JP2732469B2 - Coated fuel particles - Google Patents
Coated fuel particlesInfo
- Publication number
- JP2732469B2 JP2732469B2 JP1247308A JP24730889A JP2732469B2 JP 2732469 B2 JP2732469 B2 JP 2732469B2 JP 1247308 A JP1247308 A JP 1247308A JP 24730889 A JP24730889 A JP 24730889A JP 2732469 B2 JP2732469 B2 JP 2732469B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- zrc
- sic
- pyrolytic carbon
- coated fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 32
- 239000002245 particle Substances 0.000 title claims description 23
- 239000010410 layer Substances 0.000 claims description 81
- 229910026551 ZrC Inorganic materials 0.000 claims description 31
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 31
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 30
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 30
- 239000002296 pyrolytic carbon Substances 0.000 claims description 26
- 239000011247 coating layer Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- 230000004992 fission Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 6
- 229910003465 moissanite Inorganic materials 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
- LSWWNKUULMMMIL-UHFFFAOYSA-J zirconium(iv) bromide Chemical compound Br[Zr](Br)(Br)Br LSWWNKUULMMMIL-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は被覆燃料粒子に関し、さらに詳しくは核分裂
生成物の保持機能と健全性とを向上させた被覆燃料粒子
に関する。Description: FIELD OF THE INVENTION The present invention relates to coated fuel particles, and more particularly to coated fuel particles having improved fission product retention and soundness.
[従来の技術および発明が解決しようとする課題] 一般に、高温ガス炉等で使用される核燃料体は、1300
℃以上の高温でも機械的健全性と核分裂生成物を十分に
保持するために、第2図に示すように黒鉛マトリックス
1中に被覆燃料粒子2を分散させた構造を有している。
その形状は、図面に示すように通常、中空円筒型である
が、それ以外にも中実円筒型や球型も知られている。[Problems to be Solved by the Related Art and the Invention] Generally, a nuclear fuel body used in a high-temperature gas
In order to sufficiently maintain mechanical integrity and fission products even at a high temperature of not less than ° C., the structure has a structure in which coated fuel particles 2 are dispersed in a graphite matrix 1 as shown in FIG.
The shape is usually a hollow cylindrical type as shown in the drawings, but a solid cylindrical type and a spherical type are also known.
被覆燃料粒子2の構造はたとえば第3図に示すとおり
である。The structure of the coated fuel particles 2 is, for example, as shown in FIG.
すなわち、この被覆燃料粒子2は、ウラン、プルトニ
ウム、トリウム等の酸化物、炭化物(通常、平均粒径40
0〜600μm)からなる燃料核3の表面に低密度熱分解炭
素層4と、高密度熱分解炭素層5と、炭化けい素(Si
C)または炭化ジルコニウム(ZrC)層6と、高密度熱分
解炭素層7とを順次に積層した構造を有している。That is, the coated fuel particles 2 are composed of oxides and carbides of uranium, plutonium, thorium and the like (usually having an average particle size of 40
A low-density pyrolytic carbon layer 4, a high-density pyrolytic carbon layer 5, and silicon carbide (Si)
C) or a zirconium carbide (ZrC) layer 6 and a high-density pyrolytic carbon layer 7 are sequentially laminated.
これらの被覆層には以下のようにそれぞれ独自の機能
がある。Each of these coating layers has its own function as follows.
低密度熱分解炭素層4: 核分裂生成ガス、一酸化炭素ガスによる内圧を緩和す
るとともに、核分裂片から高密度熱分解炭素層5を保護
する。Low-density pyrolytic carbon layer 4: Relieves the internal pressure of the fission gas and carbon monoxide gas, and protects high-density pyrolytic carbon layer 5 from fission fragments.
高密度熱分解炭素層5: 燃料核、核分裂生成物とSiCまたはZrC層6との化学反
応を保護し、また自身の照射収縮によりSiCまたはZrC層
6に圧縮応力を付加する。High-density pyrolytic carbon layer 5: protects the chemical reaction between fuel nuclei and fission products and SiC or ZrC layer 6, and applies compressive stress to SiC or ZrC layer 6 by shrinkage of irradiation by itself.
