CN116564562B - High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof - Google Patents
High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof Download PDFInfo
- Publication number
- CN116564562B CN116564562B CN202310833235.8A CN202310833235A CN116564562B CN 116564562 B CN116564562 B CN 116564562B CN 202310833235 A CN202310833235 A CN 202310833235A CN 116564562 B CN116564562 B CN 116564562B
- Authority
- CN
- China
- Prior art keywords
- fuel
- zrc
- layer
- pyrolytic carbon
- carbon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 106
- 239000006185 dispersion Substances 0.000 title claims abstract description 49
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title abstract description 19
- 239000011247 coating layer Substances 0.000 title abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 64
- 239000002296 pyrolytic carbon Substances 0.000 claims abstract description 63
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 39
- 238000011068 loading method Methods 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 17
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 230000035484 reaction time Effects 0.000 claims description 11
- 229910007926 ZrCl Inorganic materials 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 102
- 241000013033 Triso Species 0.000 abstract description 42
- 239000008188 pellet Substances 0.000 abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 36
- 238000005245 sintering Methods 0.000 description 25
- 229910010271 silicon carbide Inorganic materials 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 18
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 18
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 238000000197 pyrolysis Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 9
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 9
- 239000004202 carbamide Substances 0.000 description 9
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 9
- 239000003292 glue Substances 0.000 description 9
- 239000011259 mixed solution Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 6
- 239000004312 hexamethylene tetramine Substances 0.000 description 6
- 238000007731 hot pressing Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004992 fission Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 125000005289 uranyl group Chemical group 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
- G21C3/07—Casings; Jackets characterised by their material, e.g. alloys
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C21/00—Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
- G21C21/02—Manufacture of fuel elements or breeder elements contained in non-active casings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及压水堆、气冷堆和研究试验堆用弥散燃料技术领域,针对现有弥散燃料芯块铀装量低和含TRISO颗粒弥散燃料耐受极高温度能力差的问题,本发明提供了一种含ZrC包覆层的高铀密度弥散燃料及其制备方法,本发明将外致密热解炭层厚度减少至0~30μm且将TRISO颗粒中的SiC层变更为ZrC层,通过上述组合设计提高TRISO颗粒弥散燃料的整体铀装量和耐高温性能,这将有利于推广TRISO颗粒弥散燃料应用于高燃耗、高出口温度的特殊用途反应堆中,实现燃料高效、安全的运行。
The present invention relates to the technical field of dispersion fuel for pressurized water reactors, gas-cooled reactors and research and test reactors. In view of the problems of low uranium content of existing dispersion fuel pellets and poor ability of dispersion fuel containing TRISO particles to withstand extremely high temperatures, the present invention provides A high uranium density dispersion fuel containing a ZrC coating layer and a preparation method thereof are disclosed. The present invention reduces the thickness of the outer dense pyrolytic carbon layer to 0~30 μm and changes the SiC layer in the TRISO particles to a ZrC layer. Through the above combination The design improves the overall uranium loading and high-temperature resistance of TRISO particle dispersion fuel, which will help promote the application of TRISO particle dispersion fuel in special-purpose reactors with high burn-up consumption and high outlet temperature, and achieve efficient and safe operation of the fuel.
Description
技术领域Technical field
本发明涉及压水堆、气冷堆和研究试验堆用弥散燃料技术领域,具体涉及一种含ZrC包覆层的高铀密度弥散燃料及其制备方法。The invention relates to the technical field of dispersion fuel for pressurized water reactors, gas-cooled reactors and research and test reactors, and specifically relates to a high uranium density dispersion fuel containing a ZrC coating layer and a preparation method thereof.
背景技术Background technique
当前核电技术发展的重要方向就是要提高核电系统的安全性和可靠性,避免重蹈诸如日本福岛核电事故的覆辙。目前,国际上提出的一种通用耐事故燃料的结构是将具有三向同性的TRISO颗粒弥散在SiC基体材料中,利用TRISO颗粒的四层包覆层为裂变气体提供容纳空间,而且采用导热性良好、热膨胀系数小、中子吸收截面较低、与包壳和燃料兼容性极好的SiC材料作为基体材料,以提高燃料的安全特性。The current important direction for the development of nuclear power technology is to improve the safety and reliability of nuclear power systems and avoid repeating the mistakes of Japan's Fukushima nuclear power accident. Currently, a universal accident-resistant fuel structure proposed internationally is to disperse triisotropic TRISO particles in a SiC matrix material, using the four-layer coating of TRISO particles to provide accommodation space for fission gases, and using thermal conductivity SiC material with good thermal expansion coefficient, low neutron absorption cross-section and excellent compatibility with cladding and fuel is used as the base material to improve the safety characteristics of the fuel.
弥散在SiC基体中的TRISO颗粒尽管安全特性很高,但是会导致燃料中铀装量大幅降低,从而影响整个弥散燃料的经济适用性。Although TRISO particles dispersed in the SiC matrix have high safety characteristics, they will lead to a significant reduction in the uranium content in the fuel, thus affecting the economic applicability of the entire dispersed fuel.
目前TRISO颗粒的四层包覆层结构由内至外分别为疏松热解炭层、内致密热解炭层、SiC层和外致密热解炭层。这其中第三层SiC层是承担内外部压力、保障燃料核芯完整性的关键,但为了进一步提高反应堆的经济性,提高反应堆的出口温度是一种重要手段。SiC在1800℃会发生物项转变,由面心立方β-SiC转变为六方α-SiC,同时辐照释放的137Cs量也很高。这将不利于提高反应堆的运行温度,影响进一步推广TRISO颗粒弥散燃料的深度应用。At present, the four-layer coating structure of TRISO particles is composed of a loose pyrolytic carbon layer, an inner dense pyrolytic carbon layer, a SiC layer and an outer dense pyrolytic carbon layer from the inside to the outside. The third SiC layer is the key to withstand internal and external pressure and ensure the integrity of the fuel core. However, in order to further improve the economy of the reactor, increasing the outlet temperature of the reactor is an important means. SiC will undergo item transformation at 1800°C, from face-centered cubic β-SiC to hexagonal α-SiC. At the same time, the amount of 137 Cs released by irradiation is also very high. This will not be conducive to increasing the operating temperature of the reactor and will affect the further promotion of the in-depth application of TRISO particle dispersion fuel.
