JPS60118700A - Production of semiconductor crystal - Google Patents
Production of semiconductor crystalInfo
- Publication number
- JPS60118700A JPS60118700A JP58227460A JP22746083A JPS60118700A JP S60118700 A JPS60118700 A JP S60118700A JP 58227460 A JP58227460 A JP 58227460A JP 22746083 A JP22746083 A JP 22746083A JP S60118700 A JPS60118700 A JP S60118700A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- crystal ingot
- contained
- ingot
- cadmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
- C30B29/48—AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
(al 発明の技術分野
本発明は半導体結晶の製造方法にかかり、特に蒸気圧の
高い成分元素を含む半導体結晶を一層高品位化するだめ
の処理法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor crystal, and more particularly to a processing method for further improving the quality of a semiconductor crystal containing a component element having a high vapor pressure.
(bl 従来技術と問題点 半導体、結晶を作成するためには、引き−Lげ法。(bl Conventional technology and problems The pull-L pull method is used to create semiconductors and crystals.
ゾーンメルテング法、ブリッジマン法等と種々の成長方
法があるが、結晶成分に蒸気圧の高い元素を含む際には
、その作成方法はブリノンマン法、またはゾーンメルテ
ング法のような閉管内での成長が適している。There are various growth methods such as the zone melting method and the Bridgman method, but when the crystal component contains an element with a high vapor pressure, the growth method is the Brinnonman method or the zone melting method in a closed tube. suitable for growth.
n−viH化合物半導体は友気圧の高い成分元素が多く
、例えばカドミウムテルル(CdTe) 結晶を構成す
る力]・ミウム(Cd’)元素は極めて芸気圧の高い元
素である。ここに、CdTe結晶とは赤外線センサーと
して用いるl1gcdTe結晶の成長基板、あるいは紫
外線センサー、光変調器の素子基板として汎く利用され
、今後さらに需要の拡大か予想される著名な半導体結晶
である。The n-viH compound semiconductor has many component elements with high atomistic pressure, such as cadmium telluride (CdTe), which forms the crystal.Mium (Cd') is an element with an extremely high atomistic pressure. CdTe crystal is a well-known semiconductor crystal that is widely used as a growth substrate for l1gcdTe crystals used as infrared sensors, or as element substrates for ultraviolet sensors and optical modulators, and whose demand is expected to increase further in the future.
ごのようなCdTe結晶インゴソ1−を、ブリノンマン
法によって成長する場合の成長装置の概要図を第1図に
例示している。即ら、1:1に秤■したテルル(Te)
と力1−ミウム(Cd)とを石英アンプル1内に真空封
入した後、縦形の円筒加熱炉2に挿入し、石英アンプル
1全体を高温度(約1150℃)で溶融させる。次いで
、石英アンプル1を静かに下降させ、加熱炉2内の温度
勾配を設けた帯域Bを通過させると、アンプル1の先端
部TからCdTe結晶が凝固して結晶が成長し、立方晶
体の結晶インプラl−3が形成される。この場合、温度
勾配帯域BにはCdTeの溶融点(1092℃)を中心
とした温度の勾配が設けられており、また石英アンプ月
利は直径10〜50mmφ、長さ100mm前後の大き
さのものが使用される。A schematic diagram of a growth apparatus for growing a CdTe crystal ingot 1- as shown in FIG. 1 by the Brynonman method is shown in FIG. That is, tellurium (Te) weighed in a ratio of 1:1.
After vacuum-sealing and 1-mium (Cd) into a quartz ampule 1, the quartz ampule 1 is inserted into a vertical cylindrical heating furnace 2 and the entire quartz ampule 1 is melted at a high temperature (approximately 1150° C.). Next, when the quartz ampule 1 is gently lowered and passed through the temperature gradient zone B in the heating furnace 2, the CdTe crystal solidifies and grows from the tip T of the ampule 1, forming a cubic crystal. Implant l-3 is formed. In this case, the temperature gradient zone B has a temperature gradient centered around the melting point of CdTe (1092°C), and the quartz amplifier has a diameter of 10 to 50 mmφ and a length of about 100 mm. is used.
ところで、このようにして成長した結晶インゴットは必
ずしも高品位な結晶ではなくて、内部に結晶粒界を含有
していることが多く、一般的には多結晶状態と云っても
よい。特に、Te化造物結晶では1゛以下の傾きをもつ
結晶粒界が多く発生ずる。これらの原因は、温度のゆら
ぎ、過冷却、不純物含有、空格子などのためと名えられ
る。By the way, the crystal ingot grown in this way is not necessarily a high-quality crystal, but often contains crystal grain boundaries inside, and can generally be said to be in a polycrystalline state. In particular, many grain boundaries with an inclination of 1° or less occur in Te compound crystals. These causes are said to be due to temperature fluctuations, supercooling, inclusion of impurities, vacancies, etc.
(C) 発明の目的
本発明は、このような多くの結晶粒界を含んだ結晶イン
ゴットを高品質化する熱処理方法を提案するものである
。(C) Object of the Invention The present invention proposes a heat treatment method for improving the quality of a crystal ingot containing many grain boundaries.
(di 発明の構成
その目的は、結晶インプラ]・を作成した後、該結晶イ
ンゴットに含まれる成分元素の蒸気雰囲気中において、
該結晶インゴットの熱処理を行なう方法、例えば温度勾
配を設けた真空密閉容器内にカドミラJ、テルル(Cd
Te)結晶インゴットを収容し、同時に該密閉容器の高
温側にカドミウム(Cd )元素を収容して、該力トミ
ウJ、 (cd)の蒸気雰囲気中において前記力lベウ
J2テルル(CdTe)結晶インゴットの熱処理を行な
う方法によって達成される。(di Structure of the Invention The purpose is to create a crystal implant), in a vapor atmosphere of the component elements contained in the crystal ingot,
A method of heat-treating the crystal ingot, for example, placing Cadmira J, tellurium (Cd) in a vacuum sealed container with a temperature gradient.
Te) Accommodating the crystal ingot and at the same time accommodating the cadmium (Cd) element on the high-temperature side of the hermetically sealed container, and injecting the tellurium (CdTe) crystal in a vapor atmosphere of the (cd) This is achieved by a method of heat treating an ingot.
(e+ 発明の実施例 以下2図面を参照して実施例によって詳細に説明する。(e+ Example of invention Examples will be described in detail below with reference to two drawings.
第2図は本発明にかかる熱処理装置の概要断面図、第3
図はその温度分布図を示している。第2図において、1
1は石英アンプル(真空密閉容器)。Fig. 2 is a schematic sectional view of the heat treatment apparatus according to the present invention;
The figure shows the temperature distribution map. In Figure 2, 1
1 is a quartz ampoule (vacuum sealed container).
12は円筒加熱炉、13はCdTe結晶インゴ、1・で
、石英アンプル11内には小さな孔をもった小容器14
が付設され、その内部にCd元素15が収容されている
。12 is a cylindrical heating furnace, 13 is a CdTe crystal ingot, 1 is a small container 14 with a small hole inside the quartz ampoule 11
is attached, and Cd element 15 is accommodated therein.
この二重管構造の石英アンプル1】は支持棒16によっ
て保持されている。また、石英アンプ月利1内に収容さ
れるCdTe結晶インゴット13は直径5Qm++φ。This quartz ampoule 1 having a double tube structure is held by a support rod 16. Further, the CdTe crystal ingot 13 accommodated in the quartz amplifier monthly charge 1 has a diameter of 5Qm++φ.
長さ数10mmの大きさのもの、加熱炉の円筒管は直径
60〜70關φ位である。そして、例えば加熱炉12を
第3図に示すような温度分布に形成し、温度600°C
の位置にCc1元素15を置き、CdTe結晶インゴッ
ト13はCd元素]5に近い方を600°c1遠い方を
300’Cの温度勾配をもった位Fに置き、石英アンプ
ルを静1にして、約100時間の熱処理を行なう。The cylindrical tube of the heating furnace is several tens of millimeters long and has a diameter of about 60 to 70 mm. For example, the heating furnace 12 is formed to have a temperature distribution as shown in FIG.
Place the Cc1 element 15 at the position, and place the CdTe crystal ingot 13 at a temperature of 600°C with the one closest to 5 having a temperature gradient of 300°C. Heat treatment is performed for about 100 hours.
そうすると、結晶粒界が著しく減少して、少なくとも5
°以下の傾斜角度をもった結晶粒界は極端にσ成牛し、
且つ1°以下の傾斜角度をもった結晶粒界は全部消滅す
る。Then, the grain boundaries are significantly reduced and at least 5
Grain boundaries with an inclination angle of less than ° are extremely sigma,
In addition, all grain boundaries having an inclination angle of 1° or less disappear.
従って、CdTe結晶インゴット13は微細な結晶粒界
が消えて高品位となり、このような結晶基板を用いたデ
バイスは検知感度が良くなる等、その性能が向上する。Therefore, the CdTe crystal ingot 13 has a high quality as fine grain boundaries disappear, and a device using such a crystal substrate has improved performance such as improved detection sensitivity.
(f) 発明のAノ果
以上の実施例の説明から判るように、本発明によれば高
品位な結晶基板が得られ、半導体装置の高性能化に極め
て大きな効果を5.えるものである。(f) Effects of the Invention As can be seen from the description of the above embodiments, according to the present invention, a high-quality crystal substrate can be obtained, which has an extremely large effect on improving the performance of semiconductor devices. It is something that can be achieved.
尚、本発明は上記CdTe結晶以外の半導体結晶にも同
様のすJ果を与えることは云うまでもない。It goes without saying that the present invention provides similar effects to semiconductor crystals other than the above-mentioned CdTe crystal.
第1図はブリッジマン法による成長装置の概要図、第2
図は本発明にかかる熱処理装置の概要断面図、第3図は
その温度分布図である。
図中、■は石英アンプル、2.12は加熱炉、3゜13
はCdTe結晶インゴノl、月は本発明に用いる石英7
ンブル(真空密閉容器)1】4はアンプル15内つ小容
器、15はCd元素、16は支持棒を示している。
第1図
第 2 rシフ
第3図
−ウ51Figure 1 is a schematic diagram of a growth apparatus using the Bridgman method, Figure 2
The figure is a schematic sectional view of a heat treatment apparatus according to the present invention, and FIG. 3 is a temperature distribution diagram thereof. In the figure, ■ is a quartz ampoule, 2.12 is a heating furnace, and 3°13
is CdTe crystal ingonol, and moon is quartz 7 used in the present invention.
Ampoule (vacuum sealed container) 1] 4 is a small container inside an ampoule 15, 15 is a Cd element, and 16 is a support rod. Figure 1, Figure 2, Schiff, Figure 3 - U51
Claims (2)
トに含まれる成分元素の蒸気雰囲気中において、該結晶
インゴットの熱処理を行なうことを特徴とする半導体結
晶の製造方法。(1) A method for producing a semiconductor crystal, which comprises producing a crystal ingot and then subjecting the crystal ingot to heat treatment in a vapor atmosphere of component elements contained in the crystal ingot.
テルル結晶インゴットを収容し、同時に該密閉容器の高
温側に力1”ミウム元素を収容して、該カドミウムの蒸
気雰囲気中において前記カドミウムテルル結晶インゴッ
トの熱処理を行なうことを特徴とする特許請求の範囲第
1項記載の半導体結晶の製造方法。(2) A cadmium telluride crystal ingot is housed in a vacuum sealed container with a temperature gradient, and at the same time, 1 inch of mium element is housed on the high temperature side of the sealed container, and the cadmium tellurium crystal ingot is placed in the cadmium vapor atmosphere. A method for manufacturing a semiconductor crystal according to claim 1, characterized in that a crystal ingot is subjected to heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58227460A JPS60118700A (en) | 1983-11-30 | 1983-11-30 | Production of semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58227460A JPS60118700A (en) | 1983-11-30 | 1983-11-30 | Production of semiconductor crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60118700A true JPS60118700A (en) | 1985-06-26 |
Family
ID=16861217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58227460A Pending JPS60118700A (en) | 1983-11-30 | 1983-11-30 | Production of semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60118700A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61222999A (en) * | 1985-03-27 | 1986-10-03 | Dowa Mining Co Ltd | Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v |
-
1983
- 1983-11-30 JP JP58227460A patent/JPS60118700A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61222999A (en) * | 1985-03-27 | 1986-10-03 | Dowa Mining Co Ltd | Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003277197A (en) | CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL | |
JPS60251191A (en) | Process for growing single crystal of compound having high dissociation pressure | |
JPH03295898A (en) | Silicon carbide single crystal growth method and apparatus | |
GB803830A (en) | Semiconductor comprising silicon and method of making it | |
Fullmer et al. | Crystal growth of the solid electrolyte RbAg4I5 | |
JPS61178495A (en) | How to grow single crystals | |
JPS60118700A (en) | Production of semiconductor crystal | |
Pandey | A new method for the growth of Pb1− xSnxTe single crystals | |
CN116334759A (en) | Seed crystal dissolving method and device for growing tellurium-zinc-cadmium crystals based on THM | |
JP2832241B2 (en) | Method for producing group II-VI compound semiconductor crystal | |
US4708763A (en) | Method of manufacturing bismuth germanate crystals | |
JP3231050B2 (en) | Compound semiconductor crystal growth method | |
JPH06125148A (en) | Low-resistance semiconductor crystal substrate and manufacture thereof | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
JPS63185898A (en) | Highly resistant cdte crystal and preparation thereof | |
JPS59131597A (en) | Production of high-quality gallium arsenide single crystal | |
US3527623A (en) | Quantitative method for the production of single three-dimensional crystals from the vapor | |
JPH0515677B2 (en) | ||
JPH08119792A (en) | Method for measuring crystallization rate in sublimation method, method for purifying crystal, and method for growing single crystal | |
JPS5938199B2 (en) | Compound semiconductor crystal growth equipment | |
JP2828868B2 (en) | Liquid phase crystal growth method for II-VI compound semiconductor | |
JPH0371399B2 (en) | ||
JP2582318B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPH05262596A (en) | Production of single crystal of lithium tetraborate | |
Ishikawa et al. | Low Temperature Growth of SbSI Single Crystals |