JP2712247B2 - (II)-Method for producing bulk single crystal of group VI compound - Google Patents
(II)-Method for producing bulk single crystal of group VI compoundInfo
- Publication number
- JP2712247B2 JP2712247B2 JP6487888A JP6487888A JP2712247B2 JP 2712247 B2 JP2712247 B2 JP 2712247B2 JP 6487888 A JP6487888 A JP 6487888A JP 6487888 A JP6487888 A JP 6487888A JP 2712247 B2 JP2712247 B2 JP 2712247B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- compound
- group
- bulk single
- sealed tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims description 79
- 150000001875 compounds Chemical class 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 24
- 239000011630 iodine Substances 0.000 claims description 21
- 229910052740 iodine Inorganic materials 0.000 claims description 21
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 20
- 239000002994 raw material Substances 0.000 description 17
- 239000010453 quartz Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000003708 ampul Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 229910052984 zinc sulfide Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- -1 CaS Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、II−VI族化合物のバルク単結晶の製造法に
関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a bulk single crystal of a II-VI group compound.
ZnS、ZnSe、CdHgTe等のII−VI族化合物半導体はSi等
のIV族又はGaAs等のIII−V族化合物半導体では得られ
ない青色発光ダイオード、赤外線検出素子等の機能が得
られることが期待されている。またこれらII−VI族単結
晶の中には、その光学的特性を生かしたいわゆる赤外線
用窓材としての利用されているものもある。II-VI group compound semiconductors such as ZnS, ZnSe and CdHgTe are expected to provide functions such as blue light emitting diodes and infrared detecting elements that cannot be obtained with group IV compound semiconductors such as Si or group III-V compound semiconductors such as GaAs. ing. Some of these II-VI group single crystals are utilized as so-called infrared window materials utilizing their optical characteristics.
このようなII−VI族化合物のバルク単結晶は従来、気
相又は液相から昇華法、高圧溶融法等種々の方法で得ら
れることが知られているが、ヨウ素を輸送剤として用い
るヨウ素輸送法が挙げられる。ヨウ素輸送法には昇華法
に比べ低温成長が可能であるため格子欠陥濃度が低減さ
れ、また、簡単な装置で単結晶が製造可能であるという
利点がある。It is known that such a bulk single crystal of a II-VI group compound can be obtained from a gas phase or a liquid phase by various methods such as a sublimation method and a high-pressure melting method, but iodine transport using iodine as a transport agent is known. Law. The iodine transport method has an advantage that the concentration of lattice defects can be reduced since low-temperature growth is possible as compared with the sublimation method, and a single crystal can be manufactured with a simple apparatus.
このようなヨウ素輸送法においては、従来数mm角の単
結晶を種結晶として用いて、封管内で単結晶を成長させ
る方法が採られている。しかし、このヨウ素輸送法で得
られる単結晶は少からずアメ色に着色しており、また結
晶の欠陥の尺度を表わすエッチピット密度も3〜9×10
4cm-2と高いものであった。そして、赤外線窓材にはか
かる結晶は使用不可能であり、従来は薄膜形成手法であ
る蒸着、分子線エピタキシャル法(MBE)、有機金属化
学気相法(MOCVD)等の手段で数mm厚さにも及ぶ厚膜を
作成するという極めて非能率な方法がとられていた。In such an iodine transport method, conventionally, a method of growing a single crystal in a sealed tube using a single crystal of several mm square as a seed crystal has been adopted. However, the single crystal obtained by this iodine transport method is slightly colored in a turquoise color, and the etch pit density, which is a measure of crystal defects, is 3 to 9 × 10 9
It was as high as 4 cm -2 . In addition, such crystals cannot be used for infrared window materials. Conventionally, thin films with a thickness of several mm are formed by thin film forming techniques such as vapor deposition, molecular beam epitaxy (MBE), and metal organic chemical vapor deposition (MOCVD). An extremely inefficient method of producing a thick film having a thickness of as much as possible has been taken.