发明内容Contents of the invention
本发明的目的在于提供一种含ZrC包覆层的高铀密度弥散燃料及其制备方法,解决了弥散燃料芯块铀装量低的问题,将弥散燃料中铀装量提高7%~30%,并且解决了含TRISO颗粒弥散燃料耐受极高温度(≥1800℃)能力差的问题。The purpose of this invention is to provide a high uranium density dispersion fuel containing a ZrC coating layer and a preparation method thereof, which solves the problem of low uranium content in the dispersion fuel pellets and increases the uranium content in the dispersion fuel by 7% to 30%. , and solves the problem of poor ability of dispersion fuel containing TRISO particles to withstand extremely high temperatures (≥1800°C).
为了实现上述目的,本发明提供如下技术方案:In order to achieve the above objects, the present invention provides the following technical solutions:
一种含ZrC包覆层的高铀密度弥散燃料,包括包覆燃料颗粒、基体和无燃料区,所述包覆燃料颗粒包括燃料核芯和依次包覆在所述燃料核芯外的疏松热解炭层、内致密热解炭层、ZrC层、外致密热解炭层,所述ZrC层的厚度为17~45μm,所述外致密热解炭层的厚度为0~30μm。A high uranium density dispersion fuel containing a ZrC coating layer, including coated fuel particles, a matrix and a fuel-free zone. The coated fuel particles include a fuel core and loose heat coated outside the fuel core in turn. Decomposed carbon layer, inner dense pyrolytic carbon layer, ZrC layer, outer dense pyrolytic carbon layer, the thickness of the ZrC layer is 17~45 μm, and the thickness of the outer dense pyrolytic carbon layer is 0~30 μm.
进一步地,所述燃料核芯为UCO核芯,直径为500~800μm。Further, the fuel core is a UCO core with a diameter of 500~800 μm.
进一步地,所述疏松热解炭层的厚度为50~120μm,所述内致密热解炭层的厚度为30~60μm。Further, the thickness of the loose pyrolytic carbon layer is 50~120 μm, and the thickness of the inner dense pyrolytic carbon layer is 30~60 μm.
进一步地,所述疏松热解炭层的厚度为90.7μm,所述内致密热解炭层的厚度为38.6μm,所述ZrC层的厚度为17.6μm,所述外致密热解炭层的厚度为20.9μm。Further, the thickness of the loose pyrolytic carbon layer is 90.7 μm, the thickness of the inner dense pyrolytic carbon layer is 38.6 μm, the thickness of the ZrC layer is 17.6 μm, and the thickness of the outer dense pyrolytic carbon layer is is 20.9μm.
进一步地,所述燃料核芯为UN核芯,直径为500~800μm。Further, the fuel core is a UN core with a diameter of 500~800 μm.
进一步地,所述疏松热解炭层的厚度为50~120μm,所述内致密热解炭层的厚度为30~60μm,所述外致密热解炭层的厚度为0μm。Further, the thickness of the loose pyrolytic carbon layer is 50~120 μm, the thickness of the inner dense pyrolytic carbon layer is 30~60 μm, and the thickness of the outer dense pyrolytic carbon layer is 0 μm.
进一步地,所述疏松热解炭层的厚度为52.2μm,所述内致密热解炭层的厚度为36μm,所述ZrC层的厚度为44.7μm。Further, the thickness of the loose pyrolytic carbon layer is 52.2 μm, the thickness of the inner dense pyrolytic carbon layer is 36 μm, and the thickness of the ZrC layer is 44.7 μm.
进一步地,所述基体为SiC基体。Further, the matrix is a SiC matrix.
进一步地,在流化床中制得内致密热解炭层后,通入氢气和ZrCl4粉末,氢气的通入流量为70~380L/min,ZrCl4粉末的通入速度为70~190g/min,待氢气和ZrCl4粉末输入稳定后,通入丙烯与ZrCl4粉末进行反应,丙烯的通入流量为3~10L/min,反应时间为30~80min,反应后获得ZrC层。Further, after the inner dense pyrolysis carbon layer is prepared in the fluidized bed, hydrogen and ZrCl 4 powder are introduced, the hydrogen gas introduction flow rate is 70~380L/min, and the ZrCl 4 powder introduction speed is 70~190g/ min, after the input of hydrogen and ZrCl 4 powder is stable, propylene is introduced to react with ZrCl 4 powder. The propylene flow rate is 3~10L/min, the reaction time is 30~80min, and the ZrC layer is obtained after the reaction.
进一步地,在制得ZrC层后,通入乙炔和丙烯反应获得外致密热解炭层,在颗粒流化状态下冷却至室温后卸料得到包覆燃料颗粒;或者在制得ZrC层后,直接在颗粒流化状态下冷却至室温后卸料得到包覆燃料颗粒。Further, after the ZrC layer is prepared, acetylene and propylene are introduced to react to obtain an outer dense pyrolysis carbon layer, and the particles are cooled to room temperature in a fluidized state and then discharged to obtain coated fuel particles; or after the ZrC layer is prepared, The particles are directly cooled to room temperature in a fluidized state and then discharged to obtain coated fuel particles.
与现有技术相比,本发明提供的含ZrC包覆层的高铀密度弥散燃料及其制备方法具有以下有益效果:Compared with the existing technology, the high uranium density dispersion fuel containing ZrC coating provided by the present invention and its preparation method have the following beneficial effects:
本发明将TRISO颗粒最外层的致密热解炭层厚度由40μm减至0~30μm,可以减小TRISO颗粒的直径尺寸,在同等装填体积的情况下,可以提高弥散燃料的铀装量。The present invention reduces the thickness of the outermost dense pyrolysis carbon layer of TRISO particles from 40 μm to 0~30 μm, which can reduce the diameter of TRISO particles and increase the uranium loading capacity of dispersion fuel under the same filling volume.
以500μm的UO2核芯为例,疏松热解炭厚度为95μm,内致密热解炭厚度为40μm,SiC厚度为35μm,外致密热解炭厚度为40μm和0μm两种。两种TRISO颗粒均装填在Ф8.43mm×10.92mm的芯块中,当TRISO颗粒的装填体积占比均为40%时,外致密热解炭层厚度为0μm的燃料芯块铀装量比外致密热解炭层厚度为40μm的燃料芯块铀装量增加了30%。Taking the 500μm UO2 core as an example, the thickness of the loose pyrolytic carbon is 95μm, the thickness of the inner dense pyrolytic carbon is 40μm, the thickness of SiC is 35μm, and the thickness of the outer dense pyrolytic carbon is 40μm and 0μm. Both TRISO particles are packed in pellets of Ф8.43mm×10.92mm. When the filling volume of TRISO particles is 40%, the fuel pellet with an outer dense pyrolysis carbon layer thickness of 0 μm has a higher uranium content than the outer one. The uranium content of fuel pellets with a dense pyrolysis carbon layer thickness of 40 μm has increased by 30%.