SiCまたはZrC層6: 固体核分裂生成物に対する拡散障壁となり、 また被覆燃料粒子の寸法安定性を維持する。SiC or ZrC layer 6: Provides a diffusion barrier for solid fission products and maintains dimensional stability of coated fuel particles.
高密度熱分解炭素層7: 核分裂生成ガスに対する気密性を維持し、SiCまたはZ
rC層を外力損傷から保護し、自身の照射収縮によりSiC
またはZrC層に圧縮応力を付加する。High density pyrolytic carbon layer 7: Maintains airtightness against fission gas, SiC or Z
rC layer is protected from external force damage, and SiC
Alternatively, a compressive stress is applied to the ZrC layer.
上述した被覆層のうち、SiCまたはZrC層6には、次の
ような問題点がある。Among the above-mentioned coating layers, the SiC or ZrC layer 6 has the following problems.
すなわち、SiCは1600℃以上で結晶学的に不安定にな
り、たとえ二つの高密度熱分解炭素層5、7が健全であ
っても、2200℃以上の高温で劣化する。また核分裂生成
物であるストロンチウム(Sr)やパラジウム(Pd)に腐
食され易い。That is, SiC becomes crystallographically unstable at 1600 ° C. or higher, and deteriorates at a high temperature of 2200 ° C. or higher even if the two high-density pyrolytic carbon layers 5 and 7 are sound. It is also easily corroded by fission products such as strontium (Sr) and palladium (Pd).
そしての層自身は健全であっても、同じく放射性核分
裂生成物であるAg110mは貫通して外部に放出される。Even though the layer itself is healthy, Ag 110m , which is also a radioactive fission product, penetrates and is released to the outside.
一方、ZrCはSiCの有する前記欠点を有していないが、
SiCよりも酸化され易く、たとえばArガス雰囲気中でも1
200℃に加熱されると、Arガスに含有される不純物酸素
によってさえ容易に酸化される。On the other hand, ZrC does not have the disadvantages of SiC,
It is easier to oxidize than SiC.
When heated to 200 ° C., it is easily oxidized even by impurity oxygen contained in Ar gas.
故に、万一、原子炉の冷却ガス配管等が破損し、最外
層の高密度熱分解炭素層7が損傷した場合には、炉心に
侵入した空気によってZrC層6が酸化し、被覆層として
の機能が失われてしまう。Therefore, in the unlikely event that the cooling gas piping of the reactor is damaged and the outermost high-density pyrolytic carbon layer 7 is damaged, the ZrC layer 6 is oxidized by air that has entered the reactor core, and Function is lost.
本発明は蒸気課題を解決するためになされたものであ
る。The present invention has been made to solve the steam problem.
すなわち、本発明は、セラミックス層を中間層として
有する被覆燃料粒子において、SiCとZrCとの短所を相互
に補完し、万一の事態に遭遇してもそれに対処すること
のできる、核分裂生成物の保持機能と健全性とを向上さ
せた被覆燃料粒子を提供することにある。That is, in the present invention, in a coated fuel particle having a ceramic layer as an intermediate layer, the disadvantages of SiC and ZrC are mutually complemented, and even if an emergency is encountered, a fission product can be dealt with. An object of the present invention is to provide a coated fuel particle having an improved retention function and soundness.
[前記課題を解決するための手段] 本発明の被覆燃料粒子は、燃料核の表面に熱分解炭素
層およびセラミックス層を有する被覆層を積層してなる
被覆燃料粒子において、セラミックス層を、燃料核から
近い順に炭化ジルコニウム層と炭化ケイ素層とで形成し
てなることを特徴とする。[Means for Solving the Problems] The coated fuel particle of the present invention is a coated fuel particle obtained by laminating a coating layer having a pyrolytic carbon layer and a ceramic layer on the surface of a fuel core. , And formed from a zirconium carbide layer and a silicon carbide layer in ascending order.
