JP2706986B2 - Focus adjustment method - Google Patents
Focus adjustment methodInfo
- Publication number
- JP2706986B2 JP2706986B2 JP1160889A JP16088989A JP2706986B2 JP 2706986 B2 JP2706986 B2 JP 2706986B2 JP 1160889 A JP1160889 A JP 1160889A JP 16088989 A JP16088989 A JP 16088989A JP 2706986 B2 JP2706986 B2 JP 2706986B2
- Authority
- JP
- Japan
- Prior art keywords
- ion beam
- sample
- focus
- focused ion
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000010884 ion-beam technique Methods 0.000 claims description 31
- 230000008859 change Effects 0.000 claims description 13
- 230000002123 temporal effect Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 18
- 238000002513 implantation Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/21—Means for adjusting the focus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/21—Focus adjustment
- H01J2237/216—Automatic focusing methods
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集束イオンビーム注入装置において試料表
面にイオンビームの焦点を合わせるための調整方法に関
するものである。Description: TECHNICAL FIELD The present invention relates to an adjustment method for focusing an ion beam on a sample surface in a focused ion beam implantation apparatus.
従来、集束イオンビーム注入装置においてそのイオン
ビームの焦点を調整する方法として用いられてきたの
は、例えば第5図のようにGaAs基板11に反応性イオンエ
ツチング等で幅10μm、深さ2μm程度のパターン溝12
を形成しておき、集束イオンビームでこの溝12をスキヤ
ンした時のイメージ(像)をもとにそのビームの比点な
らびに焦点を基板表面に調整する方法が取られてきた。
第5図中13は集中イオンビームのスキヤン方向を示し、
同図(a)は基板上の平面図、同図(b)はその断面
図、同図(c)はスキヤン距離に対する溝部分の二次電
子強度を示す図である。なお、集束イオンビーム注入装
置は一般に周知であり、例えば次の文献(J.MELNGAILLI
S.,ジヤーナル オブ バキユーム サイエンス アン
ド テクノロジー,Vol.B5,P.469,(1987年))に開示さ
れている。Conventionally, as a method of adjusting the focus of the ion beam in a focused ion beam implanter, for example, as shown in FIG. 5, reactive ion etching or the like is applied to a GaAs substrate 11 to a width of about 10 μm and a depth of about 2 μm. Pattern groove 12
A method has been adopted in which the relative point and the focal point of the beam are adjusted to the substrate surface based on an image (image) obtained by scanning the groove 12 with a focused ion beam.
In FIG. 5, 13 indicates the scan direction of the concentrated ion beam,
2A is a plan view on the substrate, FIG. 2B is a cross-sectional view thereof, and FIG. 1C is a view showing the secondary electron intensity of the groove portion with respect to the scan distance. In addition, a focused ion beam implantation apparatus is generally well known, and for example, the following literature (J. MELNGAILLI
S., Journal of Bakiyum Science and Technology, Vol. B5, p. 469, (1987)).
かかる従来の方法は、ビームの形状まで調整できる利
点があるものの、 1)前もつて試料表面にパターンを作る必要があり、し
かも、このエツチングパターンの断面形状を正確に垂直
に(θ〜90゜)に近くしなければ、きちんと焦点が調整
できない。Although such a conventional method has an advantage that the shape of the beam can be adjusted, 1) it is necessary to form a pattern on the surface of the sample beforehand, and the cross-sectional shape of the etching pattern can be adjusted vertically (θ to 90 °). If the distance is not close to), the focus cannot be adjusted properly.
2)集束イオンビーム注入の前にプロセスとして結晶成
長ならびに化学エツチング等を行うと、パターンの形状
がゆがんでしまう。2) If crystal growth and chemical etching are performed as a process before the focused ion beam implantation, the pattern shape is distorted.
3)本質的に二次電子イメージを見ているので、集束イ
オンビームのビーム電流が20pA以下に小さくなるとイメ
ージが暗くなり、焦点調整が困難になる。3) Since a secondary electron image is essentially viewed, if the beam current of the focused ion beam is reduced to 20 pA or less, the image becomes dark and focus adjustment becomes difficult.
等の問題があつた。And other problems.
本発明は以上の点に鑑みてなされたものであり、その
目的は、上述した従来の方法より簡便で、試料の種類等
によらず容易に応用ができ、しかも、二次電子イメージ
がほとんど見えないような微小な電流領域にも応用可能
な集束イオンビーム注入装置における焦点の調整方法を
提供することにある。The present invention has been made in view of the above points, and its purpose is simpler than the conventional method described above, which can be easily applied irrespective of the type of the sample and the like, and furthermore, the secondary electron image is hardly visible. It is an object of the present invention to provide a focus adjustment method in a focused ion beam implantation apparatus which can be applied to a minute current region which does not exist.
