JP2668687B2 - CVD device - Google Patents
CVD deviceInfo
- Publication number
- JP2668687B2 JP2668687B2 JP62299158A JP29915887A JP2668687B2 JP 2668687 B2 JP2668687 B2 JP 2668687B2 JP 62299158 A JP62299158 A JP 62299158A JP 29915887 A JP29915887 A JP 29915887A JP 2668687 B2 JP2668687 B2 JP 2668687B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- flow rate
- pipe
- gas introduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】
〔概 要〕
半導体装置の製造に用いられるCVD装置に関し,基板
に形成される堆積層の層厚ならびに組成の分布の均一性
を向上することを目的とし,
複数の原料ガスを反応させて基板表面に化合物半導体
の反応生成物からなる堆積層を形成するためのCVD装置
であって、複数の原料ガス源はそれぞれバルブを介して
共通の主ガス導入管に結合され、主ガス導入管の他端は
それぞれガス流量を制御しうる流量可変バルブを備える
複数のガス導入管に結合され、ガス導入管の他端は1枚
の基板の載置される回転可能なサセプタを有する反応容
器内に導入され、その先端は互いに密に接近し、かつ基
板に対し垂直で、少くとも一列になって対向する如く配
置されるように構成される。
〔産業上の利用分野〕
本発明は半導体装置の製造に用いられるCVD装置に係
り,とくに気体状の有機金属化合物を反応させて基板の
表面に化合物半導体の層を形成するMOCVD(有機金属化
学気相堆積)法に好適なCVD装置に関する。
〔従来の技術〕
CVD(化学気相堆積)法によってシリコンウエハ等の
基板表面に半導体層あるいは絶縁層を形成する場合,基
板上における層厚および組成の分布の均一性をよくする
ために,第2図(a)に示すように,反応ガス導入管1
における基板2に対向するガス噴出口側をテーパー状に
拡げ,基板2の表面のできるだけ広い面積に反応ガスが
吹きつけられるように考慮された装置がある。
このような装置を用い,反応ガス導入管1の他端に接
続された原料物質が充填されているバブラー4に,例え
ば水素ガス(H2)を送入して原料物質を気化させ,H2ガ
スを担体として反応容器5内に導入する。反応容器5は
その一端に設けられている排気管6を通じて図示しない
排気装置により排気されており,原料ガスおよびH2ガス
は反応ガス導入管1から排気管6へ流れる。
基板2は図示しない回転機構により回転される支持軸
7の一端に設けられたサセプタ8上に載置されている。
このようにして,基板2の表面には反応ガス導入管1か
ら導入された原料ガスが均一に吹きつけられるように考
慮されている。なお,一般にサセプタ8にヒータ(図示
省略)を設けるか,または,反応容器5の外部に高周波
加熱コイル(図示省略)を設けるかして基板2を所定温
度に加熱する。このようにして,反応ガス導入管1から
導入された原料ガスは基板2の表面もしくは表面近傍で
反応し,目的とする半導体あるいは絶縁物を析出し,こ
れが基板2表面に堆積して層を形成する。なお,GaAsP
(ガリウム砒素燐)あるいはInGaAs(インジウム・ガリ
ウム砒素)の層を堆積する場合を例にすれば,バブラー
4は,例えば41にはAsH3(アルシン)またはPH3(ホス
フィン)が,42には有機金属化合物であるIn(CH3)
3(トリメチルインジウム)が,また,43には同じく有
機金属化合物であるGa(CH3)3(トリメチルガリウ
ム)が充填されている。なお,図においてV0,V1,V2,V3
はバルブである。
上記の装置では,まだ,基板2表面に堆積される物質
の層厚あるいは組成,すなわち,例えば化合物半導体Ga
AsPを例にとると,GaAsx P1-xにおけるxの値の均一性が
基板2の全面を通じて不充分であるとして,第2図
(b)に示すように,反応ガス導入管1のガス噴出口側
を複数の分枝管3に分けた構造の装置がある。同図にお
いて第2図(a)に示す部分と同一のものには同じ符号
を付してある。
〔発明が解決しようとする問題点〕
第2図(b)の構造の装置によれば,基板2の表面に
おける堆積物質の層厚および組成の均一性の向上が認め
られるが,分枝管3のそれぞれの間の最適な流量比を得
るために,形状(主に管の径)を変えた多種の分枝管3
を試作しなければならず,また,原料ガスの流量を変更
する際には分枝管3全体を交換しなければならないとい
う不都合がある。特に,後者は反応中に原料ガスの種類
に応じて分枝管3のそれぞれを流れる原料ガスの流量を
可変制御することが不可能であるという重大な欠点にな
る。
本発明は,上記従来のCVD装置における問題点に鑑
み,分枝管3のそれぞれにおける流量を個別に制御可能
とすることにより,特に化合物半導体における堆積層の
層厚ならびに組成の均一性をより向上可能とすることを
目的とする。
〔問題点を解決するための手段〕
上記目的は本発明により、複数の原料ガスを反応させ
て基板表面に化合物半導体の反応生成物からなる堆積層
を形成するためのCVD装置であって、複数の原料ガス源
はそれぞれバルブを介して共通の主ガス導入管に結合さ
れ、主ガス導入管の他端はそれぞれガス流量を制御しう
る流量可変バルブを備える複数のガス導入管に結合さ
れ、ガス導入管の他端は1枚の基板の載置される回転可
能なサセプタを有する反応容器内に導入され、その先端
は互いに密に接近し、かつ基板に対し垂直で、少くとも
一列になって対向する如く配置されていることを特徴と
するCVD装置によって達成される。
〔作用〕
ガス噴出口が基板に対向して設けられた複数のガス導
入管のそれぞれに可変流量バルブを設け,複数の原料ガ
スの種類,総流量および成長室内における圧力,サセプ
タの温度等に応じてそれぞれのガス導入管を流れる原料
ガスの流量を制御し、しかもガス導入管のそれぞれは互
いに密に接近して配置されているので、ガス導入管相互
間にガスが滞留することはないので、滞留した場合にお
ける如き膜の組成比などの膜質に悪影響を及ぼすことは
なく、基板表面に形成される化合物半導体の堆積層の層
厚および組成の均一性の向上が可能となる。
〔実施例〕
以下本発明の実施例を図面を参照して説明する。
以下の図面において既掲の図面におけるのと同じ部分
には同一符号を付してある。
第1図は本発明の一実施例を示すCVD装置の要部断面
図である。例えば直径が約100mmの石英ガラス管から成
る反応容器5は,その上端にステンレス等から成る蓋板
10を有する。蓋板10は前記石英ガラス管部に気密封着さ
れている。この蓋板10を貫通するようにして,ガス導入
管11が気密封着されている。ガス導入管11の一端は,サ
セプタ8上に載置された,例えばInP単結晶から成る基
板2の表面に50mm程度の距離を以て対向している。な
お,サセプタ8は,例えば炭素焼結体から成る直径が約
70mmの円板である。
さらに,反応容器5は,例えばステンレスから成る下
部12を有し,前記石英ガラス管部との間は,図示しない
Oリングシールを用いて気密封止されている。また,下
部12の側面には図示しない排気装置に接続された排気管
6が設けられており,これにより反応容器5内部が排気
される。さらに,サセプタ8を支持・回転させるための
支持軸7が,下部12の底面を貫通するようにして,例え
ば流体磁気シールを用いて,気密性を保持しつつ回転可
能に設けられている。以上の構造は従来のCVD装置と同
様である。
第1図に示す本発明のCVD装置においては,第2図
(b)に示した従来の装置と異なって,複数のガス導入
管11が蓋板10を貫通して気密封着されている。図におい
ては,一列に配置された4本のガス導入管11が設けられ
ている。ガス導入管11は,例えば内径約8mmの石英ガラ
ス管であり,蓋板10における配列ピッチは約10mmであ
る。この場合ガス導入管11の管厚を1mmとすると、ガス
導入管の外径は約10mmとなり、配列ピッチに相当し、従
って各ガス導入管は互いに密に接近して蓋板10を貫通し
て気密封着されていることになる。また各ガス導入管11
の反応容器5の外部における他端は流量可変バルブ13,1
4,15,16の出力側にそれぞれ接続されており,流量可変
バルブ13,14,15,16の入力側は一つにまとめられて主バ
ルブV0に接続されている。そして,主バルブV0を通じ
て,前記と同様のバブラー4から複数の原料ガスが供給
される。例えばGaAsPまたはInGaAsを基板2に堆積させ
る場合には,41はAsH3またはPH3が充填されたバブラー,4
2はIn(CH3)3が充填されたバブラー,また,43はGa(C
H3)3が充填されたバブラーであり,それぞれのバブラ
ーにH2が担体ガスとして送入される。なお,V1,V2,V3は
それぞれのバブラーの締切バルブである。
上記構成の装置を用い,サセプタ8上に,例えば直径
50mmのInP(インジウム燐)単結晶から成る基板2を載
置し,該サセプタ8を約60rpmの速度で回転させなが
ら,例えば反応容器5の外部に設けられている高周波コ
イル17により約650℃に加熱する。一方,主バルブV0お
よび締切バルブV1,V2,V3を開き,各々のバブラー4にH2
ガスを送入してAsH3,またはPH3,Ga(CH3)3,In(CH3)
3を気化させ,担体ガスH2によって反応容器5内に導入
する。
上記のようにして基板2の表面にGaAsPまたはInGaAs
の層が形成される。この場合,基板2に形成されるるGa
AsPまたはInGaAsの層厚および組成が最も均一になるよ
うに,流量可変バルブ13,14,15,16により各々のガス導
入管11を流れる原料ガスの流量を制御する。この流量は
原料ガスの種類,基板2の加熱温度,成長室内の圧力等
によって異なるが、例えばバルブ14と15に1000SCCM,バ
ルブ13と16に1500SCCM程度を流す。このように,基板2
の周辺部により多くのガス流を流す。上記の方法におい
ては,一般に,層厚の均一性と組成の均一性を最良にす
る流量条件は一致する。
第3図(a)および(b)は,上記の装置によって直
径50mmのInP単結晶基板上に形成された厚さ約1μmのG
aAsP層の,それぞれ,層厚分布および組成(GaAsx P1-x
におけるxの値)分布を示すグラフである。実線は本発
明のCVD装置を用いた場合,点線は第2図(b)に示す
従来の装置を用いた場合である。図から分かるように,
従来の装置においては直径50mmの基板における層厚分布
は厚さが約1μmに対して±10%程度であったが,本発
明の装置によれば,±3%程度に向上される。また,GaA
sP層における組成分布は,おなじく直径50mmの基板を用
いた場合,GaAsx P1-xにおけるx=0.53を中心として,
従来の装置においては±10%程度であったものが,本発
明の装置によれば±3%程度に均質化される。
第4図は本発明の他の実施例のCVD装置の構造の概要
を示す模式図である。図の装置の構成は,流量可変バル
ブを自動制御する機構が付加されている点を除いては,
第1図の場合とほぼ同じである。
本実施例の構成上の特徴は,流量可変バルブ13,14,1
5,16として自動制御可能なバルブを用い,それぞれの流
量可変バルブ13,14,15,16と主バルブV0との間に流量計1
8,19,20,21が設けられていることである。制御装置22は
メモリおよび制御部を有し,メモリには基板2に例えば
GaAsP層を堆積する工程を分割した各単位期間における
各流量可変バルブ13,14,15,16を流れる原料ガスの流量
値があらかじめ記録されている。工程の開始とともに,
制御部はメモリからこれらの流量値を読み取り,各流量
計18,19,20,21から送られてくる流量測定値と比較す
る。そして,メモリの流量設定値と流量計の測定値との
差がゼロとなるように各流量可変バルブ13,14,15,16を
制御する。このような流量可変バルブと流量計の代わり
にマスフローコントローラを用いてもよい。
上記実施例においてはGaAsP等の化合物半導体層を堆
積させるMOCVD装置を例に示した。このようなMOCVD装
置,とくに減圧MOCVD装置の場合には,AsH3,Ga(CH3)3
等の各原料ガスを主バルブV0の前段で混合する構造とす
ることができる。
〔発明の効果〕
本発明によれば,CVD法において化合物半導体層の層厚
分布ならびに組成分布の均一性のすぐれた堆積層を得る
ことができ,半導体装置の特性および製造歩留りを向上
可能とする効果がある。DETAILED DESCRIPTION OF THE INVENTION [Outline] Regarding a CVD apparatus used for manufacturing a semiconductor device, in order to improve the uniformity of the layer thickness and composition distribution of a deposited layer formed on a substrate, a plurality of raw materials can be used. A CVD apparatus for forming a deposited layer of a reaction product of a compound semiconductor on a substrate surface by reacting a gas, wherein a plurality of source gas sources are connected to a common main gas introduction pipe via valves, The other end of the main gas introducing pipe is connected to a plurality of gas introducing pipes each having a flow rate variable valve capable of controlling the gas flow rate, and the other end of the gas introducing pipe is provided with a rotatable susceptor on which one substrate is mounted. It is introduced into an existing reaction vessel, and its tips are arranged so as to closely approach each other and to be perpendicular to the substrate and face each other in at least one row. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD apparatus used for manufacturing a semiconductor device, and more particularly to MOCVD (Metal Organic Chemical Vapor Deposition) for forming a compound semiconductor layer on the surface of a substrate by reacting a gaseous organic metal compound. A phase deposition) method. [Prior Art] When a semiconductor layer or an insulating layer is formed on the surface of a substrate such as a silicon wafer by the CVD (Chemical Vapor Deposition) method, in order to improve the uniformity of the layer thickness and composition distribution on the substrate, 2 As shown in FIG.
There is a device in which the gas ejection port side facing the substrate 2 is expanded in a taper shape so that the reaction gas is blown to the surface of the substrate 2 as large as possible. Using such a device, a bubbler 4 connected raw material to the other end of the reaction gas inlet tube 1 is filled, for example, hydrogen gas (H 2) to vaporize the raw material was fed, H 2 Gas is introduced into the reaction vessel 5 as a carrier. The reaction container 5 is exhausted by an exhaust device (not shown) through an exhaust pipe 6 provided at one end thereof, and the raw material gas and H 2 gas flow from the reaction gas introduction pipe 1 to the exhaust pipe 6. The substrate 2 is placed on a susceptor 8 provided at one end of a support shaft 7 rotated by a rotation mechanism (not shown).
In this way, it is considered that the raw material gas introduced from the reaction gas introduction pipe 1 is uniformly blown to the surface of the substrate 2. The substrate 2 is generally heated to a predetermined temperature by providing a heater (not shown) on the susceptor 8 or providing a high-frequency heating coil (not shown) outside the reaction vessel 5. In this way, the raw material gas introduced from the reaction gas introducing pipe 1 reacts on the surface of the substrate 2 or in the vicinity of the surface to deposit a target semiconductor or insulator, which is deposited on the surface of the substrate 2 to form a layer. I do. GaAsP
If as an example the case of depositing a layer of (gallium arsenide phosphide) or InGaAs (indium gallium arsenide), bubbler 4 may 4 AsH 3 to 1 (arsine) or PH 3 (phosphine) is the 4 2 Is an organometallic compound, In (CH 3 )
3 (trimethylindium) and 4 3 are filled with Ga (CH 3 ) 3 (trimethylgallium), which is also an organometallic compound. In the figure, V 0 , V 1 , V 2 , V 3
Is a valve. In the above apparatus, the layer thickness or composition of the substance deposited on the surface of the substrate 2, that is, for example, the compound semiconductor Ga
Taking AsP as an example, assuming that the uniformity of the value of x in GaAs x P 1-x is insufficient over the entire surface of the substrate 2, as shown in FIG. There is a device having a structure in which the outlet side is divided into a plurality of branch pipes 3. In the figure, the same parts as those shown in FIG. 2 (a) are designated by the same reference numerals. [Problems to be Solved by the Invention] According to the apparatus having the structure shown in FIG. 2 (b), the uniformity of the layer thickness and composition of the deposited substance on the surface of the substrate 2 is recognized to be improved. In order to obtain the optimum flow ratio between each of the three types of branch pipes 3 with different shapes (mainly pipe diameters)
However, there is an inconvenience that the branch pipe 3 as a whole must be replaced when changing the flow rate of the raw material gas. In particular, the latter is a serious drawback in that it is impossible to variably control the flow rate of the raw material gas flowing through each of the branch pipes 3 according to the type of the raw material gas during the reaction. In view of the above-mentioned problems in the conventional CVD apparatus, the present invention makes it possible to individually control the flow rate in each of the branch pipes 3, thereby further improving the uniformity of the layer thickness and composition of the deposited layer in the compound semiconductor. The purpose is to make it possible. [Means for Solving the Problems] According to the present invention, the above-mentioned object is a CVD apparatus for reacting a plurality of source gases to form a deposition layer of a reaction product of a compound semiconductor on a substrate surface. The source gas sources are connected via a valve to a common main gas introduction pipe, and the other end of the main gas introduction pipe is connected to a plurality of gas introduction pipes each having a flow rate variable valve capable of controlling the gas flow rate. The other end of the introduction tube is introduced into a reaction vessel having a rotatable susceptor on which one substrate is placed, the tips of which are close to each other and perpendicular to the substrate, and in at least one line. This is achieved by a CVD device characterized by being arranged so as to face each other. [Function] A variable flow rate valve is provided in each of the gas introduction pipes whose gas outlets are opposed to the substrate, depending on the types of the source gases, the total flow rate, the pressure in the growth chamber, the temperature of the susceptor, etc. To control the flow rate of the raw material gas flowing through each gas introduction pipe, and since the gas introduction pipes are arranged in close proximity to each other, the gas does not stay between the gas introduction pipes. It does not adversely affect the film quality such as the composition ratio of the film when it stays, and it is possible to improve the uniformity of the layer thickness and composition of the compound semiconductor deposition layer formed on the substrate surface. Embodiment An embodiment of the present invention will be described below with reference to the drawings. In the following drawings, the same parts as those in the above drawings are designated by the same reference numerals. FIG. 1 is a sectional view of the essential parts of a CVD apparatus showing an embodiment of the present invention. For example, a reaction vessel 5 made of a quartz glass tube having a diameter of about 100 mm has a lid plate made of stainless steel or the like at its upper end.
With 10. The lid plate 10 is airtightly attached to the quartz glass tube portion. A gas introduction pipe 11 is hermetically sealed so as to penetrate the cover plate 10. One end of the gas introduction pipe 11 faces the surface of the substrate 2 made of, for example, InP single crystal placed on the susceptor 8 with a distance of about 50 mm. The susceptor 8 is made of, for example, a carbon sintered body and has a diameter of about
It is a 70mm disk. Further, the reaction vessel 5 has a lower portion 12 made of, for example, stainless steel, and is hermetically sealed from the quartz glass tube portion by an O-ring seal (not shown). Further, an exhaust pipe 6 connected to an exhaust device (not shown) is provided on the side surface of the lower portion 12 to exhaust the inside of the reaction vessel 5. Further, a support shaft 7 for supporting and rotating the susceptor 8 is rotatably provided so as to penetrate the bottom surface of the lower portion 12 by using, for example, a fluid magnetic seal while maintaining airtightness. The above structure is the same as the conventional CVD apparatus. In the CVD apparatus of the present invention shown in FIG. 1, unlike the conventional apparatus shown in FIG. 2 (b), a plurality of gas introduction pipes 11 penetrate the cover plate 10 and are hermetically sealed. In the figure, four gas introduction pipes 11 arranged in a line are provided. The gas introduction pipe 11 is, for example, a quartz glass pipe having an inner diameter of about 8 mm, and the arrangement pitch on the cover plate 10 is about 10 mm. In this case, when the tube thickness of the gas introduction pipe 11 is 1 mm, the outer diameter of the gas introduction pipe is about 10 mm, which corresponds to the arrangement pitch, and therefore each gas introduction pipe closely penetrates the lid plate 10. It will be hermetically sealed. Each gas introduction pipe 11
The other end of the outside of the reaction vessel 5 is a variable flow rate valve 13,1.
The output sides of 4, 15 and 16 are respectively connected, and the input sides of the variable flow valves 13, 14, 15 and 16 are connected together and connected to the main valve V 0 . Then, a plurality of source gases are supplied from the same bubbler 4 as described above through the main valve V 0 . For example, when depositing GaAsP or InGaAs on the substrate 2, 4 1 is a bubbler filled with AsH 3 or PH 3 ,
2 is a bubbler filled with In (CH 3 ) 3 , and 4 3 is Ga (C
It is a bubbler filled with H 3 ) 3 and H 2 is fed as a carrier gas into each bubbler. Note that V 1 , V 2 and V 3 are the shut-off valves of the respective bubblers. Using the apparatus having the above configuration, the diameter of the susceptor 8
A substrate 2 made of InP (indium phosphide) single crystal of 50 mm is placed, and while rotating the susceptor 8 at a speed of about 60 rpm, for example, by a high-frequency coil 17 provided outside the reaction vessel 5, the temperature is raised to about 650 ° C. Heat. On the other hand, open the main valve V 0 and the shutoff valves V 1 , V 2 and V 3 and set H 2 to each bubbler 4.
AsH 3 and fed gas or PH 3,, Ga (CH 3 ) 3, In (CH 3)
3 is vaporized and introduced into the reaction vessel 5 by the carrier gas H 2 . As described above, GaAsP or InGaAs is formed on the surface of the substrate 2.
Is formed. In this case, the Ga formed on the substrate 2
The flow rate variable valves 13, 14, 15, 16 control the flow rate of the raw material gas flowing through each gas introduction pipe 11 so that the layer thickness and composition of AsP or InGaAs are most uniform. This flow rate varies depending on the type of source gas, the heating temperature of the substrate 2, the pressure in the growth chamber, etc., but, for example, 1000 SCCM is applied to the valves 14 and 15, and 1500 SCCM is applied to the valves 13 and 16. Thus, the substrate 2
More gas flow to the periphery of the. In the above method, generally, the flow rate conditions that optimize the uniformity of the layer thickness and the uniformity of the composition are the same. FIGS. 3 (a) and 3 (b) show G having a thickness of about 1 μm formed on an InP single crystal substrate having a diameter of 50 mm by the above-mentioned apparatus.
The layer thickness distribution and composition of each aAsP layer (GaAs x P 1-x
3 is a graph showing a distribution of (x values in). The solid line shows the case of using the CVD apparatus of the present invention, and the dotted line shows the case of using the conventional apparatus shown in FIG. 2 (b). As you can see from the figure,
In the conventional device, the layer thickness distribution on a substrate having a diameter of 50 mm was about ± 10% for a thickness of about 1 μm, but according to the device of the present invention, it is improved to about ± 3%. GaA
The composition distribution in the sP layer is about the same at x = 0.53 in GaAs x P 1-x when a substrate with a diameter of 50 mm is used.
What is about ± 10% in the conventional apparatus is homogenized to about ± 3% by the apparatus of the present invention. FIG. 4 is a schematic view showing the outline of the structure of a CVD apparatus according to another embodiment of the present invention. The configuration of the device in the figure is the same except that a mechanism for automatically controlling the variable flow valve is added.
It is almost the same as the case of FIG. The feature of the configuration of this embodiment is that the variable flow rate valves 13, 14, 1
5 and 16 are valves that can be automatically controlled, and a flow meter 1 is installed between each variable flow valve 13,14,15,16 and the main valve V 0.
8,19,20,21 are provided. The control device 22 has a memory and a control unit.
The flow rate value of the raw material gas flowing through each flow rate variable valve 13, 14, 15, 16 in each unit period obtained by dividing the step of depositing the GaAsP layer is recorded in advance. With the start of the process,
The control unit reads these flow rate values from the memory and compares them with the flow rate measurement values sent from the respective flow meters 18, 19, 20, 21. Then, the flow rate variable valves 13, 14, 15, 16 are controlled so that the difference between the flow rate setting value of the memory and the measurement value of the flow meter becomes zero. A mass flow controller may be used instead of the variable flow valve and the flow meter. In the above embodiment, the MOCVD apparatus for depositing the compound semiconductor layer such as GaAsP is shown as an example. In the case of such MOCVD equipment, especially low-pressure MOCVD equipment, AsH 3 , Ga (CH 3 ) 3
It is possible to adopt a structure in which the respective raw material gases such as the above are mixed before the main valve V 0 . [Advantages of the Invention] According to the present invention, it is possible to obtain a deposited layer having excellent uniformity of the layer thickness distribution and the composition distribution of the compound semiconductor layer by the CVD method, and it is possible to improve the characteristics and manufacturing yield of the semiconductor device. effective.
【図面の簡単な説明】
第1図は本発明の一実施例のCVD装置の要部断面図,
第2図(a)および(b)は従来のCVD装置の構成を示
す断面図,
第3図(a)および(b)は本発明のCVD装置を用いて
得られた堆積層の層厚分布および組成分布を示すグラ
フ,
第4図は本発明の他の実施例のCVD装置の要部断面図
である。
図において,
1と11はガス導入管,
2は基板,
3は分枝管,
4はバブラー,
5は反応容器,
6は排気管,
7は支持軸,
8はサセプタ,
10は蓋板,
12は下部,
13と14と15と16は流量可変バルブ,
17は高周波コイル,
18と19と20と21は流量計,
22は制御装置,
V0とV1とV2とV3はバルブ,
である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a main part of a CVD apparatus according to an embodiment of the present invention, and FIGS. 2A and 2B are cross-sectional views showing the configuration of a conventional CVD apparatus. Figures (a) and (b) are graphs showing the layer thickness distribution and composition distribution of the deposited layer obtained by using the CVD apparatus of the present invention, and Fig. 4 is a main part of the CVD apparatus of another embodiment of the present invention. It is sectional drawing. In the figure, 1 and 11 are gas introduction pipes, 2 is a substrate, 3 is a branch pipe, 4 is a bubbler, 4 is a reaction vessel, 5 is an exhaust pipe, 6 is an exhaust pipe, 7 is a support shaft, 8 is a susceptor, 10 is a cover plate, 12 Is a lower part, 13 and 14, 15 and 16 are variable flow valves, 17 is a high frequency coil, 18 and 19 and 20 and 21 are flowmeters, 22 is a controller, V 0 , V 1 and V 2 and V 3 are valves, It is.
Claims (1)
体の反応生成物からなる堆積層を形成するためのCVD装
置であって、複数の原料ガス源はそれぞれバルブを介し
て共通の主ガス導入管に結合され、主ガス導入管の他端
はそれぞれガス流量を制御しうる流量可変バルブを備え
る複数のガス導入管に結合され、ガス導入管の他端は1
枚の基板の載置される回転可能なサセプタを有する反応
容器内に導入され、その先端は互いに密に接近し、かつ
基板に対し垂直で、少くとも一列になって対向する如く
配置されていることを特徴とするCVD装置(57) [Claims] A CVD device for reacting a plurality of source gases to form a deposition layer of a reaction product of a compound semiconductor on the surface of a substrate, wherein a plurality of source gas sources are connected to a common main gas introduction pipe through valves. The other end of the main gas introducing pipe is connected to a plurality of gas introducing pipes each having a flow rate variable valve capable of controlling the gas flow rate, and the other end of the gas introducing pipe is 1
The substrate is introduced into a reaction vessel having a rotatable susceptor on which the substrates are placed, and their tips are arranged so as to closely approach each other and to be perpendicular to the substrate and to face each other in at least one row. CVD apparatus characterized by the following:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299158A JP2668687B2 (en) | 1987-11-27 | 1987-11-27 | CVD device |
US07/271,278 US4980204A (en) | 1987-11-27 | 1988-11-15 | Metal organic chemical vapor deposition method with controlled gas flow rate |
DE88402977T DE3884763T2 (en) | 1987-11-27 | 1988-11-25 | Plant for organometallic chemical deposition from the gas phase and process for its use. |
EP88402977A EP0318395B1 (en) | 1987-11-27 | 1988-11-25 | An apparatus for metal organic chemical vapor deposition and a method using the same |
KR1019880015627A KR920010690B1 (en) | 1987-11-27 | 1988-11-26 | Metal organic chemical vapor deposition apparatus and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299158A JP2668687B2 (en) | 1987-11-27 | 1987-11-27 | CVD device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01140712A JPH01140712A (en) | 1989-06-01 |
JP2668687B2 true JP2668687B2 (en) | 1997-10-27 |
Family
ID=17868880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62299158A Expired - Lifetime JP2668687B2 (en) | 1987-11-27 | 1987-11-27 | CVD device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2668687B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992005577A1 (en) * | 1990-09-21 | 1992-04-02 | Fujitsu Limited | Method and apparatus for growing compound semiconductor crystals |
US5324386A (en) * | 1991-03-19 | 1994-06-28 | Fujitsu Limited | Method of growing group II-IV mixed compound semiconductor and an apparatus used therefor |
JP2677050B2 (en) * | 1991-06-28 | 1997-11-17 | 富士通株式会社 | Vapor phase epitaxial growth equipment |
JPH06295862A (en) * | 1992-11-20 | 1994-10-21 | Mitsubishi Electric Corp | Compound semiconductor fabrication system and organic metal material vessel |
JP2790009B2 (en) * | 1992-12-11 | 1998-08-27 | 信越半導体株式会社 | Method and apparatus for growing silicon epitaxial layer |
KR100282853B1 (en) * | 1998-05-18 | 2001-04-02 | 서성기 | Apparatus for thin film deposition using cyclic gas injection |
KR100319494B1 (en) * | 1999-07-15 | 2002-01-09 | 김용일 | Apparatus for Deposition of thin films on wafers through atomic layer epitaxial process |
US6333272B1 (en) * | 2000-10-06 | 2001-12-25 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
KR100474971B1 (en) * | 2002-09-14 | 2005-03-10 | 주식회사 아이피에스 | Flow type thin film deposition apparatus and injector assembly applied in the same |
KR101188977B1 (en) | 2003-08-20 | 2012-10-08 | 비코 인스트루먼츠 인코포레이티드 | Alkyl push flow for vertical flow rotating disk reactors |
JP2010267982A (en) * | 2010-07-05 | 2010-11-25 | Veeco Instruments Inc | Method and rotary disk type reactor for growing uniform epitaxial layer on the surface of substrate |
US9303319B2 (en) | 2010-12-17 | 2016-04-05 | Veeco Instruments Inc. | Gas injection system for chemical vapor deposition using sequenced valves |
JP6573559B2 (en) * | 2016-03-03 | 2019-09-11 | 東京エレクトロン株式会社 | Vaporizing raw material supply apparatus and substrate processing apparatus using the same |
JP6707676B2 (en) * | 2019-01-07 | 2020-06-10 | 東芝デバイス&ストレージ株式会社 | Method of manufacturing semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369031A (en) * | 1981-09-15 | 1983-01-18 | Thermco Products Corporation | Gas control system for chemical vapor deposition system |
-
1987
- 1987-11-27 JP JP62299158A patent/JP2668687B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
薄膜ハンドブック (昭和58年12月10日,オーム社刊) 第211〜214頁 |
Also Published As
Publication number | Publication date |
---|---|
JPH01140712A (en) | 1989-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4098923A (en) | Pyrolytic deposition of silicon dioxide on semiconductors using a shrouded boat | |
JP2668687B2 (en) | CVD device | |
KR920010690B1 (en) | Metal organic chemical vapor deposition apparatus and its method | |
US5525157A (en) | Gas injectors for reaction chambers in CVD systems | |
JPS6042823A (en) | Method for forming thin film | |
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
US3484311A (en) | Silicon deposition process | |
US4703718A (en) | Vapor deposition apparatus and method of using same | |
CA1325160C (en) | Apparatus for producing compound semiconductor | |
JPH05251359A (en) | Vapor silicon epitaxial growth device | |
CA1280055C (en) | Vapor deposition apparatus | |
JPH0585890A (en) | Apparatus for forming thin film | |
JPS6212697A (en) | Production of silicon carbide single crystal film | |
JPS607378B2 (en) | CVD equipment | |
JPH01257321A (en) | Vapor growth apparatus | |
JPS62142780A (en) | Formation of deposited film | |
JPH03262116A (en) | Cvd device | |
JPH02239187A (en) | Method and device for vapor growth | |
JP3010739B2 (en) | Method and apparatus for growing compound semiconductor crystal | |
CN117821934A (en) | Chamber assembly, air inlet device and substrate processing equipment | |
JPH03137093A (en) | Vapor growth method for organic metal | |
JPH0613320A (en) | Organic metal vapor phase epitaxy method | |
JPH0371622A (en) | Vapor phase growth equipment | |
JPS58140391A (en) | Device for vapor deposition | |
JPH06302516A (en) | Vapor growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 11 |