また、封管内への種結晶の取り付けは困難であり、ま
た原料のII−VI族化合物の粉末が種結晶に付着し、多結
晶成長が生じやすくなる等成長過程が複雑になり、工業
的応用には適さない。In addition, it is difficult to attach a seed crystal in a sealed tube, and the growth process becomes complicated, for example, the powder of the raw material of the II-VI group compound adheres to the seed crystal and polycrystal growth is likely to occur, and industrial applications Not suitable for
そこで、本発明者は、種結晶を用いないでII−VI族化
合物のバルク単結晶を得、且つ得られる単結晶の着色を
減少させ、エッチピット密度を小さくすることによっ
て、良品質半導体基板として使用可能とするとともに赤
外線窓材としても使用可能な高品質なII−VI族化合物の
バルク単結晶を得るため鋭意検討した結果、本発明に到
達した。Therefore, the present inventor has obtained a bulk single crystal of a II-VI compound without using a seed crystal, and reduced the coloring of the obtained single crystal and reduced the etch pit density to obtain a good quality semiconductor substrate. As a result of intensive studies to obtain a high quality bulk single crystal of a II-VI compound which can be used and also used as an infrared window material, the present invention has been achieved.
即ち、本発明の要旨は、II−VI族化合物のバルク単結
晶を、一端が円錘状である封管内でヨウ素輸送法により
製造する方法において、封管の長手方向の中心軸を含む
断面内の円錘の頂角が5〜30である封管を用いて種結晶
を使用しないでバルク単結晶を成長させることを特徴す
るII−VI族化合物のバルク単結晶の製造法及び該製造法
において、原料のII−VI族化合物を700℃以上1000℃未
満の温度においてVI族水素化物で前処理することを特徴
とするII−VI族化合物のバルク単結晶の製造法に存す
る。That is, the gist of the present invention is to provide a method for producing a bulk single crystal of a II-VI compound by an iodine transport method in a sealed tube having one end in a conical shape, wherein a cross-section including a central axis in a longitudinal direction of the sealed tube is provided. A method for producing a bulk single crystal of a II-VI group compound, wherein a bulk single crystal is grown without using a seed crystal by using a sealed tube having an apex angle of a cone of 5 to 30 and a method for producing the same. A method for producing a bulk single crystal of a group II-VI compound, which comprises pretreating a raw material of a group II-VI compound with a group VI hydride at a temperature of 700 ° C or more and less than 1000 ° C.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明においては、II−VI族化合物のバルク単結晶を
得る方法として、ヨウ素(I2)を輸送剤として用い、封
管内の高温側でII−VI族化合物原料とヨウ素を反応させ
て揮発性の化合物とし、これを低温側単結晶成長領域ま
で輸送して単結晶を成長させる、いわゆるヨウ素輸送法
が用いられる。In the present invention, as a method for obtaining a bulk single crystal of a II-VI group compound, iodine (I 2 ) is used as a transporting agent, and the II-VI group raw material is reacted with iodine on the high temperature side in a sealed tube to obtain a volatile single crystal. A so-called iodine transport method is used in which the compound is transported to a low-temperature side single crystal growth region to grow a single crystal.
目的とするII−VI族化合物の単結晶としては、ZnS、Z
nSe、ZnTe、CaS、CdTe、CdHgTe等の単結晶が挙げられ
る。Single crystals of the desired II-VI group compound include ZnS, Z
Single crystals such as nSe, ZnTe, CaS, CdTe, CdHgTe and the like can be mentioned.
単結晶を得るための原料としては、それぞれの高純度
の化合物、即ちZnS、ZnSe、CaS、CdTe、CdHgTe等の高純
度粉末又はペレットが用いられる。これら原料化合物
は、2N、3N程度の純度のものでも使用できるが、好まし
くは5N、6Nの純度のものが用いられる。As a raw material for obtaining a single crystal, a high-purity compound or a high-purity powder or pellet of ZnS, ZnSe, CaS, CdTe, CdHgTe or the like is used. These starting compounds may have a purity of about 2N or 3N, but preferably have a purity of 5N or 6N.
ヨウ素はできるだけ試薬グレード以上の高純度のもの
が望ましく、ヨウ素の量は封管の容量、単結晶成長時の
封管の温度差、II−VI族化合物の量等により適宜定めら
れるが、通常、封管の内容積1cc当り0.1〜10mgであり、
単結晶の結晶性と単結晶中へのヨウ素のドーピング量と
の関係から、内容積1cc当り0.5〜2mgが好ましい。Iodine is preferably as high as possible in reagent grade or higher purity.The amount of iodine is appropriately determined by the volume of the sealed tube, the temperature difference of the sealed tube during single crystal growth, the amount of the II-VI group compound, etc. 0.1 to 10 mg per 1 cc of the inner volume of the sealed tube,
From the relationship between the crystallinity of the single crystal and the doping amount of iodine in the single crystal, the content is preferably 0.5 to 2 mg per 1 cc of the internal volume.