このような目的を達成するため、本発明の焦点調整方
法は、集束イオンビームを平面試料に照射した場合に試
料表面から放出される二次電子強度の時間変化を測定
し、このデータをもとに焦点を調整することを主要な特
徴とするものである。In order to achieve such an object, the focus adjustment method of the present invention measures the time change of the intensity of secondary electrons emitted from the surface of a sample when a focused ion beam is irradiated on a flat sample, and uses this data to determine The main feature is that the focus is adjusted.
したがつて、本発明においては、試料に前もつてパタ
ーンを作製する必要がなく、平面性が保たれる限りエツ
チングした表面や結晶成長した表にも問題なく適用でき
るとともに、平面試料であれば材質を問わず適用でき
る。また、従来技術のように二次電子を像として観察す
るのでなく、二次電子強度の変化を微小電流計を用いて
測定できるので、1pA以下の微小イオン電流に対しても
きちんと焦点を調整できる。さらに、大面積の試料つま
りウエハの何点かに対し本発明方法を適用すれば、ウエ
ハ全面にわたり焦点が合うように制御することも容易で
ある。Therefore, in the present invention, it is not necessary to prepare a pattern on the sample in advance, and it can be applied to an etched surface or a crystal-grown table without any problem as long as flatness is maintained. Applicable regardless of material. Also, instead of observing the secondary electrons as an image as in the prior art, the change in the secondary electron intensity can be measured using a microammeter, so that the focus can be properly adjusted even for a small ion current of 1 pA or less. . Furthermore, if the method of the present invention is applied to a large area sample, that is, to several points on the wafer, it is easy to control so that the entire surface of the wafer is in focus.
以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be described with reference to the drawings.
まず初めに本発明方法の原理について第1図を用いて
説明する。ここで、本発明は基本的に従来例と同様な集
束イオンビーム注入装置を用いるものであり、第1図
(a)に示すように、集束されたイオンビーム1が試料
2の表面に照射させるとこの部分でスパツタリングが生
じる。この照射後しばらくはスパツタリングにより試料
表面が荒れ表面積が増加するため二次電子強度が増大す
る。その後、スパツタにより穴3(同図(b))が深く
なると逆に二次電子は当該穴3から試料2の外に出られ
なくなり、二次電子強度は減少する。従つて、平面試料
12に集束イオンビーム1を照射した場合、二次電子量は
第1図(c)に示すように、照射後そのピーク値に達す
る時間(表面荒れ時間ともいう)taまでは増大し(同図
(a))、その後減少することがわかる(同図
(b))。この減少の時定数は、ピーク値と長時間照射
後に安定する値の間のそれぞれ90%および10%の値を横
切る時間の差(表面穴あけ時間ともいう)tbにより表わ
すことができる。またこの変化は、電流値が一定であれ
ば焦点が合い、ビームが細径になるほど電流密度が増大
して速くなる。従つて、焦点が合うにつれて上記ta,tb
の値が減少する。このため、試料表面上に配設される対
物レンズ(図示せず)に印加する電圧を変化させてこれ
らの値ta,tbが最小になる電圧を求めることにより、焦
点を自動的に調整することができる。すなわち、集束イ
オンビーム1を試料2の表面に照射した際に放出される
二次電子強度の時間変化からそのイオンビーム1の集束
状態を評価し、このデータを対物レンズにフイードバツ
クしてその印加電圧を変化させることにより、試料表面
上に集束イオンビームの焦点を合わせることができる。First, the principle of the method of the present invention will be described with reference to FIG. Here, the present invention uses a focused ion beam implanter basically similar to the conventional example. As shown in FIG. 1 (a), the focused ion beam 1 irradiates the surface of the sample 2. And spattering occurs in this portion. For a while after this irradiation, the surface of the sample is roughened by spattering and the surface area increases, so that the secondary electron intensity increases. Thereafter, when the hole 3 (FIG. 4B) is deepened by the spatter, on the contrary, the secondary electrons cannot escape from the hole 3 to the outside of the sample 2, and the secondary electron intensity decreases. Therefore, a planar sample
When irradiated with the focused ion beam 1 to 12, the secondary electron amount is as shown in FIG. 1 (c), (also referred to as surface roughness time) the peak value is reached the time after irradiation until t a is increased (the FIG. (A)), and it can be seen that it decreases thereafter (FIG. (B)). The time constant of the reduction can be represented by a peak value and a long (also referred to as a surface drilling time) each difference of 90% and 10% across the value time between values stabilized after irradiation t b. Further, this change is focused when the current value is constant, and the current density increases and becomes faster as the beam diameter becomes smaller. Therefore, the above-mentioned t a , t b
Decreases. Therefore, the focus is automatically adjusted by changing the voltage applied to an objective lens (not shown) disposed on the sample surface and obtaining a voltage that minimizes these values t a and t b. can do. That is, the focused state of the ion beam 1 is evaluated from the time change of the intensity of secondary electrons emitted when the focused ion beam 1 is irradiated on the surface of the sample 2, and this data is fed back to the objective lens to apply the applied voltage to the objective lens. , The focused ion beam can be focused on the sample surface.
この時、実際には二次電子強度を測定してもよいが、 (試料電流)=(イオン電流)+(二次電子放出量) なる関係が存在するので、二次電子強度を測定するかわ
りに試料電流を測定しても良い。現実には試料電流を測
定する方が簡単な場合が多いので、以下の例は試料電流
で測定した実施例を示す。At this time, the secondary electron intensity may be actually measured. However, since the relationship of (sample current) = (ion current) + (secondary electron emission amount) exists, instead of measuring the secondary electron intensity, The sample current may be measured in advance. In practice, it is often easier to measure the sample current, so the following example shows an example in which measurement was performed with the sample current.
第2図は実際にGa集束イオンビームをGaAs基板に照射
して試料電流を測定したときの一例を示すものである。
同図において、曲線Iはビーム径R=70mmφでの試料電
流の変化を示し、曲線II及びIIIはそれぞれR=120nm
φ,R=230nmφでの試料電流の変化を示す。また、ビー
ムは1msecインターバルのくり返しで1つのスポツトを
照射している。この例では合計した照射時間は20秒であ
る。試料電流としては照射時とインターバル時の平均電
流を測定していることになる。第1図で予想した試料電
流の変化が明確に表われ、またta,tbはビーム径Rが小
さくなるほど短くなることがわかる。また、本実験はイ
オン電流5pAという低電流で行なつたが、雑音状況等か
ら考え1pAまでは応用が可能なことがわかる。なお、第
2図中t0は10秒のスケールを示し、矢印はイオンビーム
照射時(“on")を示している。FIG. 2 shows an example in which a sample current is measured by actually irradiating a GaAs substrate with a Ga focused ion beam.
In the figure, a curve I shows a change in the sample current at a beam diameter R = 70 mmφ, and curves II and III respectively show R = 120 nm.
The change of the sample current at φ, R = 230 nmφ is shown. The beam irradiates one spot repeatedly at 1 msec intervals. In this example, the total irradiation time is 20 seconds. As the sample current, the average current during the irradiation and during the interval was measured. It can be seen that the change in the sample current expected in FIG. 1 is clearly shown, and that t a and t b become shorter as the beam diameter R becomes smaller. In addition, although this experiment was performed with a low current of 5 pA as the ion current, it can be seen that the application is possible up to 1 pA in consideration of noise conditions and the like. In FIG. 2, t 0 indicates a scale of 10 seconds, and the arrow indicates the time of ion beam irradiation (“on”).
次に、前記対物レンズへの印加電圧(ジヤスト・フオ
ーカスからのずれ)V0を徐々に変化させ求められたta,t
bを第3図に示す。ただし、同図において符号イで示す
実線は対物レンズ印加電圧V0に対するtaの特性を表わ
し、同じく符号ロで示す点線はtbの特性を表わす。この
第3図から明らかなように、ta〜0秒となる所から大体
焦点が合うV0が求まり、さらにV0を細かく変化させてtb
が最小になるV0を求めることにより、焦点を自動的に合
わせることができる。これらの作業はすべてコンピユー
タにより自動的に行うことができ、焦点合わせが容易に
行える。Next, t a , t obtained by gradually changing the applied voltage (deviation from the just focus) V 0 to the objective lens
b is shown in FIG. However, a solid line denoted by reference numeral b in the figure represents a characteristic of t a with respect to the objective lens applied voltage V 0, also the dotted line indicated by reference numeral B represents the characteristics of t b. As apparent from Figure 3, Motomari is V 0 which is approximately the focal fit from where a t a ~0 seconds, by further finely changing the V 0 t b
The focus can be adjusted automatically by finding V 0 that minimizes. All of these operations can be performed automatically by a computer, and focusing can be easily performed.
以上の実施例では試料表面上に集束イオンビームの焦
点を合わせる方法について述べたが、本発明は、この方
法を用いて広い面積にわたり焦点を合わせることもでき
る。すなわち、パターンを全く形成していない平坦なウ
エハに対し、上記実施例で述べた手法を適用してウエハ
全面に対し集束イオンビームの焦点が合うように自動調
整することができ、その概要を第4図を参照して説明す
る。In the above embodiments, the method of focusing the focused ion beam on the sample surface has been described. However, the present invention can also focus on a wide area using this method. That is, for a flat wafer on which no pattern is formed, the method described in the above embodiment can be applied to automatically adjust the focused ion beam to focus on the entire surface of the wafer. This will be described with reference to FIG.
第4図(a)及び(b)は集束イオンビームが照射さ
れるウエハ保持機構部におけるウエハの平面図及びその
側面図であり、同図中5は平坦なウエハ、6はそのウエ
ハ5を保持するホルダー、71,72及び73はウエハ5上の
各a,b,c点付近の高さつまりZ方向の微動調整を行うた
めのマニピユレータである。ここで、まずウエハ5上の
a点でマニピユレータ71を適度な値に設定し、上記実施
例の手法を用いて焦点が合うように対物レンズの電圧を
調整する。次にb点にウエハ5を移動し、マニピユレー
タ72を変化させながらb点付近で数回ビームを照射し、
その時間変化から最も焦点の合う位置に該マニピユレー
タ72を決定する。次にウエハ5をc点に移動しe点付近
で同様の作業を行いマニピユレータ73を合わせる。この
動作をa点→b点→c点とさらに繰り返しウエハ全体で
の平坦性を出す。この方法は何のパターンもない平坦な
ウエハに対し適応することができ、すべてコンピユータ
で制御することができる。また、ビーム照射は2μmも
スポツトをずらせば充分であり、例えばa点で100回照
射を行なつたとしても、このために必要な面積はたかだ
か20μm口である。従つて、ウエハ上の極めて小さい面
積を使うことによりウエハを集束イオンビームに対しフ
ラツトに合わせることができる。この手法は、ほぼ焦点
の合つている集束イオンビームを用いて、結晶成長,イ
オン注入の繰り返し等を行う時に結晶成長後の面に対し
てコンピユータを用いて自動的に焦点をウエハ全面に合
わせる用途などに有用である。4 (a) and 4 (b) are a plan view and a side view of a wafer in a wafer holding mechanism to which a focused ion beam is irradiated, wherein 5 is a flat wafer, and 6 is holding the wafer 5. holder for, 7 1, 7 2 and 7 3 are Manipiyureta for performing each a on the wafer 5, b, a height that is fine motion adjusting in the Z-direction around the point c. Here, first set the Manipiyureta 7 1 a point on the wafer 5 to the proper value, adjusts the voltage of the objective lens to fit the focus by using the method of Example. Then moving the wafer 5 to the point b, it is irradiated with several beam near the point b while changing the Manipiyureta 7 2,
The Manipiyureta 7 2 determines the most focus of match positions from the time change. Then adjust the Manipiyureta 7 3 The process is similar for the wafer 5 in the vicinity of the moved point e to point c. This operation is further repeated from point a to point b to point c to obtain flatness over the entire wafer. This method can be applied to flat wafers without any pattern, all controlled by computer. It is sufficient to shift the spot by 2 μm for beam irradiation. For example, even if irradiation is performed 100 times at point a, the area required for this is only 20 μm. Thus, by using a very small area on the wafer, the wafer can be flattened to the focused ion beam. This method uses a focused ion beam, which is almost in focus, to automatically focus on the entire surface of the wafer using a computer when crystal growth and ion implantation are repeated. Useful for such things.
以上説明したように本発明は、集束イオンビームを平
面試料に照射したときに試料表面から放出される二次電
子強度の時間変化を測定し、そのデータをもとに焦点を
調整することにより、簡便でかつ自動化に適した集束イ
オンビームの焦点調整法を提供できる。また、平坦な結
晶に適用できるのみならず微小なビーム電流の場合にも
きちんと焦点を調整できる利点がある。As described above, the present invention measures the time change of the intensity of secondary electrons emitted from the surface of a sample when a focused ion beam is irradiated on a flat sample, and adjusts the focus based on the data, A focus adjustment method for a focused ion beam that is simple and suitable for automation can be provided. In addition, there is an advantage that the focus can be properly adjusted not only for a flat crystal but also for a small beam current.
第1図は本発明方法の原理説明図、第2図は本発明の一
実施例の説明に供するビーム径の変化による試料電流変
化の実験例を示す図、第3図は同じく本発明の一実施例
の説明に供する対物レンズ電圧をジヤストフオーカスか
らずらした時のta,tbの変化の実験例を示す図、第4図
は本発明の他の実施例の説明に供する概略図、第5図は
従来の焦点調整法の一例を示す説明図である。 1……集束イオンビーム、2……試料、3……穴部、5
……ウエハ、6……ホルダー、71,72,73……Z方向微動
調整マニピユレータ。FIG. 1 is a view for explaining the principle of the method of the present invention, FIG. 2 is a view showing an experimental example of a change in a sample current due to a change in a beam diameter used for explaining one embodiment of the present invention, and FIG. FIG. 4 is a diagram showing an experimental example of a change in t a and t b when the objective lens voltage used in the description of the embodiment is shifted from the just focus, FIG. 4 is a schematic diagram used in describing another embodiment of the present invention, FIG. 5 is an explanatory diagram showing an example of a conventional focus adjustment method. 1 Focused ion beam, 2 Sample, 3 Hole, 5
...... Wafer, 6 ...... Holder, 7 1 , 7 2 , 7 3 ...... Z direction fine adjustment manipulator.
Claims (1)
ンビームを平面試料に照射した場合に放出される二次電
子強度の時間変化からイオンビームの集束状態を評価
し、この結果に基づき対物レンズに印加する電圧を変化
させることにより、試料表面上にイオンビームの焦点を
合わせることを特徴とする焦点調整方法。In a focused ion beam implanter, a focused state of an ion beam is evaluated from a temporal change of a secondary electron intensity emitted when a planar sample is irradiated with an ion beam, and the focused state is applied to an objective lens based on the result. A focus adjustment method characterized by focusing an ion beam on a sample surface by changing a voltage to be applied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1160889A JP2706986B2 (en) | 1989-06-26 | 1989-06-26 | Focus adjustment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1160889A JP2706986B2 (en) | 1989-06-26 | 1989-06-26 | Focus adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0329319A JPH0329319A (en) | 1991-02-07 |
JP2706986B2 true JP2706986B2 (en) | 1998-01-28 |
Family
ID=15724557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1160889A Expired - Fee Related JP2706986B2 (en) | 1989-06-26 | 1989-06-26 | Focus adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2706986B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6903350B1 (en) * | 2004-06-10 | 2005-06-07 | Axcelis Technologies, Inc. | Ion beam scanning systems and methods for improved ion implantation uniformity |
JP6266312B2 (en) * | 2013-11-13 | 2018-01-24 | 日本電子株式会社 | Focused ion beam apparatus and ion beam focus adjustment method |
JP7407846B2 (en) * | 2022-01-20 | 2024-01-04 | 日本電子株式会社 | Focused ion beam device and ion beam field of view deviation correction method |
-
1989
- 1989-06-26 JP JP1160889A patent/JP2706986B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0329319A (en) | 1991-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6963630B2 (en) | Method for evaluating an SOI substrate, evaluation processor, and method for manufacturing a semiconductor device | |
US6926935B2 (en) | Proximity deposition | |
US4855013A (en) | Method for controlling the thickness of a thin crystal film | |
US4925755A (en) | Method of correcting defect in circuit pattern | |
JPH11149893A (en) | Drawing device electron beam, its method and semiconductor device | |
KR100193402B1 (en) | Impurity Concentration Profile Measurement Method | |
JP2706986B2 (en) | Focus adjustment method | |
US20030080291A1 (en) | System and method for characterization of thin films | |
US5004927A (en) | Process for forming a fine pattern having a high aspect ratio | |
US6392230B1 (en) | Focused ion beam forming method | |
KR100313326B1 (en) | Electron-Beam Cell Projection Aperture Formation Method | |
JP3433634B2 (en) | Sample preparation method for crystal defect observation in semiconductor single crystal and crystal defect observation method | |
JPH1177333A (en) | Focusing ion beam machining device and its method | |
JP3396980B2 (en) | Analysis method of concentration distribution | |
JPH03183118A (en) | Method and apparatus for electron beam exposure | |
JPH11258129A (en) | Method for making sample by focused ion beam | |
JP2001118537A (en) | Beam-scanning inspection apparatus | |
JP3155570B2 (en) | Focused ion beam mass analysis method and combined ion beam mass spectrometry device | |
JP2003166918A (en) | Method of preparing sample for observing crystal defect in semiconductor single crystal | |
JP4574293B2 (en) | Crystallinity evaluation method | |
JP2000221148A (en) | Method for analyzing element distribution in depthwise direction | |
JPS60135882A (en) | Measurement of diameter of ion beam | |
JP2004286638A (en) | Analysis method | |
JPH0136970B2 (en) | ||
JPS60111424A (en) | Formation of allignment mark |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071017 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |