[go: up one dir, main page]

JP2709387B2 - Method for manufacturing thin-film magnetic head - Google Patents

Method for manufacturing thin-film magnetic head

Info

Publication number
JP2709387B2
JP2709387B2 JP62220507A JP22050787A JP2709387B2 JP 2709387 B2 JP2709387 B2 JP 2709387B2 JP 62220507 A JP62220507 A JP 62220507A JP 22050787 A JP22050787 A JP 22050787A JP 2709387 B2 JP2709387 B2 JP 2709387B2
Authority
JP
Japan
Prior art keywords
layer
coil conductor
magnetic head
film magnetic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62220507A
Other languages
Japanese (ja)
Other versions
JPS6464107A (en
Inventor
治 清水
寛次 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62220507A priority Critical patent/JP2709387B2/en
Publication of JPS6464107A publication Critical patent/JPS6464107A/en
Application granted granted Critical
Publication of JP2709387B2 publication Critical patent/JP2709387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板上に少なくとも磁性層、コイル導体
層、絶縁層及び保護層を成膜およびエッチングにより所
定形状に形成してなる薄膜磁気ヘッドの製造方法に関す
る。 (従来技術) 薄膜磁気ヘッドは、例えば第1図に示されるように、
基板1上に下部磁性層2、絶縁層3及びパターニングさ
れたコイル導体層5を順次積層して構成される。また、
下部磁性層2はその一部が露出され、磁気ギャップ面が
形成され、通常、前記ギャップ面上には磁気ギャップ層
が設けられる。また、多層薄膜磁気ヘッドにおいては、
コイル導体層5上に、更に中間絶縁層を介して上部コイ
ル導体層、上部絶縁層及び上部磁性層(何れも図示略)
を順次積層してなる多層構造を有する。 また、薄膜磁気ヘッドには、上記した各層の密着力を
強めて剥離を防止するために各層間に密着層が設けられ
ている。第1図において、前記密着層は下部絶縁層3と
下部コイル導体層5との間(符号4)に形成される。ま
た、多層薄膜磁気ヘッドにおいては、この密着層はコイ
ル導体層5と前記中間絶縁層との間、前記中間絶縁層と
前記上部コイル導体層との間、前記上部コイル導体層と
前記上部絶縁層との間にも同様に設けられる。これらの
密着層はTiにより形成されるのが一般的であり、以下本
明細書中において、前記密着層をTi層と呼ぶ。 (発明が解決しようとする問題点) しかしながら、前記Ti層は、ヘッド作製過程において
後述する欠点を誘引した。 即ち、薄膜ヘッドの作製は、第1図において、先ず基
板1上に下部磁性層2、絶縁層3、Ti層4、コイル導体
層5及びTi層6を順次積層し、その上に図示は省略され
るフォトレジストを塗布し、マスク(図示せず)を介し
て露光し、未露光部をイオンミリングして、コイル導体
層5の1部(図中ハッチング部分)を除去する。次い
で、残存するフォトレジストを除去してコイル導体層5
のパターニングが完了する。 ここで、Ti層はその表面の平坦性を良好にするため
に、基板の温度を常温にして成膜される。これは、ター
ゲットから飛び出したTi原子が高温の気相状態から常温
の基板上に急冷固着され、基板上に移動度が低いまま形
成される結果、Ti層が非常に微細な結晶粒子から構成さ
れることによる。しかし、このTi層の微結晶状態のTiは
非平衡状態にあり、高温に曝されると粗大な結晶粒へと
成長したり、あるいはコイル導体層を形成する金属(例
えば銅)との間で金属間化合物を形成して粗大結晶とな
り易く、不安定な状態にある。 このような状況においてコイル導体層5のパターニン
グのためにイオンミリングを行うと、先ずイオンが最上
層であるTi層6に衝突して該Ti層6の表面温度が上昇
し、それによりTi粒子の粗大化が起こり、その表層部に
凹凸が形成される。イオンミリングによるエッチングレ
ートは一定と見做せるから、Ti層6はイオンミリングの
進行に伴って凹凸の形状をほぼ維持しながら、場合によ
っては凹凸量を増しながら、その膜厚を減じられてい
く。そしてイオンミリングがTi層6とコイル導体層5と
の境界面まで進行すると、Ti層6の凹凸がコイル導体層
5の表面にそのまま転写され、その結果コイル導体層5
も凹凸に沿ってイオンミリングされていく、次いで、こ
のコイル層5の凹凸は、同様に、その下層のTi層4に転
写され、最終的に下部絶縁層3へと転写される。 多層薄膜磁気ヘッドの場合、上記コイル導体層5のパ
ターニング後、上部コイル導体層のパターングも同様の
ホトリソ工程により行われるため、この上部コイル導体
層のパターニングに際してもTi層中のTi粒子の粗大化が
起こり、順次その凹凸が下層に転写されていく。 上記の下部コイル導体層5(及び上部コイル導体層)
のパターニングが完了した後、最終的にテーパエッチン
グにより各層を除去して、下部磁性層2を露出して磁気
ギャップ面を形成することが行われるが、この時、その
上層である絶縁層3には上記した凹凸が形成されている
ため、このテーパエッチングにより磁気ギャップ面にも
凹凸が転写される。この磁気ギャップ面の凹凸は、薄膜
磁気ヘッドの磁気変換特性を劣化させる要因である。 本発明は上記事情に鑑みてなされたもので、コイル導
体層のパターニングの際にTi層に生成した凹凸が磁気ギ
ャップ面に転写されるのを防止して、良好な電磁変換特
性が得られる薄膜磁気ヘッドの製造方法を提供すること
を目的とする。 (問題点を解決するための手段及び作用) 本発明者は、Ti層の成膜条件を種々代えて実験を行っ
たところ、成膜時の基板温度に依存して前記凹凸量が変
わることを見出した。 すなわち、本発明の上記目的は、基板上に少なくとも
磁性層、コイル導体層、絶縁層および保護層を成膜およ
びエッチングにより所定形状に形成してなる薄膜磁気ヘ
ッドの製造方法において、絶縁層とコイル導体層との間
に配置して前記両層を密着させるTi層が基板温度100℃
〜200℃の温度範囲でスパッタリング法により成膜され
ることを特徴とする薄膜磁気ヘッドの製造方法により達
成される。 上記したように、イオンミリングによりコイル導体層
の1部が除去される際にその下層の絶縁層の表面に凹凸
が転写されるが、本発明によればTi層を基板温度を100
〜200℃に設定して成膜することにより、この凹凸の形
成を小さくすることができる。これは、Ti層形成時の基
板温度を高くしたことにより、基板上に付着した後でも
Ti原子の移動度が高く、平衡状態の安定な結晶粒が形成
されることによるものと考えられる。従って、Ti層の成
膜直後の表面性は、基板温度を常温に設定して成膜した
場合に比べて若干劣る、即ち凹凸量が大きくなるが、均
質でかつ熱的に安定な結晶状態であるために、その後の
コイル導体層の成膜時やイオンミリング時に高温に曝さ
れても結晶粒の粗大化が抑えられ、結果として磁気ギャ
ップ面への凹凸の転写が抑えられる。 本発明により製作される薄膜磁気ヘッドの基板材料と
しては、磁気フェライト、非磁性フェライト、サファイ
ア、セラミック等がある。 (実施例) ファライト基板上にRFスパッタンリング法によりCoNb
Zr合金の強磁性体を15μm付着して下部磁性層を形成し
た。次に下部磁性層上にSiO2をスパッタ法により2μm
付着して非磁性絶縁層を形成した。その上に密着層とな
るTi層を厚さ0.05μmとなるようにスパッタした。スパ
ッタ時のアルゴン圧力は0.2Pa、投入電力は1kwとし、基