以下、第1図に示す一実施態様に基いて本発明を詳し
く説明する。Hereinafter, the present invention will be described in detail based on one embodiment shown in FIG.
第1図に示す被覆燃料粒子8は、燃料核9の表面に低
密度熱分解炭素層10と、高密度熱分解炭素層11と、ZrC
層12と、SiC層13と、高密度熱分解炭素層14とを順次積
層した構造を有している。これらの被覆層の合計の厚み
は、通常、150〜250μmで、ZrC層とSiC層の厚みはいず
れも通常、10〜50μmである。The coated fuel particles 8 shown in FIG. 1 are composed of a low-density pyrolytic carbon layer 10, a high-density pyrolytic carbon layer 11, a ZrC
It has a structure in which a layer 12, a SiC layer 13, and a high-density pyrolytic carbon layer 14 are sequentially laminated. The total thickness of these coating layers is usually 150 to 250 μm, and the thickness of each of the ZrC layer and the SiC layer is usually 10 to 50 μm.
これらの被覆層のうち、ZrC層12とSiC層13を除く熱分
解炭素層の機能は、前述のとおりである。Among these coating layers, the functions of the pyrolytic carbon layer except for the ZrC layer 12 and the SiC layer 13 are as described above.
そしてZrC層12もSiC層13も固体核分裂生成物に対する
拡散障壁となり、また被覆燃料粒子の寸法安定性を維持
する役割を持つ。Both the ZrC layer 12 and the SiC layer 13 serve as diffusion barriers for solid fission products and have a role in maintaining the dimensional stability of the coated fuel particles.
本発明で重要なのはセラミックス層をZrC層12とSiC層
13とに分離し、しかもZrC層12の方を燃料核9に近ずけ
て設けたことである。What is important in the present invention is that the ceramic layer is a ZrC layer 12 and a SiC layer.
13 and the ZrC layer 12 is provided closer to the fuel core 9.
このようにすると、ZrC層12はSr、PdによるSiC層13の
腐食を防止することができるし、健全なSiC層13でも貫
通するAg110mを遮断することができるし、さらにまたZr
Cは約2850℃以下では解離劣化しないので被覆層として
の高温安定性が向上する。By doing so, the ZrC layer 12 can prevent the corrosion of the SiC layer 13 by Sr and Pd, can block the Ag 110 m penetrating even with a sound SiC layer 13, and furthermore, the ZrC
Since C does not dissociate and degrade at about 2850 ° C. or less, the high-temperature stability of the coating layer is improved.
また、本発明ではZrCに比べて酸化されにくいSiC層13
がZrC層12より外側に設けられているから、最外層の高
密度熱分解炭素層14がたとえ不慮の事故で損傷し酸化雰
囲気にさらされても、ZrC層12の酸化劣化を未然に防止
することができる。Further, in the present invention, the SiC layer 13 which is hardly oxidized compared with ZrC is used.
Is provided outside the ZrC layer 12, so that even if the outermost high-density pyrolytic carbon layer 14 is damaged by accident and exposed to an oxidizing atmosphere, the oxidative deterioration of the ZrC layer 12 is prevented beforehand. be able to.
なお、この被覆燃料粒子8は次のようにして製造する
ことができる。The coated fuel particles 8 can be manufactured as follows.
まず、燃料核9は、硝酸ウラニルを飽和アンモニア水
中に滴下して球状の重ウラン酸アンモンとし、これを空
気中で約450℃にて焙焼して球状UO3としてから、還元雰
囲気中で約1400℃にて撓結すると、球状のUO2燃料核が
得られる。First, the fuel core 9 is obtained by dripping uranyl nitrate into saturated aqueous ammonia to form spherical ammonium biuranate, which is roasted at about 450 ° C. in air to form spherical UO 3, and then reduced in a reducing atmosphere. Upon bending at 1400 ° C., a spherical UO 2 fuel core is obtained.
低密度熱分解炭素層10、高密度熱分解炭素層11、14、
ZrC層12およびSiC層13は、流動床により化学蒸着するこ
とによって形成することができる。Low density pyrolytic carbon layer 10, high density pyrolytic carbon layer 11, 14,
The ZrC layer 12 and the SiC layer 13 can be formed by chemical vapor deposition using a fluidized bed.
[実施例] 次に実施例に基いて本発明をさらに具体的に説明す
る。[Examples] Next, the present invention will be described more specifically based on examples.
(実施例1) 直径約600μmのUO2燃料核の表面に厚み約60μmの低
密度熱分解炭素層と、厚み約30μmの高密度熱分解炭素
層と、厚み約20μmのZrC層と、厚み約20μmのSiC層
と、厚み45μmの高密度熱分解炭素層とを順次積層し、
直径約950μmの被覆燃料粒子を製造した。And (Example 1) having a thickness of about 60μm to UO 2 fuel core surface of a diameter of about 600μm low density pyrolytic carbon layer, and the high density pyrolytic carbon layer having a thickness of about 30 [mu] m, and ZrC layer having a thickness of about 20 [mu] m, about the thickness A 20 μm SiC layer and a 45 μm thick high density pyrolytic carbon layer are sequentially laminated,
Coated fuel particles having a diameter of about 950 μm were produced.
なお、各層のうちZrC層は、ジルコニウムブロマイド
とメタンとを1500℃に加熱反応せしめて蒸着法により形
成した。SiC層は、メチルトリクロルシランと水素とを
約1,600℃に加熱反応せしめて蒸着法により形成した。
低密度熱分解炭素層は、アセチレンを約1,300℃で熱分
解せしめ、また高密度熱分解層はプロピレンを約1400℃
で熱分解せしめて形成した。The ZrC layer among the layers was formed by an evaporation method in which zirconium bromide and methane were heated and reacted at 1500 ° C. The SiC layer was formed by an evaporation method in which methyltrichlorosilane and hydrogen were heated and reacted at about 1,600 ° C.
The low-density pyrolysis layer decomposes acetylene at about 1,300 ° C, and the high-density pyrolysis layer decomposes propylene at about 1400 ° C.
And formed by thermal decomposition.
なお、流動ガスについては、ZrC層、低密度熱分解炭
素層、高密度熱分解炭素層の形成にはいずれもアルゴン
を使用し、SiC層の形成には水素を使用した。As for the flowing gas, argon was used for forming the ZrC layer, the low-density pyrolytic carbon layer, and the high-density pyrolytic carbon layer, and hydrogen was used for forming the SiC layer.
次に、前記被覆燃料粒子を空気雰囲気にさらし、950
℃で48時間加熱したところ、第5層の高密度熱分解炭素
層は酸化されたものの、ZrC層はSiC層によって完全に保
護されており、SiC層内の被覆層は何ら損傷を受けなか
った。Next, the coated fuel particles are exposed to an air atmosphere,
When heated at 48 ° C for 48 hours, the fifth high-density pyrolytic carbon layer was oxidized, but the ZrC layer was completely protected by the SiC layer, and the coating layer in the SiC layer was not damaged at all. .
[発明の効果] 本発明の被覆燃料粒子はSiC層よりZrC層が燃料核に近
く設けられているので、核分裂生成物の保持能と健全性
とが一段と向上しており、原子炉の冷却ガス配管の損傷
といった万一の事態に遭遇しても劣化することがない。[Effect of the Invention] Since the coated fuel particles of the present invention have the ZrC layer provided closer to the fuel nucleus than the SiC layer, the ability to retain fission products and the soundness are further improved, and the cooling gas It does not deteriorate even in the event of an emergency such as damage to piping.
第1図は本発明の一実施例を示す被覆燃料粒子の断面
図、第2図は核燃料体の一例を示す斜視図、第3図は従
来の被覆燃料粒子の断面図である。 1……黒鉛、2,8……被覆燃料粒子、3、9……燃料
核、4、10……低密度熱分解炭素層、5、7、11、14…
…高密度熱分解炭素層、6……SiCまたはZrC層、12……
ZrC層、13……SiC層。FIG. 1 is a sectional view of a coated fuel particle showing one embodiment of the present invention, FIG. 2 is a perspective view showing an example of a nuclear fuel body, and FIG. 3 is a sectional view of a conventional coated fuel particle. 1 ... graphite, 2,8 ... coated fuel particles, 3, 9 ... fuel core, 4, 10 ... low-density pyrolytic carbon layer, 5, 7, 11, 14 ...
... High density pyrolytic carbon layer, 6 ... SiC or ZrC layer, 12 ...
ZrC layer, 13 ... SiC layer.
Claims (1)
ックス層を有する被覆層を積層してなる被覆燃料粒子に
おいて、セラミックス層を、燃料核に近い方から順に炭
化ジルコニウム層と炭化ケイ素層とで形成してなること
を特徴とする被覆燃料粒子。In a coated fuel particle obtained by laminating a coating layer having a pyrolytic carbon layer and a ceramic layer on the surface of a fuel core, the ceramic layer is formed by a zirconium carbide layer and a silicon carbide layer in the order from the one closer to the fuel core. Coated fuel particles formed by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247308A JP2732469B2 (en) | 1989-09-22 | 1989-09-22 | Coated fuel particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247308A JP2732469B2 (en) | 1989-09-22 | 1989-09-22 | Coated fuel particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03108692A JPH03108692A (en) | 1991-05-08 |
JP2732469B2 true JP2732469B2 (en) | 1998-03-30 |
Family
ID=17161477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1247308A Expired - Fee Related JP2732469B2 (en) | 1989-09-22 | 1989-09-22 | Coated fuel particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2732469B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070064861A1 (en) * | 2005-08-22 | 2007-03-22 | Battelle Energy Alliance, Llc | High-density, solid solution nuclear fuel and fuel block utilizing same |
FR2936088B1 (en) * | 2008-09-18 | 2011-01-07 | Commissariat Energie Atomique | NUCLEAR FUEL TANK WITH HIGH THERMAL CONDUCTIVITY AND METHOD OF MANUFACTURING THE SAME. |
CN111489837B (en) * | 2020-04-02 | 2022-02-08 | 清华大学 | Coated fuel particle containing composite carbide coating layer and preparation method thereof |
CN116564562B (en) * | 2023-07-10 | 2023-11-14 | 中核北方核燃料元件有限公司 | High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof |
-
1989
- 1989-09-22 JP JP1247308A patent/JP2732469B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03108692A (en) | 1991-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3298921A (en) | Pyrolytic carbon coated particles for nuclear applications | |
US4597936A (en) | Lithium-containing neutron target particle | |
CN109074877B (en) | Improved toughness of microencapsulated nuclear fuels | |
US3361638A (en) | Pyrolytic graphite and nuclear fuel particles coated therewith | |
US10593434B2 (en) | Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer | |
US3649452A (en) | Nuclear reactor fuel coated particles | |
US3274066A (en) | Unpurged fuel element | |
JPH0466318B2 (en) | ||
US3650896A (en) | Nuclear fuel particles | |
EP0015990B1 (en) | Nuclear fuel particles | |
JP2732469B2 (en) | Coated fuel particles | |
US3335063A (en) | Multi-pyrocarbon coated nuclear fuel and poison particles and method of preparing same | |
EP1756838B1 (en) | Nuclear fuel | |
RU2333553C1 (en) | Particle fuel element of nuclear reactor | |
RU2328781C1 (en) | Coated fuel particle of nuclear reactor | |
RU2382423C2 (en) | Coated fuel particle for fast neutron reactor | |
JPS6341507B2 (en) | ||
RU2333552C1 (en) | Particle fuel element with three-layer protective coating of fuel microsphere | |
JPS646424B2 (en) | ||
RU2369925C1 (en) | Coated fuel particle for nuclear reactor | |
RU2387030C1 (en) | Minute particle of light-water nuclear reactor | |
RU2325712C1 (en) | Mini fuel element of nuclear reactor | |
Scott | History of coated particles | |
RU2333555C1 (en) | Particle fuel element of nuclear reactor | |
RU2294569C1 (en) | Micro heat-exhausting element for nuclear reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |