートの
壁を設置し、円筒型のコールドプレートの壁と前記平板
との間は薄板バネを介して固着されることを特徴とした
構造を有し、 また、絶縁性の冷媒は前記コールドプレートに設けた流
路入口を通って、先端が前記円筒型フィンの内部に届く
だけの長さを持ち、各々の集積回路に垂直に対向するよ
うに設けられたノズルから噴出された後、前記円筒型フ
ィンの側壁の小径の孔を通って、前記コールドプレート
の開けられた流路出口から流出し、次の集積回路チップ
に対する流路入口へと向かうことを特徴とする集積回路
の冷却構造体。
1. A cooling structure for an integrated circuit that uses an insulating refrigerant having a low boiling point to directly blow out a refrigerant from a nozzle and cause the refrigerant to collide with the refrigerant. A flat plate made of a material having good thermal conductivity, which is provided with a cylindrical fin having an upper lid with a hole for allowing the nozzle to pass therethrough, is connected thereto, and a flow of an insulating refrigerant flows above the fin. A cold plate made of a material having good thermal conductivity is provided, and a wall of a cylindrical cold plate is provided at a position corresponding to the flat plate so as to surround the cylindrical fin. The flat plate has a structure characterized by being fixed via a thin plate spring, and the insulating refrigerant passes through a flow path inlet provided in the cold plate, and has a cylindrical end. After being ejected from a nozzle which is long enough to reach the inside of the fin and is provided to be vertically opposed to each integrated circuit, the cold plate passes through a small-diameter hole in the side wall of the cylindrical fin. A cooling structure for an integrated circuit, wherein the cooling structure flows out from a flow path outlet opened to a flow path entrance for a next integrated circuit chip.
【請求項2】 前記薄板バネおよび前記熱伝導性の良い
材料からなるコールドプレートの壁の代わりに、ベロー
ズを用いたことを特徴とする請求項1記載の集積回路の
冷却構造体。
2. The cooling structure for an integrated circuit according to claim 1, wherein a bellows is used in place of said thin plate spring and said cold plate wall made of a material having good heat conductivity.
JP4165768A 1992-02-10 1992-06-24 Integrated circuit cooling structure Expired - Lifetime JP2751740B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4165768A JP2751740B2 (en) 1992-06-24 1992-06-24 Integrated circuit cooling structure
DE69321501T DE69321501T2 (en) 1992-02-10 1993-01-29 Cooling device for components with electronic circuits
EP93300671A EP0560478B1 (en) 1992-02-10 1993-01-29 Cooling structure for electronic circuit package
CA002088747A CA2088747C (en) 1992-02-10 1993-02-03 Cooling structure for electronic circuit package
US08/396,900 US5491363A (en) 1992-02-10 1995-03-01 Low boiling point liquid coolant cooling structure for electronic circuit package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165768A JP2751740B2 (en) 1992-06-24 1992-06-24 Integrated circuit cooling structure

Publications (2)

Publication Number Publication Date
JPH065754A JPH065754A (en) 1994-01-14
JP2751740B2 true JP2751740B2 (en) 1998-05-18

Family

ID=15818674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165768A Expired - Lifetime JP2751740B2 (en) 1992-02-10 1992-06-24 Integrated circuit cooling structure

Country Status (1)

Country Link
JP (1) JP2751740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394289B2 (en) 2014-11-04 2018-09-26 富士通株式会社 Evaporator, cooling device, and electronic equipment
JP6398627B2 (en) 2014-11-10 2018-10-03 富士通株式会社 Heat dissipation sheet, method for manufacturing heat dissipation sheet, and method for manufacturing electronic device
JP6720752B2 (en) * 2016-07-25 2020-07-08 富士通株式会社 Immersion cooling device, immersion cooling system, and method of controlling immersion cooling device

Also Published As

Publication number Publication date
JPH065754A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
US5491363A (en) Low boiling point liquid coolant cooling structure for electronic circuit package
CA2087742C (en) Cooling structure for integrated circuits
US5097385A (en) Super-position cooling
US20210037676A1 (en) Re-Entrant Flow Cold Plate
US9557117B2 (en) Cooling structure, electronic device using same, and cooling method
US7284389B2 (en) Two-fluid spray cooling system
US7092254B1 (en) Cooling system for electronic devices utilizing fluid flow and agitation
JPH05304234A (en) Cooling structure for integrated circuit
JP4616888B2 (en) Spray cooling using spray deflection
CN100461995C (en) Array Jet Micro Heat Exchanger
US6867974B2 (en) Heat-dissipating device
JPH1084139A (en) Thermoelectric conversion device
JPH05109954A (en) Cooling structure for integrated circuit package
JP2751740B2 (en) Integrated circuit cooling structure
JP2012109495A (en) Water cooled chiller
JP2747156B2 (en) Immersion jet cooling heat sink
JPH05275587A (en) Integrated circuit cooling structure
US20090014158A1 (en) Nano shower for chip-scale cooling
JP2684900B2 (en) Integrated circuit cooling device
JP2002026214A (en) Electronic component cooling device
JP2768108B2 (en) Integrated circuit cooling structure
JPH06334080A (en) Cooling method for integrated circuit element
JPH0732222B2 (en) Integrated circuit cooling structure
JP2000049480A (en) Heat sink cooling device
JP2000277669A (en) Cooler for semiconductor devices

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980127