本発明においては、通常、脱水と不純物の除去のため
に、原料のII−VI族化合物を真空中、又は高純度水素気
流中、高純度アルゴン等の不活性ガス気流中、あるいは
高純度VI族水素化物ガス気流中で加熱処理する。VI族水
素化物としては、硫化水素、セレン化水素等が用いら
れ、またこれらの混合物を用いることもできる。但し、
水(H2O)は除かれる。これらの中で硫化水素が特に好
適に用いられる。In the present invention, usually, for the purpose of dehydration and removal of impurities, the raw material II-VI compound is placed in a vacuum, in a high-purity hydrogen stream, in a stream of an inert gas such as high-purity argon, or in a high-purity group VI. Heat treatment is performed in a hydride gas stream. As the Group VI hydride, hydrogen sulfide, hydrogen selenide, or the like is used, and a mixture thereof can also be used. However,
Water (H 2 O) is excluded. Of these, hydrogen sulfide is particularly preferably used.
加熱処理に用いるガスは、できるだけ高純度であるこ
とが好ましく、特にII−VI族化合物の加水分解や酸化を
防ぐためH2O及びO2の混入を防止する必要があり、それ
ぞれ1ppm以下、好ましくは0.1ppm以下の濃度にするのが
望ましい。必要に応じて、これら不純物を除去する工程
を設けるのが好ましい。The gas used for the heat treatment is preferably as pure as possible, and it is necessary to prevent the incorporation of H 2 O and O 2 in order to prevent hydrolysis and oxidation of the II-VI group compound. Is preferably set to a concentration of 0.1 ppm or less. It is preferable to provide a step for removing these impurities as necessary.
加熱処理は、II−VI族化合物の原料粉末又は小粒塊、
ペレット等を処理容器に入れ、容器内を10-3Torr以下に
一旦排気した後、前記ガスを導入し、このガスを流通し
ながら所定の温度まで昇温し、必要に応じてその状態を
保持することによりおこなわれる。Heat treatment is a raw material powder or small agglomerate of the II-VI group compound,
Pellets and the like are placed in a processing vessel, and the inside of the vessel is once evacuated to 10 -3 Torr or less, and then the gas is introduced. The temperature is raised to a predetermined temperature while flowing the gas, and the state is maintained as necessary. It is done by doing.
処理温度は、通常700℃以上1000℃未満、好ましくは8
50℃〜900℃の範囲から選ばれる。昇温は急激に昇温し
ても段階的に昇温してもよく、高温での保持時間は1時
間程度から24時間程度の範囲から適宜選ばれる。また、
冷却も前記ガス気流中でおこなわれ、急冷でも除冷でも
良い。The processing temperature is usually 700 ° C. or more and less than 1000 ° C., preferably 8 ° C.
It is selected from the range of 50 ° C to 900 ° C. The temperature may be raised rapidly or stepwise, and the holding time at a high temperature is appropriately selected from a range of about 1 hour to about 24 hours. Also,
Cooling is also performed in the gas stream, and rapid cooling or cooling may be performed.
室温まで冷却した後は、原料のII−VI族化合物は高純
度VI族水素化物(H2Oは除く)ガス又は不活性ガス中に
保管されるのが好ましいが、単結晶成長工程へ移すため
に短時間空気中で取扱っても差しつかえない。After cooling to room temperature, II-VI group compound in the raw material is high purity Group VI hydride (H 2 O is excluded) is preferably stored in gas or inert gas, to transfer to the single crystal growth process Can be handled in the air for a short time.
また、該加熱処理の後冷却せずにそのまま単結晶成長
工程に移してもよい。After the heat treatment, the process may be directly transferred to the single crystal growing step without cooling.