板温度を種々変えた。尚、基板温度は正確な測定並びに
制御が困難であるため、基板ホルダーの温度としてあ
る。こうして得られたTi層に巻線となるCuの導電体をス
パッタ法で付着しその上にTi層を再度形成した後、フォ
トレジストを塗布して前記導電体をイオンミリングして
パターニングされたコイル導体層を形成した。 前記工程中、種々の基板温度のもとでTi層を形成後、
このTi層上に成膜された導電体表面の凹凸量およびこの
導電体をイオンミリングした後の絶縁層に転写された凹
凸量を測定した結果を下表に示す。 上記表から明らかなように、基板温度を100℃以上に
設けてTi層を形成すると、Cuの導電体が堆積した成膜後
の凹凸量は0.03μm〜0.05μmと比較的大きい値が観察
されたが、イオンミリング後に絶縁層に転写される凹凸
量は0.01μm以下と少なかった。 これに対して、基板温度を常温にしてTi層を形成する
と、導電体の成膜後の凹凸量は0.01μm以下と非常に小
さいものの、その後の絶縁層に転写される凹凸量は逆に
0.2μm以上と大きな値が観察された。 なお、コイル導体層を形成後、本発明による薄膜磁気
ヘッドは、従来と同じく非磁性絶縁層を再び形成し、さ
らに前記非磁性絶縁層上に前記下部磁性層とギャップ部
で磁気的に接合するようにCoNbZr合金の上部磁性層をス
パッタ法で15μm形成後、保護層を設けて作製された。 (発明の効果) 以上記載したとおり、本発明の薄膜磁気ヘッドの製造
方法によれば、基板温度100℃〜200℃の温度範囲で密着
層となるTiを成膜することにより、コイル導体層をパタ
ーニングする際の磁気ギャップ面への凹凸の転写を無く
して良好な電磁変換特性を有する薄膜磁気ヘッドを製造
できる。
The present invention relates to a thin-film magnetic head in which at least a magnetic layer, a coil conductor layer, an insulating layer, and a protective layer are formed in a predetermined shape on a substrate by film formation and etching. And a method for producing the same. (Prior Art) A thin film magnetic head is, for example, as shown in FIG.
A lower magnetic layer 2, an insulating layer 3, and a patterned coil conductor layer 5 are sequentially laminated on a substrate 1. Also,
The lower magnetic layer 2 is partially exposed to form a magnetic gap surface, and a magnetic gap layer is usually provided on the gap surface. In a multilayer thin film magnetic head,
An upper coil conductor layer, an upper insulating layer, and an upper magnetic layer (all not shown) on the coil conductor layer 5 via an intermediate insulating layer.
Are sequentially laminated. Further, the thin-film magnetic head is provided with an adhesion layer between the respective layers in order to increase the adhesion between the above-described layers and prevent peeling. In FIG. 1, the adhesion layer is formed between the lower insulating layer 3 and the lower coil conductor layer 5 (reference numeral 4). In the multilayer thin-film magnetic head, the adhesion layer is provided between the coil conductor layer 5 and the intermediate insulating layer, between the intermediate insulating layer and the upper coil conductor layer, and between the upper coil conductor layer and the upper insulating layer. Are provided in the same manner. These adhesion layers are generally formed of Ti, and the adhesion layers are hereinafter referred to as Ti layers in this specification. (Problems to be Solved by the Invention) However, the above-mentioned Ti layer induced the following drawbacks in the head manufacturing process. That is, in the production of the thin film head, in FIG. 1, first, a lower magnetic layer 2, an insulating layer 3, a Ti layer 4, a coil conductor layer 5 and a Ti layer 6 are sequentially laminated on a substrate 1, and illustration thereof is omitted. The exposed photoresist is applied through a mask (not shown), and the unexposed portion is subjected to ion milling to remove a portion (hatched portion in the drawing) of the coil conductor layer 5. Next, the remaining photoresist is removed to remove the coil conductor layer 5.
Is completed. Here, the Ti layer is formed at a normal temperature of the substrate in order to improve the flatness of the surface. This is because the Ti atoms jumping out of the target are fixed rapidly on the substrate at room temperature from the high-temperature gas-phase state and are formed with low mobility on the substrate.As a result, the Ti layer is composed of very fine crystal grains. It depends. However, the microcrystalline Ti in the Ti layer is in a non-equilibrium state, and when exposed to a high temperature, it grows into coarse crystal grains, or the Ti forms a metal (eg, copper) that forms the coil conductor layer. It is easy to form an intermetallic compound to form a coarse crystal and is in an unstable state. When ion milling is performed for patterning the coil conductor layer 5 in such a situation, first, ions collide with the uppermost Ti layer 6 and the surface temperature of the Ti layer 6 rises, whereby the Ti particles 6 Coarsening occurs, and irregularities are formed on the surface layer. Since the etching rate by ion milling can be considered to be constant, the thickness of the Ti layer 6 is reduced while maintaining the shape of the irregularities substantially as the ion milling proceeds, and in some cases increasing the amount of irregularities. . When the ion milling proceeds to the boundary surface between the Ti layer 6 and the coil conductor layer 5, the irregularities of the Ti layer 6 are transferred to the surface of the coil conductor layer 5 as it is.
Are also milled along the irregularities. Then, the irregularities of the coil layer 5 are similarly transferred to the lower Ti layer 4 and finally to the lower insulating layer 3. In the case of a multilayer thin-film magnetic head, after patterning of the coil conductor layer 5, patterning of the upper coil conductor layer is also performed by a similar photolithography process. Therefore, when patterning the upper coil conductor layer, the Ti particles in the Ti layer are coarsened. Occurs, and the irregularities are sequentially transferred to the lower layer. The lower coil conductor layer 5 (and upper coil conductor layer)
After the completion of the patterning, each layer is finally removed by taper etching to expose the lower magnetic layer 2 and form a magnetic gap surface. At this time, the upper insulating layer 3 is formed. Since the irregularities described above are formed, the irregularities are transferred to the magnetic gap surface by this taper etching. The unevenness of the magnetic gap surface is a factor that deteriorates the magnetic conversion characteristics of the thin-film magnetic head. The present invention has been made in view of the above circumstances, and it is possible to prevent irregularities generated in a Ti layer from being transferred to a magnetic gap surface during patterning of a coil conductor layer, thereby obtaining a thin film capable of obtaining good electromagnetic conversion characteristics. An object of the present invention is to provide a method for manufacturing a magnetic head. (Means and Actions for Solving the Problems) The present inventor conducted experiments by changing the film forming conditions of the Ti layer in various ways, and found that the irregularities change depending on the substrate temperature during film formation. I found it. That is, the object of the present invention is to provide a method of manufacturing a thin-film magnetic head in which at least a magnetic layer, a coil conductor layer, an insulating layer, and a protective layer are formed on a substrate and formed into a predetermined shape by etching. A Ti layer disposed between the conductive layer and the two layers in close contact with each other has a substrate temperature of 100 ° C.
This is achieved by a method for manufacturing a thin-film magnetic head, wherein a film is formed by a sputtering method in a temperature range of up to 200 ° C. As described above, when a part of the coil conductor layer is removed by ion milling, irregularities are transferred to the surface of the insulating layer thereunder.
By forming the film at a temperature of about 200 ° C., the formation of the unevenness can be reduced. This is because the substrate temperature during the formation of the Ti layer was increased, so that even after the
It is considered that the mobility of Ti atoms is high and stable equilibrium crystal grains are formed. Therefore, the surface properties immediately after the formation of the Ti layer are slightly inferior to those when the film is formed by setting the substrate temperature to normal temperature, that is, the amount of unevenness is large, but in a homogeneous and thermally stable crystalline state. For this reason, even when the coil conductor layer is exposed to a high temperature during film formation or ion milling, the coarsening of crystal grains is suppressed, and as a result, the transfer of irregularities to the magnetic gap surface is suppressed. Examples of the substrate material of the thin-film magnetic head manufactured according to the present invention include magnetic ferrite, non-magnetic ferrite, sapphire, and ceramic. (Example) CoNb on a fallite substrate by RF sputtering method
A lower magnetic layer was formed by depositing a 15 μm Zr alloy ferromagnetic material. Next, 2 μm of SiO 2 was formed on the lower magnetic layer by sputtering.
The nonmagnetic insulating layer was formed by adhesion. A Ti layer serving as an adhesion layer was sputtered thereon so as to have a thickness of 0.05 μm. The argon pressure during sputtering was 0.2 Pa, the input power was 1 kW, and the substrate temperature was varied. The substrate temperature is the temperature of the substrate holder because accurate measurement and control are difficult. A copper conductor serving as a winding is deposited on the Ti layer thus obtained by sputtering, and a Ti layer is formed thereon again, and then a photoresist is applied, and the conductor is ion-milled to form a patterned coil. A conductor layer was formed. During the process, after forming a Ti layer under various substrate temperatures,
The results of measurement of the amount of irregularities on the surface of the conductor formed on the Ti layer and the amount of irregularities transferred to the insulating layer after ion-milling the conductor are shown in the table below. As is clear from the above table, when the substrate temperature is set to 100 ° C. or higher and the Ti layer is formed, a relatively large value of 0.03 μm to 0.05 μm is observed as the unevenness after the deposition of the Cu conductor. However, the amount of unevenness transferred to the insulating layer after ion milling was as small as 0.01 μm or less. On the other hand, when the Ti layer is formed at a substrate temperature of room temperature, the amount of unevenness after the formation of the conductor is as small as 0.01 μm or less, but the amount of unevenness transferred to the insulating layer thereafter is opposite.
A large value of 0.2 μm or more was observed. After the coil conductor layer is formed, the thin-film magnetic head according to the present invention forms the non-magnetic insulating layer again as before, and further magnetically joins the lower magnetic layer on the non-magnetic insulating layer at the gap. As described above, the upper magnetic layer of the CoNbZr alloy was formed to a thickness of 15 μm by a sputtering method, and then a protective layer was provided. (Effects of the Invention) As described above, according to the method for manufacturing a thin film magnetic head of the present invention, the coil conductor layer is formed by forming Ti as an adhesion layer at a substrate temperature of 100 ° C to 200 ° C. It is possible to manufacture a thin-film magnetic head having good electromagnetic conversion characteristics by eliminating the transfer of irregularities to the magnetic gap surface during patterning.

【図面の簡単な説明】 第1図は薄膜磁気ヘッドの1部分の断面を示し、コイル
導体層がパターニングせれる際の様子を説明する図であ
る。 1:基板、2:下部磁性層、3:非磁性絶縁層、4,6:Ti層、5:
コイル導体層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a part of a thin-film magnetic head and is a view for explaining a state when a coil conductor layer is patterned. 1: substrate, 2: lower magnetic layer, 3: non-magnetic insulating layer, 4, 6: Ti layer, 5:
Coil conductor layer

Claims (1)

(57)【特許請求の範囲】 1.基板上に少なくとも磁性層、コイル導体層、絶縁層
および保護層を成膜およびエッチングにより所定形状に
形成してなる薄膜磁気ヘッドの製造方法において、絶縁
層とコイル導体層との間に配置して前記両層を密着させ
るTi層が基板温度100℃〜200℃の温度範囲でスパッタリ
ング法により成膜されることを特徴とする薄膜磁気ヘッ
ドの製造方法。
(57) [Claims] In a method for manufacturing a thin-film magnetic head in which at least a magnetic layer, a coil conductor layer, an insulating layer, and a protective layer are formed and formed into a predetermined shape on a substrate by disposing the film between the insulating layer and the coil conductor layer, A method for manufacturing a thin-film magnetic head, wherein the Ti layer for adhering the two layers is formed by a sputtering method at a substrate temperature of 100 ° C to 200 ° C.
JP62220507A 1987-09-04 1987-09-04 Method for manufacturing thin-film magnetic head Expired - Lifetime JP2709387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62220507A JP2709387B2 (en) 1987-09-04 1987-09-04 Method for manufacturing thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62220507A JP2709387B2 (en) 1987-09-04 1987-09-04 Method for manufacturing thin-film magnetic head

Publications (2)

Publication Number Publication Date
JPS6464107A JPS6464107A (en) 1989-03-10
JP2709387B2 true JP2709387B2 (en) 1998-02-04

Family

ID=16752111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62220507A Expired - Lifetime JP2709387B2 (en) 1987-09-04 1987-09-04 Method for manufacturing thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP2709387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611867B2 (en) * 1990-10-25 1997-05-21 富士写真フイルム株式会社 Thin-film magnetic head with improved coil conductor layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567928A (en) * 1978-11-13 1980-05-22 Fujitsu Ltd Forming method for closely contacted layer of thin-film magnetic head
JPS6028014A (en) * 1983-07-25 1985-02-13 Canon Inc Thin film magnetic head

Also Published As

Publication number Publication date
JPS6464107A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
JPS638527B2 (en)
GB2083230A (en) Method of manufacturing a thin film magnetic field sensor
JPH025213A (en) Manufacture of thin film magnetic head
JP2709387B2 (en) Method for manufacturing thin-film magnetic head
JPH03105712A (en) Method of forming pull piece and gap of magnetic head for audio ,video, and computer in film layer
JP2702215B2 (en) Method for manufacturing thin-film magnetic head
JPS61178710A (en) Thin film magnetic head and manufacture thereof
JP2535819B2 (en) Method of manufacturing thin film magnetic head
JPH0380410A (en) Thin-film magnetic head and production thereof
JPH0227508A (en) Production of thin film magnetic head
JPH05197920A (en) Thin film magnetic head and its production
JPH06203326A (en) Thin-film magnetic head and its produciton
JPH0736208B2 (en) Method of manufacturing magnetic head
JPH0371411A (en) Manufacturing method of thin film magnetic head
JP2513124B2 (en) Thin film magnetic head
JPS62140216A (en) Thin film magnetic head
JPS63106909A (en) Production of thin film magnetic head
JPH0320809B2 (en)
JPH01128215A (en) Thin film magnetic head and its manufacture
JPS58153218A (en) Manufacturing method of thin film magnetic head
JPH04143912A (en) Production of thin-film magnetic head
JPS60246013A (en) Manufacturing method of thin film magnetic head
JPS60151814A (en) thin film magnetic head
JPH0721524A (en) Production of thin-film magnetic head
JPH06195634A (en) Production of thin film magnetic head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term