本发明将TRISO颗粒中的SiC层变更为ZrC层,可以提高反应堆的运行温度及出口温度,在3540℃(ZrC层的熔点)以下ZrC层不发生相变,可以更好地保护TRISO颗粒的完整性;同时ZrC层与钯几乎不发生反应,有良好的裂变产物的包容能力。This invention changes the SiC layer in the TRISO particles to a ZrC layer, which can increase the operating temperature and outlet temperature of the reactor. The ZrC layer does not undergo phase change below 3540°C (the melting point of the ZrC layer), and can better protect the integrity of the TRISO particles. properties; at the same time, the ZrC layer hardly reacts with palladium and has good fission product containment capacity.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。In order to more clearly explain the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the description of the embodiments will be briefly introduced below.
图1为本发明实施例1所提供的包覆燃料颗粒的示意图;Figure 1 is a schematic diagram of coated fuel particles provided by Embodiment 1 of the present invention;
图2为本发明实施例1所提供的弥散燃料的示意图。Figure 2 is a schematic diagram of the dispersion fuel provided in Embodiment 1 of the present invention.
附图标记说明:Explanation of reference symbols:
1、燃料核芯;2、疏松热解炭层;3、内致密热解炭层;4、ZrC层;5、外致密热解炭层;6、TRISO颗粒;7、SiC基体;8、无燃料区。1. Fuel core; 2. Loose pyrolytic carbon layer; 3. Inner dense pyrolytic carbon layer; 4. ZrC layer; 5. Outer dense pyrolytic carbon layer; 6. TRISO particles; 7. SiC matrix; 8. None fuel area.
具体实施方式Detailed ways
下面通过具体实施方式进一步详细说明。The following is further described in detail through specific implementations.
本发明提供了一种含ZrC包覆层的高铀密度弥散燃料,提高了弥散燃料中的铀装量,并且提高了弥散燃料的耐高温性能。The invention provides a high uranium density dispersion fuel containing a ZrC coating layer, which increases the uranium loading in the dispersion fuel and improves the high temperature resistance of the dispersion fuel.
本发明通过采用ZrC层替代TRISO颗粒中第三层SiC层,充分发挥ZrC材料优异的抗氧化性能和耐高温性能,进一步改善TRISO颗粒弥散燃料在更高运行温度下(1800℃以上)的耐高温性能,促进TRISO颗粒弥散燃料在更严苛环境中的应用。By replacing the third SiC layer in TRISO particles with a ZrC layer, the present invention gives full play to the excellent anti-oxidation and high-temperature resistance of the ZrC material and further improves the high-temperature resistance of TRISO particle dispersion fuel at higher operating temperatures (above 1800°C). performance to promote the application of TRISO particle dispersion fuel in more harsh environments.
TRISO颗粒(包覆燃料颗粒)最外层的致密热解炭层主要的作用是保护第三层并为其提供支撑力作用,这个设计主要源于TRISO颗粒最初的应用是在石墨基体上,热解炭和石墨属于同源材料,所以最外层的外致密热解炭层可以与石墨基体有很好的相容性。本发明采用ZrC层替代SiC层后,考虑到最外层热解炭的热膨胀系数与ZrC层存在较大差异,因此本发明提出两种方案进行解决,一是,减薄最外层的外致密热解炭层厚度至0μm<外致密热解炭层厚度≤30μm,可以有效提高弥散燃料中的铀装量。30μm厚的最外层致密热解炭层是TRISO颗粒穿衣的基准厚度尺寸,在本发明中,可将30μm厚的最外层致密热解炭层作为TRISO颗粒间的间隔层,用于防止TRISO颗粒装填成型过程中相互挤压造成变形。二是,去掉最外层的外致密热解炭层,也就是说外致密热解炭层厚度为0μm,以此提高弥散燃料中的铀装量的同时还可以提高TRISO颗粒与SiC基体的导热性能的相容性。因此,本发明提供的含ZrC包覆层的高铀密度弥散燃料的最外层的外致密热解炭层厚度为0~30μm,即0μm≤外致密热解炭层厚度≤30μm。The main function of the outermost dense pyrolytic carbon layer of TRISO particles (coated fuel particles) is to protect the third layer and provide support for it. This design is mainly due to the fact that the initial application of TRISO particles was on a graphite matrix. Pyrolytic carbon and graphite are homologous materials, so the outermost outer dense pyrolytic carbon layer can have good compatibility with the graphite matrix. After the present invention uses the ZrC layer to replace the SiC layer, considering that the thermal expansion coefficient of the outermost pyrolytic carbon layer is significantly different from that of the ZrC layer, the present invention proposes two solutions. One is to thin the outer dense layer of the outermost layer. The thickness of the pyrolysis carbon layer is 0 μm < the thickness of the outer dense pyrolysis carbon layer ≤ 30 μm, which can effectively increase the uranium loading in the dispersion fuel. The 30 μm thick outermost dense pyrolytic carbon layer is the standard thickness dimension for TRISO particles to wear. In the present invention, the 30 μm thick outermost dense pyrolytic carbon layer can be used as a spacer layer between TRISO particles to prevent During the filling and molding process, TRISO particles squeeze each other and cause deformation. The second is to remove the outermost outer dense pyrolytic carbon layer, which means that the thickness of the outer dense pyrolytic carbon layer is 0 μm. This can not only increase the uranium content in the dispersion fuel, but also improve the thermal conductivity between TRISO particles and the SiC matrix. Performance compatibility. Therefore, the thickness of the outer dense pyrolysis carbon layer of the outermost layer of the high uranium density dispersion fuel containing the ZrC coating provided by the present invention is 0~30 μm, that is, 0 μm ≤ the thickness of the outer dense pyrolysis carbon layer ≤ 30 μm.
因此,本发明减少外致密热解炭层厚度且将TRISO颗粒中的SiC层变更为ZrC层,通过上述组合设计可以提高TRISO颗粒弥散燃料的整体铀装量和耐高温性能,这将有利于推广TRISO颗粒弥散燃料应用于高燃耗、高出口温度的特殊用途反应堆中,实现燃料高效、安全的运行,推动更广泛的应用。Therefore, the present invention reduces the thickness of the outer dense pyrolytic carbon layer and changes the SiC layer in the TRISO particles to a ZrC layer. Through the above combination design, the overall uranium loading and high temperature resistance of the TRISO particle dispersion fuel can be improved, which will be beneficial to promotion. TRISO particle dispersion fuel is used in special-purpose reactors with high burn-up consumption and high outlet temperature to achieve efficient and safe fuel operation and promote wider applications.
本发明中,疏松热解炭层的厚度为50~120μm,内致密热解炭层的厚度为30~60μm,ZrC层的厚度为17~45μm。In the present invention, the thickness of the loose pyrolytic carbon layer is 50~120 μm, the thickness of the inner dense pyrolytic carbon layer is 30~60 μm, and the thickness of the ZrC layer is 17~45 μm.
实施例1Example 1
一种含ZrC包覆层的高铀密度弥散燃料,其包覆燃料颗粒如图1所示,图中由内到外依次是燃料核芯1、疏松热解炭层2、内致密热解炭层3、ZrC层4和外致密热解炭层5。A high uranium density dispersion fuel containing a ZrC coating. The coated fuel particles are shown in Figure 1. From the inside to the outside, the fuel core 1, the loose pyrolytic carbon layer 2, and the inner dense pyrolytic carbon are Layer 3, ZrC layer 4 and outer dense pyrolytic carbon layer 5.
燃料核芯1的物质组成为UCO,燃料核芯1的直径为500μm。疏松热解炭层2的厚度为90.7μm,内致密热解炭层3的厚度为38.6μm,ZrC层4的厚度为17.6μm,外致密热解炭层5的厚度为20.9μm。将包覆燃料颗粒弥散在SiC基体中,整体芯块的尺寸为Ф8.566mm×12.979mm。如图2所示,弥散燃料的组成分别为TRISO颗粒6、SiC基体7和无燃料区8。The material composition of the fuel core 1 is UCO, and the diameter of the fuel core 1 is 500 μm. The thickness of the loose pyrolytic carbon layer 2 is 90.7 μm, the thickness of the inner dense pyrolytic carbon layer 3 is 38.6 μm, the thickness of the ZrC layer 4 is 17.6 μm, and the thickness of the outer dense pyrolytic carbon layer 5 is 20.9 μm. The coated fuel particles are dispersed in the SiC matrix, and the size of the overall pellet is Ф8.566mm×12.979mm. As shown in Figure 2, the components of the dispersion fuel are TRISO particles 6, SiC matrix 7 and fuel-free area 8.
一种含ZrC包覆层的高铀密度弥散燃料的制备方法,包括下述步骤:A method for preparing high uranium density dispersion fuel containing ZrC coating, including the following steps:
步骤1:UCO核芯制备。通过外凝胶以及碳热还原工艺开展UCO核芯的制备,工艺流程为:首先将5000gU3O8粉缓慢加入2200mL浓硝酸和4100mL去离子水的混合溶液中,得到硝酸铀酰溶液(HMTA);另将2.3~2.5g六次甲基四胺和1g尿素混合配成六次甲基四胺和尿素混合溶液;将HMTA/尿素混合溶液和640g碳粉加入配置好的ADUN溶液配置成胶液。静置后的混合胶液通过分散头进行分散,其中胶液流量为12mL/min,振动频率为100~120Hz制成UO3/C凝胶球,再进行陈化、洗涤和干燥,最终在CO气氛中1700℃焙烧制备得到UCO核芯。Step 1: UCO core preparation. The UCO core is prepared through external gel and carbothermal reduction processes. The process flow is as follows: first, slowly add 5000g U 3 O 8 powder into a mixed solution of 2200 mL concentrated nitric acid and 4100 mL deionized water to obtain uranyl nitrate solution (HMTA). ; In addition, mix 2.3~2.5g hexamethylenetetramine and 1g urea to prepare a mixed solution of hexamethylenetetramine and urea; add the HMTA/urea mixed solution and 640g carbon powder to the prepared ADUN solution to form a glue solution . The mixed glue liquid after standing is dispersed through the dispersing head, where the glue flow rate is 12mL/min, and the vibration frequency is 100-120Hz to form UO 3 /C gel balls, which are then aged, washed and dried, and finally in CO The UCO core was prepared by roasting at 1700°C in the atmosphere.
步骤2:TRISO颗粒制备。将3000g的UCO核芯放入流化床中,将流化床升温至1150℃,通入氩气(流量为67L/min)和乙炔(流量为175L/min),反应时间2min,获得疏松热解炭;通入乙炔(流量为60L/min)和丙烯(60L/min),反应时间10min,获得内致密热解炭;通入氢气(流量为72L/min)、ZrCl4粉末(70g/min)和丙烯(流量为3L/min),反应时间30min,获得ZrC层;通入乙炔(流量为30L/min)和丙烯(30L/min),反应时间5min,获得外致密热解炭层。包覆结束之后,在TRISO颗粒流化状态下随炉冷却,冷却至室温后从底部卸料,得到TRISO颗粒。Step 2: TRISO particle preparation. Put 3000g of UCO core into the fluidized bed, heat the fluidized bed to 1150°C, introduce argon (flow rate: 67L/min) and acetylene (flow rate: 175L/min), reaction time is 2min, and obtain loosening heat Decompose carbon; pass in acetylene (flow rate: 60L/min) and propylene (60L/min), react for 10 minutes to obtain internally dense pyrolysis carbon; pass in hydrogen (flow rate: 72L/min), ZrCl 4 powder (70g/min ) and propylene (flow rate is 3L/min), the reaction time is 30 minutes, and the ZrC layer is obtained; acetylene (flow rate is 30L/min) and propylene (30L/min), the reaction time is 5 minutes, and the outer dense pyrolysis carbon layer is obtained. After the coating is completed, the TRISO particles are cooled in the furnace in a fluidized state, cooled to room temperature, and then discharged from the bottom to obtain TRISO particles.
步骤3:燃料芯块的制备。将含有ZrC包覆层的颗粒与SiC粉末、3~7%助烧剂粉末(Al2O3和Y2O3)均匀混合,其中ZrC包覆层的颗粒体积占比为41%。使用单向压机配合钢模,将填充入钢模的复合粉末在1~1.5KN下制成生坯。将制得的生坯封装入石墨模具中,封装完成后,将石墨模具放入热压烧结炉,热压烧结炉的温度控制在1650~1750℃,在保护气氛或者真空下进行烧结;或者将石墨模具放入放电等离子烧结炉,放电等离子烧结炉温度控制在1750~1850℃,在保护气氛或者真空下进行烧结。烧结结束后取出石墨模具将弥散燃料通过脱模或者解体的方式取出,最后通过外表面磨削的方式得到含ZrC包覆层的高铀密度弥散燃料。Step 3: Preparation of fuel pellets. The particles containing the ZrC coating layer are evenly mixed with SiC powder and 3 to 7% sintering aid powder (Al 2 O 3 and Y 2 O 3 ). The volume proportion of the ZrC coating layer particles is 41%. Use a one-way press with a steel mold to make a green body from the composite powder filled into the steel mold at 1~1.5KN. The prepared green body is packaged into a graphite mold. After the packaging is completed, the graphite mold is placed in a hot-pressing sintering furnace. The temperature of the hot-pressing sintering furnace is controlled at 1650-1750°C, and sintering is performed under a protective atmosphere or vacuum; or The graphite mold is placed in a discharge plasma sintering furnace. The temperature of the discharge plasma sintering furnace is controlled at 1750~1850°C, and sintering is performed in a protective atmosphere or vacuum. After sintering, the graphite mold is taken out and the dispersed fuel is taken out by demolding or disintegrating. Finally, the high uranium density dispersed fuel containing the ZrC coating is obtained by grinding the outer surface.
实施例2Example 2
一种含ZrC包覆层的高铀密度弥散燃料,由内到外依次是燃料核芯、疏松热解炭层、内致密热解炭层、ZrC层和外致密热解炭层。A high uranium density dispersion fuel containing a ZrC coating layer, consisting of a fuel core, a loose pyrolytic carbon layer, an inner dense pyrolytic carbon layer, a ZrC layer and an outer dense pyrolytic carbon layer from the inside to the outside.
燃料核芯的物质组成为UCO,燃料核芯的直径为650μm。疏松热解炭层的厚度为111.3μm,内致密热解炭层的厚度为41.4μm,ZrC层的厚度为27.8μm,外致密热解炭层的厚度为29.5μm。将包覆燃料颗粒弥散在SiC基体中,整体芯块的尺寸为Ф8.566mm×12.979mm。弥散燃料的组成分别为TRISO颗粒、SiC基体和无燃料区。The material composition of the fuel core is UCO, and the diameter of the fuel core is 650 μm. The thickness of the loose pyrolytic carbon layer is 111.3 μm, the thickness of the inner dense pyrolytic carbon layer is 41.4 μm, the thickness of the ZrC layer is 27.8 μm, and the thickness of the outer dense pyrolytic carbon layer is 29.5 μm. The coated fuel particles are dispersed in the SiC matrix, and the size of the overall pellet is Ф8.566mm×12.979mm. The components of the dispersion fuel are TRISO particles, SiC matrix and fuel-free zone.
一种含ZrC包覆层的高铀密度弥散燃料的制备方法,包括下述步骤:A method for preparing high uranium density dispersion fuel containing ZrC coating, including the following steps:
步骤1:UCO核芯制备。通过外凝胶以及碳热还原工艺开展UCO核芯的制备,工艺流程为:首先将5000gU3O8粉缓慢加入2200mL浓硝酸和4100mL去离子水的混合溶液中,得到硝酸铀酰溶液(HMTA);另将2.3~2.5g六次甲基四胺和1g尿素混合配成六次甲基四胺和尿素混合溶液;将HMTA/尿素混合溶液和640g碳粉加入配置好的ADUN溶液配置成胶液。静置后的混合胶液通过分散头进行分散,其中胶液流量为12mL/min,振动频率为100~120Hz制成UO3/C凝胶球,再进行陈化、洗涤和干燥,最终在CO气氛中1700℃焙烧制备得到UCO核芯。Step 1: UCO core preparation. The UCO core is prepared through external gel and carbothermal reduction processes. The process flow is as follows: first, slowly add 5000g U 3 O 8 powder into a mixed solution of 2200 mL concentrated nitric acid and 4100 mL deionized water to obtain uranyl nitrate solution (HMTA). ; In addition, mix 2.3~2.5g hexamethylenetetramine and 1g urea to prepare a mixed solution of hexamethylenetetramine and urea; add the HMTA/urea mixed solution and 640g carbon powder to the prepared ADUN solution to form a glue solution . The mixed glue liquid after standing is dispersed through the dispersing head, where the glue flow rate is 12mL/min, and the vibration frequency is 100-120Hz to form UO 3 /C gel balls, which are then aged, washed and dried, and finally in CO The UCO core was prepared by roasting at 1700°C in the atmosphere.
步骤2:TRISO颗粒制备。将3000g的UCO核芯放入流化床中,将流化床升温至1150℃,通入氩气(流量为60L/min)和乙炔(流量为171L/min),反应时间2min,获得疏松热解炭;通入乙炔(流量为84L/min)和丙烯(88L/min),反应时间10min,获得内致密热解炭;通入氢气(流量为216L/min)、ZrCl4粉末(123g/min)和丙烯(流量为5L/min),反应时间40min,获得ZrC层;通入乙炔(流量为75L/min)和丙烯(96L/min),反应时间7min,获得外致密热解炭层。包覆结束之后,在TRISO颗粒流化状态下随炉冷却,冷却至室温后从底部卸料,得到TRISO颗粒。Step 2: TRISO particle preparation. Put 3000g UCO core into the fluidized bed, heat the fluidized bed to 1150°C, introduce argon (flow rate: 60L/min) and acetylene (flow rate: 171L/min), reaction time is 2min, and obtain loosening heat Decompose carbon; pass in acetylene (flow rate: 84L/min) and propylene (88L/min), react for 10 minutes to obtain internally dense pyrolysis carbon; pass in hydrogen (flow rate: 216L/min), ZrCl 4 powder (123g/min ) and propylene (flow rate is 5L/min), the reaction time is 40 minutes, and the ZrC layer is obtained; acetylene (flow rate is 75L/min) and propylene (96L/min), the reaction time is 7 minutes, and the outer dense pyrolysis carbon layer is obtained. After the coating is completed, the TRISO particles are cooled in the furnace in a fluidized state, cooled to room temperature, and then discharged from the bottom to obtain TRISO particles.
步骤3:燃料芯块的制备。将含有ZrC包覆层的颗粒与SiC粉末、3~7%助烧剂粉末(Al2O3和Y2O3)均匀混合,其中ZrC包覆层的颗粒体积占比为41%。使用单向压机配合钢模,将填充入钢模的复合粉末在1~1.5KN下制成生坯。将制得的生坯封装入石墨模具中,封装完成后,将石墨模具放入热压烧结炉,热压烧结炉的温度控制在1650~1750℃,在保护气氛或者真空下进行烧结;或者将石墨模具放入放电等离子烧结炉,放电等离子烧结炉温度控制在1750~1850℃,在保护气氛或者真空下进行烧结。烧结结束后取出石墨模具将弥散燃料通过脱模或者解体的方式取出,最后通过外表面磨削的方式得到含ZrC包覆层的高铀密度弥散燃料。Step 3: Preparation of fuel pellets. The particles containing the ZrC coating layer are evenly mixed with SiC powder and 3 to 7% sintering aid powder (Al 2 O 3 and Y 2 O 3 ). The volume proportion of the ZrC coating layer particles is 41%. Use a one-way press with a steel mold to make a green body from the composite powder filled into the steel mold at 1~1.5KN. The prepared green body is packaged into a graphite mold. After the packaging is completed, the graphite mold is placed in a hot-pressing sintering furnace. The temperature of the hot-pressing sintering furnace is controlled at 1650-1750°C, and sintering is performed under a protective atmosphere or vacuum; or The graphite mold is placed in a discharge plasma sintering furnace. The temperature of the discharge plasma sintering furnace is controlled at 1750~1850°C, and sintering is performed in a protective atmosphere or vacuum. After sintering, the graphite mold is taken out and the dispersed fuel is taken out by demolding or disintegrating. Finally, the high uranium density dispersed fuel containing the ZrC coating is obtained by grinding the outer surface.
实施例3Example 3
一种含ZrC包覆层的高铀密度弥散燃料,由内到外依次是燃料核芯、疏松热解炭层、内致密热解炭层和ZrC层。实施例3不在ZrC层包覆外致密热解炭层。A high uranium density dispersion fuel containing a ZrC coating layer, which consists of a fuel core, a loose pyrolytic carbon layer, an inner dense pyrolytic carbon layer and a ZrC layer from the inside to the outside. Example 3 does not cover the outer dense pyrolytic carbon layer with the ZrC layer.
燃料核芯的物质组成为UN,燃料核芯的直径为800μm。疏松热解炭层的厚度为52.2μm,内致密热解炭层的厚度为36μm,ZrC层的厚度为44.7μm。将包覆燃料颗粒弥散在SiC基体中,整体芯块的尺寸为Ф21.6mm×22.2mm。弥散燃料的组成分别为TRISO颗粒、SiC基体和无燃料区。The material composition of the fuel core is UN, and the diameter of the fuel core is 800 μm. The thickness of the loose pyrolytic carbon layer is 52.2 μm, the thickness of the inner dense pyrolytic carbon layer is 36 μm, and the thickness of the ZrC layer is 44.7 μm. The coated fuel particles are dispersed in the SiC matrix, and the size of the overall pellet is Ф21.6mm×22.2mm. The components of the dispersion fuel are TRISO particles, SiC matrix and fuel-free zone.
一种含ZrC包覆层的高铀密度弥散燃料的制备方法,包括下述步骤:A method for preparing high uranium density dispersion fuel containing ZrC coating, including the following steps:
步骤1:UN核芯制备。通过外凝胶、碳热还原以及氮化工艺开展UN核芯的制备,工艺流程为:首先将5000gU3O8粉缓慢加入2200mL浓硝酸和4100mL去离子水的混合溶液中,得到硝酸铀酰溶液(HMTA);另将2.3~2.5g六次甲基四胺和1g尿素混合配成六次甲基四胺和尿素混合溶液;将HMTA/尿素混合溶液和530g碳粉加入配置好的ADUN溶液配置成胶液。静置后的混合胶液通过分散头进行分散,其中胶液流量为12mL/min,振动频率为100~120Hz制成UO3/C凝胶球,再进行陈化、洗涤和干燥,最终在N2气氛中1900℃焙烧制备得到UN核芯。Step 1: UN core preparation. The UN core is prepared through external gelling, carbothermal reduction and nitriding processes. The process flow is as follows: first, slowly add 5000g U 3 O 8 powder into a mixed solution of 2200 mL concentrated nitric acid and 4100 mL deionized water to obtain a uranyl nitrate solution. (HMTA); in addition, mix 2.3~2.5g hexamethylenetetramine and 1g urea to form a mixed solution of hexamethylenetetramine and urea; add the HMTA/urea mixed solution and 530g carbon powder to the prepared ADUN solution Glue liquid. The mixed glue liquid after standing is dispersed through the dispersing head, where the glue flow rate is 12mL/min, and the vibration frequency is 100-120Hz to form UO 3 /C gel balls, which are then aged, washed and dried, and finally in N The UN core was prepared by roasting at 1900°C in 2 atmosphere.
步骤2:TRISO颗粒制备。将3000g的UN核芯放入流化床中,将流化床升温至1150℃,通入氩气(流量为20L/min)和乙炔(60L/min),反应时间2min,获得疏松热解炭;通入乙炔(流量为35L/min)和丙烯(35L/min),反应时间7min,获得内致密热解炭;通入氢气(流量为380L/min)、ZrCl4粉末(185g/min)和丙烯(流量为10L/min),反应时间75min,获得ZrC层。包覆结束之后,在TRISO颗粒流化状态下随炉冷却,冷却至室温后从底部卸料,得到TRISO颗粒。Step 2: TRISO particle preparation. Put 3000g UN core into the fluidized bed, heat the fluidized bed to 1150°C, introduce argon (flow rate 20L/min) and acetylene (60L/min), reaction time is 2min, and obtain loose pyrolysis carbon ; Pour in acetylene (flow rate 35L/min) and propylene (35L/min), reaction time 7min, obtain internal dense pyrolysis carbon; Pour in hydrogen (flow rate 380L/min), ZrCl 4 powder (185g/min) and Propylene (flow rate is 10L/min), reaction time is 75min, and ZrC layer is obtained. After the coating is completed, the TRISO particles are cooled in the furnace in a fluidized state, cooled to room temperature, and then discharged from the bottom to obtain TRISO particles.
步骤3:燃料芯块的制备。将含有ZrC包覆层的颗粒与SiC粉末、3~7%助烧剂粉末(Al2O3和Y2O3)均匀混合,其中ZrC包覆层的颗粒体积占比为41%。使用单向压机配合钢模,将填充入钢模的复合粉末在1~1.5KN下制成生坯。将制得的生坯封装入石墨模具中,封装完成后,将石墨模具放入热压烧结炉,热压烧结炉的温度控制在1650~1750℃,在保护气氛或者真空下进行烧结;或者将石墨模具放入放电等离子烧结炉,放电等离子烧结炉温度控制在1750~1850℃,在保护气氛或者真空下进行烧结。烧结结束后取出石墨模具将弥散燃料通过脱模或者解体的方式取出,最后通过外表面磨削的方式得到含ZrC包覆层的高铀密度弥散燃料。Step 3: Preparation of fuel pellets. The particles containing the ZrC coating layer are evenly mixed with SiC powder and 3 to 7% sintering aid powder (Al 2 O 3 and Y 2 O 3 ). The volume proportion of the ZrC coating layer particles is 41%. Use a one-way press with a steel mold to make a green body from the composite powder filled into the steel mold at 1~1.5KN. The prepared green body is packaged into a graphite mold. After the packaging is completed, the graphite mold is placed in a hot-pressing sintering furnace. The temperature of the hot-pressing sintering furnace is controlled at 1650-1750°C, and sintering is performed under a protective atmosphere or vacuum; or The graphite mold is placed in a discharge plasma sintering furnace. The temperature of the discharge plasma sintering furnace is controlled at 1750~1850°C, and sintering is performed in a protective atmosphere or vacuum. After sintering, the graphite mold is taken out and the dispersed fuel is taken out by demolding or disintegrating. Finally, the high uranium density dispersed fuel containing the ZrC coating is obtained by grinding the outer surface.
本发明提供的制备方法实现以含超高温包覆层ZrC层的高铀密度弥散燃料芯块的制备。通过核芯制备、含超高温包覆层的TRISO颗粒制备、生坯制备、芯块烧结等几个关键工艺方法达到制备芯块的目的。制得芯块在密度、尺寸、热物理性能、力学性能等堆外性能测试方面均能达到入堆芯块技术条件要求,制备芯块主要应用于与技术条件相对应的燃料堆,满足核燃料元件使用标准。The preparation method provided by the invention realizes the preparation of high uranium density dispersion fuel pellets containing ultra-high temperature coating layer ZrC layer. The purpose of preparing pellets is achieved through several key processes such as core preparation, TRISO particle preparation with ultra-high temperature coating, green body preparation, and pellet sintering. The prepared pellets can meet the technical requirements for reactor pellets in terms of density, size, thermophysical properties, mechanical properties and other external performance tests. The prepared pellets are mainly used in fuel reactors corresponding to the technical conditions to meet the requirements of nuclear fuel elements. Use standards.
本发明能改善当前弥散燃料中铀装量低的问题,提升燃料的整体经济特性,本发明提高弥散燃料耐高温能力,延长燃料换料周期,加快燃料的商业化应用并可推广燃料在超高温气冷堆、气冷微堆和核热火箭发动机等方向的应用。The present invention can improve the problem of low uranium content in current dispersion fuel and improve the overall economic characteristics of the fuel. The invention improves the high temperature resistance of the dispersion fuel, extends the fuel refueling cycle, accelerates the commercial application of the fuel, and can promote the use of fuel in ultra-high temperatures. Applications in gas-cooled reactors, gas-cooled micro-reactors and nuclear thermal rocket engines.
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or substitutions that can be easily thought of by those skilled in the art within the technical scope disclosed by the present invention. should be covered by the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310833235.8A CN116564562B (en) | 2023-07-10 | 2023-07-10 | High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310833235.8A CN116564562B (en) | 2023-07-10 | 2023-07-10 | High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116564562A CN116564562A (en) | 2023-08-08 |
CN116564562B true CN116564562B (en) | 2023-11-14 |
Family
ID=87490141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310833235.8A Ceased CN116564562B (en) | 2023-07-10 | 2023-07-10 | High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116564562B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117373702A (en) * | 2023-11-27 | 2024-01-09 | 中国核动力研究设计院 | Multiple-cladding dispersion fuel element with high safety characteristic and complex structure and preparation method thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108692A (en) * | 1989-09-22 | 1991-05-08 | Nuclear Fuel Ind Ltd | coated fuel particles |
JP2006284489A (en) * | 2005-04-04 | 2006-10-19 | Nuclear Fuel Ind Ltd | Method for producing coated fuel particles for HTGR |
JP2007121128A (en) * | 2005-10-28 | 2007-05-17 | Nuclear Fuel Ind Ltd | Gadolinium-containing ammonium heavy uranate particles and method for producing the same, fuel core for HTGR fuel, coated particles for HTGR, and HTGR fuel. |
RU2333553C1 (en) * | 2007-03-23 | 2008-09-10 | Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч" | Particle fuel element of nuclear reactor |
CN104671815A (en) * | 2015-01-19 | 2015-06-03 | 中南大学 | ZrC-TiC modified C/C-SiC composite material and preparation method thereof |
CN106631112A (en) * | 2016-12-29 | 2017-05-10 | 中国科学院上海应用物理研究所 | Preparation method of hollow ceramic microsphere |
CN107093468A (en) * | 2017-05-27 | 2017-08-25 | 中国工程物理研究院材料研究所 | A kind of ZrC inertia base disperse pellet nuclear fuel and its preparation method and purposes |
CN108335760A (en) * | 2018-02-01 | 2018-07-27 | 中国工程物理研究院材料研究所 | A kind of preparation method of high uranium useful load dispersion fuel pellet |
CN109671511A (en) * | 2018-12-19 | 2019-04-23 | 中国工程物理研究院材料研究所 | A kind of preparation method of monocrystalline high thermal conductivity uranium dioxide fuel ball |
CN111489837A (en) * | 2020-04-02 | 2020-08-04 | 清华大学 | Coated fuel particle containing composite carbide coating layer and preparation method thereof |
CN111724919A (en) * | 2020-06-29 | 2020-09-29 | 清华大学 | A kind of coated fuel particle, pellet, fuel element and preparation method thereof containing combustible poison coating layer |
CN113196416A (en) * | 2019-01-24 | 2021-07-30 | 中广核研究院有限公司 | Coated fuel particles, inert matrix dispersed fuel pellets and integrated fuel rods and methods of making same |
WO2022225611A2 (en) * | 2021-02-25 | 2022-10-27 | Oklo Inc. | Nuclear reactor fuel |
CN115662658A (en) * | 2022-11-07 | 2023-01-31 | 中国核动力研究设计院 | Fuel pellet based on three-layer coating structure, rod-shaped fuel element and application of fuel pellet and rod-shaped fuel element |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110317794A1 (en) * | 2010-06-03 | 2011-12-29 | Francesco Venneri | Nuclear fuel assembly and related methods for spent nuclear fuel reprocessing and management |
US20120314831A1 (en) * | 2011-06-10 | 2012-12-13 | Ut-Battelle, Llc | Light Water Reactor TRISO Particle-Metal-Matrix Composite Fuel |
US9620248B2 (en) * | 2011-08-04 | 2017-04-11 | Ultra Safe Nuclear, Inc. | Dispersion ceramic micro-encapsulated (DCM) nuclear fuel and related methods |
-
2023
- 2023-07-10 CN CN202310833235.8A patent/CN116564562B/en not_active Ceased
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108692A (en) * | 1989-09-22 | 1991-05-08 | Nuclear Fuel Ind Ltd | coated fuel particles |
JP2006284489A (en) * | 2005-04-04 | 2006-10-19 | Nuclear Fuel Ind Ltd | Method for producing coated fuel particles for HTGR |
JP2007121128A (en) * | 2005-10-28 | 2007-05-17 | Nuclear Fuel Ind Ltd | Gadolinium-containing ammonium heavy uranate particles and method for producing the same, fuel core for HTGR fuel, coated particles for HTGR, and HTGR fuel. |
RU2333553C1 (en) * | 2007-03-23 | 2008-09-10 | Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч" | Particle fuel element of nuclear reactor |
CN104671815A (en) * | 2015-01-19 | 2015-06-03 | 中南大学 | ZrC-TiC modified C/C-SiC composite material and preparation method thereof |
CN106631112A (en) * | 2016-12-29 | 2017-05-10 | 中国科学院上海应用物理研究所 | Preparation method of hollow ceramic microsphere |
CN107093468A (en) * | 2017-05-27 | 2017-08-25 | 中国工程物理研究院材料研究所 | A kind of ZrC inertia base disperse pellet nuclear fuel and its preparation method and purposes |
CN108335760A (en) * | 2018-02-01 | 2018-07-27 | 中国工程物理研究院材料研究所 | A kind of preparation method of high uranium useful load dispersion fuel pellet |
CN109671511A (en) * | 2018-12-19 | 2019-04-23 | 中国工程物理研究院材料研究所 | A kind of preparation method of monocrystalline high thermal conductivity uranium dioxide fuel ball |
CN113196416A (en) * | 2019-01-24 | 2021-07-30 | 中广核研究院有限公司 | Coated fuel particles, inert matrix dispersed fuel pellets and integrated fuel rods and methods of making same |
CN111489837A (en) * | 2020-04-02 | 2020-08-04 | 清华大学 | Coated fuel particle containing composite carbide coating layer and preparation method thereof |
CN111724919A (en) * | 2020-06-29 | 2020-09-29 | 清华大学 | A kind of coated fuel particle, pellet, fuel element and preparation method thereof containing combustible poison coating layer |
WO2022225611A2 (en) * | 2021-02-25 | 2022-10-27 | Oklo Inc. | Nuclear reactor fuel |
CN115662658A (en) * | 2022-11-07 | 2023-01-31 | 中国核动力研究设计院 | Fuel pellet based on three-layer coating structure, rod-shaped fuel element and application of fuel pellet and rod-shaped fuel element |
Non-Patent Citations (4)
Title |
---|
核电厂全陶瓷微封装弥散燃料研发;冯海宁;孟莹;王虹;;中国核电(第05期);全文 * |
热解炭在核能技术领域中的应用;徐世江;新型炭材料(第03期);全文 * |
碳化硅基新型包覆燃料颗粒的设计及制备;刘荣正;刘马林;刘兵;邵友林;;原子能科学技术(第07期);全文 * |
高温气冷堆包覆燃料颗粒破损率研究;朱钧国, 杨冰, 张秉忠, 徐世江, 黄锦涛;清华大学学报(自然科学版)(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116564562A (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Demkowicz et al. | Coated particle fuel: Historical perspectives and current progress | |
CN108335760B (en) | Preparation method of high-uranium-loading-capacity dispersed fuel pellet | |
US10475543B2 (en) | Dispersion ceramic micro-encapsulated (DCM) nuclear fuel and related methods | |
US3992258A (en) | Coated nuclear fuel particles and process for making the same | |
US4475948A (en) | Lithium aluminate/zirconium material useful in the production of tritium | |
CN116564562B (en) | High-uranium-density dispersion fuel containing ZrC coating layer and preparation method thereof | |
US3325363A (en) | Carbon coated nuclear fuel and poison particles | |
CN107274936B (en) | A kind of fast preparation method of the enhanced uranium dioxide nuclear fuel of beryllium oxide | |
CN108218456B (en) | Preparation method of high-safety uranium dioxide nuclear fuel pellet | |
CN111933310B (en) | A kind of high thermal conductivity uranium dioxide single crystal composite fuel pellet and preparation method thereof | |
US3165422A (en) | Ceramic coated fuel particles | |
CN111916227B (en) | A kind of metal coating fuel and preparation method thereof | |
US3179723A (en) | Method of forming metal carbide spheroids with carbon coat | |
CN117066509A (en) | Preparation method of metal/ceramic microsphere composite neutron absorption material | |
GB1388965A (en) | Nuclear fuel for high temperature gas-cooled reactors | |
US3335063A (en) | Multi-pyrocarbon coated nuclear fuel and poison particles and method of preparing same | |
CN107082430B (en) | Uranium silicon carbon ternary compound fuel pellet and preparation method and application thereof | |
WO2020150976A1 (en) | Coated fuel particle, inert matrix dispersed fuel pellet and integrated fuel rod, and fabrication methods therefor | |
CN115662658A (en) | Fuel pellet based on three-layer coating structure, rod-shaped fuel element and application of fuel pellet and rod-shaped fuel element | |
USH259H (en) | Coated ceramic breeder materials | |
CN115058268B (en) | Composite structure fuel and preparation method thereof | |
CN112071444B (en) | A uranium dioxide single crystal/nano-diamond composite fuel and its preparation method | |
CN114292108B (en) | Boron carbide-gadolinium oxide neutron absorber material for control rod and preparation method thereof | |
US3213162A (en) | Method of making nuclear fuel compact | |
EP1677920A2 (en) | Process for manufacturing enhanced thermal conductivity oxide nuclear fuel and the nuclear fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
IW01 | Full invalidation of patent right |
Decision date of declaring invalidation: 20240830 Decision number of declaring invalidation: 581354 Granted publication date: 20231114 |
|
IW01 | Full invalidation of patent right |