加熱処理をおこなう容器は、通常石英製のものが用い
られるが、II−VI族化合物と反応しないものであればよ
く、セラミックコーティングされた容器等も用いること
ができる。また、該処理容器をそのまま単結晶成長時の
封管として用いることもできるが、この場合原料粉末の
飛散等により容器内壁が汚れると単結晶成長時に多結晶
化しやすいので注意を要する。As the container for performing the heat treatment, a quartz container is usually used, but any container that does not react with the II-VI group compound may be used, and a ceramic-coated container or the like can also be used. In addition, the processing vessel can be used as it is as a sealed tube for growing a single crystal. However, in this case, care must be taken because if the inner wall of the vessel becomes dirty due to scattering of the raw material powder or the like, polycrystal is easily formed during the growth of the single crystal.
特に、該加熱処理をVI族水素化物を用いておこなう
と、着色がなくエッチピット密度の小さい高品質のバル
ク単結晶が得られるので好ましい。In particular, when the heat treatment is performed using a Group VI hydride, a high-quality bulk single crystal with no coloring and a small etch pit density can be obtained, which is preferable.
このように加熱処理されたII−VI族化合物をヨウ素
(I2)とともに石英製容器に真空封入し、単結晶成長用
封管とする。The heat-treated II-VI group compound is vacuum-sealed in a quartz container together with iodine (I 2 ) to form a sealed tube for growing a single crystal.
本発明においては、単結晶成長用封管として一端が円
錘状である封管を用いるが、該封管の長手方向の中心軸
を含む断面内の該円錘の頂角が5〜30度であることが必
要である。この角度が5度より小さいと小さな結晶しか
得られず、また30度より大きいと多核発生により多結晶
化してしまう。In the present invention, a sealed tube having a conical shape at one end is used as the sealed tube for growing a single crystal, and the apex angle of the cone in a cross section including the central axis in the longitudinal direction of the sealed tube is 5 to 30 degrees. It is necessary to be. If this angle is less than 5 degrees, only small crystals can be obtained, and if it is more than 30 degrees, polynuclei are generated and polycrystallized.
第1図に本発明で用いられる単結晶成長用封管の一例
を示した。先端の最も細い部分の角度(第1図中θ)が
5〜30度であれば、第1図(b)および(c)のように
段階的に先端が細くなっていてもよい。但し、この場
合、第1図中θ′は通常60度以下であることが好まし
い。また、第1図(d)のように、途中にくびれがある
場合は、縦型で単結晶を成長させた場合に結晶が落下し
にくいという利点がある。FIG. 1 shows an example of a sealed tube for growing a single crystal used in the present invention. If the angle (θ in FIG. 1) of the thinnest part of the tip is 5 to 30 degrees, the tip may be gradually narrowed as shown in FIGS. 1 (b) and (c). However, in this case, it is preferable that θ ′ in FIG. 1 is usually 60 degrees or less. Also, as shown in FIG. 1 (d), when there is a constriction on the way, there is an advantage that when a single crystal is grown in a vertical type, the crystal is less likely to fall.
封管の製造方法としては、一端がこのような円錘状を
した石英管にII−VI族化合物原料及びヨウ素を入れた
後、他端を通常の方法で真空下封じ切ってもよいし、II
−VI族化合物原料及びヨウ素を通常の石英管に入れた
後、他端をこのような形状に真空下封じ切ってもよい。As a method for producing a sealed tube, one end may be filled with a II-VI compound raw material and iodine in such a conical quartz tube, and then the other end may be cut off under vacuum in a usual manner, II
After placing the -VI compound raw material and iodine in a normal quartz tube, the other end may be sealed off in a vacuum in such a shape.
本発明においては、このような特定の形状をした単結
晶成長用封管を用いることにより、種結晶を用いなくて
も単結晶を成長させることができる。In the present invention, a single crystal can be grown without using a seed crystal by using the sealed single crystal growth tube having such a specific shape.
単結晶成長方法としては横型と縦型があるが、そのど
ちらの方法を用いてもよく、また温度制御方式としては
グラディエントフリーズ方式、炉内封管移動方式、固定
温度差方式等があるが、そのいずれの方式を用いてもよ
い。As a single crystal growth method, there are a horizontal type and a vertical type, but either of these methods may be used, and as a temperature control method, there are a gradient freeze method, a furnace inner tube moving method, a fixed temperature difference method, and the like. Any of these methods may be used.
封管の高温側(原料部)の温度は、通常、800〜900
℃、好ましくは840〜860℃の範囲から選ばれる。また、
低温側単結晶成長部の温度は、高温側の温度よりも1〜
120℃程度低い温度から適宜選ばれる。例えば、原料粉
末を真空中で加熱処理した場合は100℃程度低い温度、
原料粉末を硫化水素気流中で加熱処理した場合は1〜30
℃低い温度とするのが好ましい。The temperature on the high temperature side (raw material section) of the sealed tube is usually 800 to 900
° C, preferably in the range of 840-860 ° C. Also,
The temperature of the low-temperature side single crystal growth part is 1 to higher than the high-temperature side temperature.
It is appropriately selected from a temperature as low as about 120 ° C. For example, when the raw material powder is heat-treated in vacuum, the temperature is about 100 ° C lower,
1-30 when the raw material powder is heat-treated in a hydrogen sulfide stream
It is preferable that the temperature is lower by ° C.
また、ヨウ素による輸送を定常的におこない、均質な
結晶を得るために高温側と低温側の温度差は厳密に制御
されなくてはならない。In addition, in order to carry out iodine-based transport constantly and obtain a homogeneous crystal, the temperature difference between the high temperature side and the low temperature side must be strictly controlled.
単結晶成長には、通常、2〜3週間を要するが、場合
によっては4週間を越えることもある。Single crystal growth usually requires two to three weeks, but may exceed four weeks in some cases.
本発明によって得られるII−VI族のバルク単結晶は大
きさが約1cm3と大きく、透明な立方晶型単結晶である。The group II-VI bulk single crystal obtained by the present invention is a large cubic single crystal having a large size of about 1 cm 3 .
また、本発明で得られるバルク単結晶はヨウ素が自然
ドープされておりn型半導体となっている。The bulk single crystal obtained by the present invention is naturally doped with iodine and is an n-type semiconductor.
以下、実施例により本発明を詳細に説明するが、本発
明はその要旨を越えない限り実施例により限定されるも
のではない。Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist.
実施例1 高純度ZnS粉末(化成オプトニクス(株)製)を10-6T
orrの減圧下、24時間真空焼結した。内径20mmの石英ア
ンプルに8gのZnS原料粉末と30mgのヨウ素を入れ、10-6T
orrの減圧下、長さ7cmのところで封じ切り角度15度で熔
封した。内容積は22ccとなった。このアンプルを縦型電
気炉中に固定し、原料部(底部)を700℃、単結晶成長
部(上部)を850℃として12時間逆成長によるクリーニ
ングを行った後、原料部(底部)温度を850℃、単結晶
成長部(上部)温度を750℃として20日間保持して硫化
亜鉛のバルク単結晶を成長させた。第2図に単結晶の成
長プログラムを示した。冷却後アンプルを割って1.0cm3
大の透明な単結晶を得た。第3図は得られた単結晶の図
である。得られた単結晶は完全な立方晶系単結晶であっ
た。Example 1 10 -6 T of high purity ZnS powder (manufactured by Kasei Optonics Co., Ltd.)
Vacuum sintering was performed under reduced pressure of orr for 24 hours. Put 8g ZnS raw material powder and 30mg iodine in 20mm inner diameter quartz ampoule, 10 -6 T
It was sealed at a length of 7 cm at a sealing angle of 15 degrees under reduced pressure of orr. The internal volume was 22 cc. The ampoule was fixed in a vertical electric furnace, and the material (bottom) was cleaned by reverse growth for 12 hours at 700 ° C for the raw material part (bottom) and 850 ° C for the single crystal growth part (top). The bulk single crystal of zinc sulfide was grown by maintaining the temperature at 850 ° C. and the single crystal growth part (upper) temperature at 750 ° C. for 20 days. FIG. 2 shows a program for growing a single crystal. After cooling, split the ampoule to 1.0 cm 3
A large transparent single crystal was obtained. FIG. 3 is a diagram of the obtained single crystal. The obtained single crystal was a perfect cubic single crystal.
実施例2 高純度ZnS粉末(化成オプトニクス(株)製)20gを石
英製ボートに採り、横型電気炉中に設置した内径50mm、
長さ500mmの石英管中に入れた。石英管を10-4Torrまで
減圧した後、高純度硫化水素ガス(日本酸素(株)製)
を10cc/分で石英管の一端から流入し、他端より外部へ
放出しながら、石英管を1時間かけて850℃に昇温し、8
50℃に保持した状態で3時間放置した。硫化水素の流量
を10cc/分に保持した状態で約2時間放冷した。放冷
後、直ちに8g秤量して、14mgのヨウ素とともに内径16mm
の石英アンプルに移した。石英アンプルを約10-6Torrに
減圧しながら、アンプルの封じ切り角度が約20度になる
ように長さ7cmのところで熔封した。内容積は約14ccと
なった。このアンプルを縦型電気炉中に固定し、原料部
(底部)を700℃、単結晶成長部(上部)を850℃とし
て、12時間逆成長によるクリーニングを行った後、原料
部850℃、単結晶成長部を830℃として20日間保持して硫
化亜鉛のバルク単結晶を成長させた。冷却後アンプルを
割って1.5cm3大の着色のない透明な立方晶系単結晶を得
た。Example 2 20 g of high-purity ZnS powder (manufactured by Kasei Optonics Co., Ltd.) was placed in a quartz boat and placed in a horizontal electric furnace with an inner diameter of 50 mm.
It was placed in a 500 mm long quartz tube. After reducing the pressure of the quartz tube to 10 -4 Torr, high-purity hydrogen sulfide gas (manufactured by Nippon Sanso Corporation)
While flowing from one end of the quartz tube at 10 cc / min and discharging from the other end to the outside, the quartz tube was heated to 850 ° C. over 1 hour,
It was left for 3 hours while maintaining the temperature at 50 ° C. The mixture was allowed to cool for about 2 hours while maintaining the flow rate of hydrogen sulfide at 10 cc / min. Immediately after cooling, weigh 8 g immediately, and together with 14 mg of iodine, an inner diameter of 16 mm
Transferred to a quartz ampoule. While depressurizing the quartz ampule to about 10 -6 Torr, the ampule was sealed at a length of 7 cm so that the angle of the ampule was about 20 degrees. The internal volume became about 14cc. This ampoule was fixed in a vertical electric furnace, and the raw material part (bottom part) was cleaned by reverse growth at 700 ° C. and the single crystal growth part (top part) at 850 ° C. for 12 hours. The crystal growth part was kept at 830 ° C. for 20 days to grow a bulk single crystal of zinc sulfide. After cooling, the ampoule was cracked to obtain a transparent, cubic single crystal having a size of 1.5 cm 3 and without coloring.
得られた結晶の(111)面を沸騰水酸化ナトリウム25
%水溶液中で1分間エッチングした後、表面の状態を光
学顕微鏡で観察した。エッチピット密度は6.0×103cm-2
であった。The (111) plane of the obtained crystal was boiled with sodium hydroxide 25
After etching in a 1% aqueous solution for 1 minute, the state of the surface was observed with an optical microscope. The etch pit density is 6.0 × 10 3 cm -2
Met.
本発明によると、種結晶を用いなくてもヨウ素輸送法
により、容易に大型で高品質のII−VI族化合物のバルク
単結晶を得ることができる。ADVANTAGE OF THE INVENTION According to this invention, a bulk single crystal of a large and high quality II-VI compound can be easily obtained by an iodine transport method without using a seed crystal.
第1図は、本発明で用いる単結晶成長用封管の一例を示
した断面図(封管の長手方向の中心軸を含む断面図)で
ある。 第2図は、実施例1の単結晶の成長プログラムを示した
図である。Aは原料部、Bは単結晶成長部をそれぞれ示
す。 第3図は、実施例1で得られた単結晶を示した図であ
る。FIG. 1 is a cross-sectional view (a cross-sectional view including a central axis in a longitudinal direction of the sealed tube) showing an example of a sealed tube for growing a single crystal used in the present invention. FIG. 2 is a diagram showing a single crystal growth program according to the first embodiment. A indicates a raw material part, and B indicates a single crystal growth part. FIG. 3 is a diagram showing the single crystal obtained in Example 1.
Claims (2)
円錘状である封管内でヨウ素輸送法により製造する方法
において、封管の長手方向の中心軸を含む断面内の円錘
の頂角が5〜30度である封管を用いて種結晶を使用しな
いでバルク単結晶を成長させることを特徴するII−VI族
化合物のバルク単結晶の製造法。1. A method for producing a bulk single crystal of a II-VI group compound by an iodine transport method in a sealed tube having a conical shape at one end, the method comprising the steps of: A method for producing a bulk single crystal of a II-VI group compound, wherein a bulk single crystal is grown without using a seed crystal using a sealed tube having an apex angle of 5 to 30 degrees.
送法により製造する方法において、II−VI族化合物を70
0℃以上1000℃未満の温度においてVI族化合物で処理し
た後、一端が円錘状である封管であり、該封管の長定方
向の中心軸を含む断面内の該円錘の頂角が5〜30度であ
る封管を用いて、種結晶を使用しないでバルク単結晶を
成長させることを特徴とするII−VI族化合物のバルク単
結晶の製造法。2. A method for producing a bulk single crystal of a II-VI compound by an iodine transport method, comprising the steps of:
After being treated with a Group VI compound at a temperature of 0 ° C. or more and less than 1000 ° C., one end is a sealed tube having a cone shape, and the apex angle of the cone in a cross section including a central axis of the sealed tube in a fixed direction. A method for producing a bulk single crystal of a II-VI compound, wherein a bulk single crystal is grown using a sealed tube having a temperature of 5 to 30 degrees without using a seed crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6487888A JP2712247B2 (en) | 1988-03-18 | 1988-03-18 | (II)-Method for producing bulk single crystal of group VI compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6487888A JP2712247B2 (en) | 1988-03-18 | 1988-03-18 | (II)-Method for producing bulk single crystal of group VI compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01239099A JPH01239099A (en) | 1989-09-25 |
JP2712247B2 true JP2712247B2 (en) | 1998-02-10 |
Family
ID=13270819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6487888A Expired - Fee Related JP2712247B2 (en) | 1988-03-18 | 1988-03-18 | (II)-Method for producing bulk single crystal of group VI compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712247B2 (en) |
-
1988
- 1988-03-18 JP JP6487888A patent/JP2712247B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01239099A (en) | 1989-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7279040B1 (en) | Method and apparatus for zinc oxide single crystal boule growth | |
US20080056984A1 (en) | Hexagonal Wurtzite Type Single Crystal, Process For Producing The Same, And Hexagonal Wurtzite Type Single Crystal Substrate | |
CN102383181B (en) | Method for preparing n-type group III nitride single crystal, said single crystal, and crystal substrate | |
Woodall | Solution grown Ga1− xAlxAs superlattice structures | |
Parker | Single crystals and epitaxial films of ZnSe by chemical transport | |
JP2005187317A (en) | Method of manufacturing single crystal, single crystal, and its composite | |
JPS60251191A (en) | Process for growing single crystal of compound having high dissociation pressure | |
JP2004315361A (en) | Zinc oxide single crystal | |
JP2712247B2 (en) | (II)-Method for producing bulk single crystal of group VI compound | |
JPH0797299A (en) | Method for growing SiC single crystal | |
US4439266A (en) | Vapor transport process for growing selected compound semiconductors of high purity | |
CN116249801A (en) | Method for manufacturing GaAs wafer and GaAs ingot | |
JP3207983B2 (en) | Method for producing single crystal of group I-III-VI2 compound | |
Kuriyama | Bridgman growth of lithium indium alloy single crystals | |
US8071466B1 (en) | Zinc sulfide crystals for optical components | |
JP2585629B2 (en) | ZnSe single crystal preparation method | |
JP3412853B2 (en) | Semiconductor crystal manufacturing equipment | |
JPS589799B2 (en) | Zinc sulfide crystal growth method | |
JPS6385100A (en) | Production of gallium arsenide single crystal containing added silicon | |
JP4410734B2 (en) | Method for growing zinc oxide crystals | |
Isshiki et al. | 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials | |
Glass et al. | Control of defects and impurities in production of CdZnTe crystals by the Bridgman method | |
JP3193440B2 (en) | Method for producing I-III-VI group 2 semiconductor single crystal | |
JP2003146791A (en) | Method of manufacturing compound semiconductor single crystal | |
JPS60118700A (en) | Production of semiconductor crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |