JP2661286B2 - Photoelectric conversion device - Google Patents
Photoelectric conversion deviceInfo
- Publication number
- JP2661286B2 JP2661286B2 JP1265839A JP26583989A JP2661286B2 JP 2661286 B2 JP2661286 B2 JP 2661286B2 JP 1265839 A JP1265839 A JP 1265839A JP 26583989 A JP26583989 A JP 26583989A JP 2661286 B2 JP2661286 B2 JP 2661286B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode
- photoelectric conversion
- intrinsic
- conversion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体のp−nあるいはp−i−n接合を
用いて、太陽光などの光のエネルギーを電気エネルギー
に変換する光電変換装置に関する。The present invention relates to a photoelectric conversion device that converts light energy such as sunlight into electric energy by using a pn or pin junction of a semiconductor. About.
従来の太陽電池などの光電変換装置は、基板上にp層
とn層あるいはp層とi層とn層の非晶質半導体層を積
層するか、もしくは単結晶シリコン板あるいは多結晶シ
リコン板に周期律表のIII族およびV族の元素を異なる
面からドーピングしてp層とn層を形成することによっ
て生ずるp−n接合あるいはp−i−n接合を利用する
ことが知られている。A conventional photoelectric conversion device such as a solar cell has a structure in which a p-layer and an n-layer or a p-layer, an i-layer, and an n-layer amorphous semiconductor layer are stacked on a substrate, or a single-crystal silicon plate or a polycrystalline silicon plate. It is known to use a pn junction or a pin junction formed by forming a p-layer and an n-layer by doping the elements of group III and group V of the periodic table from different surfaces.
従来の光電変換装置において、積層した非晶質半導体
層の一方から、もしくは単結晶あるいは多結晶シリコン
板の一方の面から入射した光は、光電変換機能を有する
接合に対するまでに不純物がドーピングされたp層ある
いはn層を通過しなければならず、これらのドーピング
層で吸収された光が有効に利用できず、光電変換効率が
向上しないという問題点があった。これに対して、結晶
シリコン板上にp領域とn領域の微細なアレイを形成
し、これらを配線し、これらの上から光を入射させる方
法がある。しかし、このためには、フォトプロセスとド
ーピング過程を多重に繰り返して行う必要があり、きわ
めてコストが高くなるという問題があった。In a conventional photoelectric conversion device, light incident from one of stacked amorphous semiconductor layers or from one surface of a single crystal or polycrystalline silicon plate is doped with impurities to a junction having a photoelectric conversion function. The light must pass through the p-layer or the n-layer, and the light absorbed by these doping layers cannot be used effectively, and the photoelectric conversion efficiency is not improved. On the other hand, there is a method in which a fine array of a p region and an n region is formed on a crystalline silicon plate, these are wired, and light is incident on these. However, for this purpose, it is necessary to repeat the photo process and the doping process in a multiplex manner, resulting in a problem that the cost is extremely high.
本発明の目的は、上述の問題を解決し、光がドーピン
グされた層を通過しないで接合に達して光電変換効率が
高く、しかも安価な光電変換装置を提供することにあ
る。An object of the present invention is to solve the above-described problems and to provide a low-cost photoelectric conversion device which has high photoelectric conversion efficiency by reaching a junction without light passing through a doped layer.
上記の目的を達成するために、本発明の光電変換装置
は、真性半導体層の中に表面の少なくとも一部が第一導
電形の半導体層で覆われた第一電極が分散して埋められ
ており、前記真性半導体層の一面上に第二導電形の半導
体層を介して第二電極が被着するものとする。In order to achieve the above object, in the photoelectric conversion device of the present invention, at least a part of the surface is dispersed and buried in the intrinsic semiconductor layer with the first conductive type semiconductor layer. In addition, a second electrode is attached to one surface of the intrinsic semiconductor layer via a semiconductor layer of a second conductivity type.
第一導電形の層と真性半導体層と第二導電形層とによ
ってp−i−n接合が形成される。真性半導体層の第二
電極が設けられていない側から光を入射させれば、光は
ドーピング層を通らないで光電変換層であるi層に到達
し、ドーピング層内に吸収されることがないので光電変
換効率が向上する。そして、光の入射により生ずる起電
力は、第一電極と第二電極から取り出すことができる。A pin junction is formed by the first conductivity type layer, the intrinsic semiconductor layer, and the second conductivity type layer. When light enters from the side of the intrinsic semiconductor layer where the second electrode is not provided, the light reaches the i-layer which is the photoelectric conversion layer without passing through the doping layer, and is not absorbed in the doping layer. Therefore, the photoelectric conversion efficiency is improved. The electromotive force generated by the incidence of light can be extracted from the first electrode and the second electrode.
第1図は本発明の一実施例の太陽電池を示す。金属あ
るいは他の導電性物質からなり、メッシュ状あるいはす
だれ状に形成された断面直径が1μmなしい100μmの
繊維電極1は、プラズマCVD,光CVDあるいは熱CVDで形成
された、例えば120Åの厚さのp形の非晶質シリコン層
2で覆われている。非晶質シリコンの代わりに非晶質シ
リコンカーバイトを用いてもよい。この上にドーピング
をしない真性あるいはほぼ真性の非晶質シリコン層3が
形成される。各繊維電極1の周りの真性非晶質シリコン
層3は膜厚が厚くなるにつれて、隣接の層同志が接着し
一体化した膜となる。この膜化した真性非晶質シリコン
層3の片面には、例えば150Åの厚さのn形の非晶質シ
リコン層4とその上の金属層状電極5が被着し、他面に
は窒化シリコンからなるパッシベーション膜6が被着し
ている。これにより、繊維電極1を+電極、層状電極を
−電極とする太陽電池が完成する。この太陽電池の繊維
電極1相互間の間隔は必要に応じて可変であるが、p−
i−n接合を形成するのに必要な真性非晶質シリコン層
3の厚さの2倍以下とする。そのような真性非晶質層の
厚さはライフタイムが長くなると厚くなる。FIG. 1 shows a solar cell according to one embodiment of the present invention. A fiber electrode 1 made of metal or other conductive material and having a cross-sectional diameter of 1 μm or 100 μm and formed in a mesh shape or an interdigital shape is formed by plasma CVD, photo CVD or thermal CVD, for example, with a thickness of 120 mm. Is covered with the p-type amorphous silicon layer 2. Amorphous silicon carbide may be used instead of amorphous silicon. An undoped intrinsic or substantially intrinsic amorphous silicon layer 3 is formed thereon. As the film thickness of the intrinsic amorphous silicon layer 3 around each fiber electrode 1 increases, the adjacent layers adhere to each other to form an integrated film. On one surface of the filmed intrinsic amorphous silicon layer 3, an n-type amorphous silicon layer 4 having a thickness of, for example, 150 ° and a metal layer electrode 5 thereon are deposited, and on the other surface, silicon nitride is formed. A passivation film 6 made of Thereby, a solar cell using the fiber electrode 1 as a positive electrode and the layered electrode as a negative electrode is completed. The interval between the fiber electrodes 1 of this solar cell is variable as necessary,
The thickness is not more than twice the thickness of the intrinsic amorphous silicon layer 3 necessary for forming an i-n junction. The thickness of such an intrinsic amorphous layer increases as the lifetime increases.
第2図はこのような太陽電池の繊維電極1の太さをパ
ラメータとした特性とガラス基板上にp,i,n非晶質シリ
コン層を積層した従来品の非晶質シリコン太陽電池の特
性とを示す。繊維電極1はモリブデンからなり、電極の
間隔は繊維の太さの約2倍とした。また、真性層3には
熱CVDで作成したライフタイムの長い光学バンドギャッ
プEg=1.65eVの非晶質シリコンを用い、その膜厚は繊維
の太さの約2倍とした。図から分かるように、短絡電流
の大幅な向上が観測され、その結果繊維電極の太さが4
μmの場合で15%の変換効率が得られている。FIG. 2 shows characteristics of such a solar cell with the thickness of the fiber electrode 1 as a parameter and characteristics of a conventional amorphous silicon solar cell in which p, i, n amorphous silicon layers are laminated on a glass substrate. And The fiber electrode 1 was made of molybdenum, and the interval between the electrodes was about twice the thickness of the fiber. The intrinsic layer 3 was made of amorphous silicon having a long lifetime and an optical band gap E g = 1.65 eV, which was formed by thermal CVD, and its film thickness was about twice the thickness of the fiber. As can be seen from the figure, a significant improvement in the short-circuit current was observed, and as a result, the thickness of the fiber electrode was 4
In the case of μm, a conversion efficiency of 15% is obtained.
第3図は本発明の別の実施例の太陽電池を示し、第1
図の太陽電池と異なる点は、繊維電極1を用いず、金属
多孔平面電極11を用いる点とこの電極の一面上を窒化シ
リコン膜61でパッシベーションしてp層2とi層3の界
面面積を減少させた点である。p/i界面面積が減少する
ため、暗電流が減少し、開放電圧が向上するという特徴
がある。FIG. 3 shows a solar cell according to another embodiment of the present invention.
The difference from the solar cell shown in the figure is that the fiber electrode 1 is not used, the metal porous flat electrode 11 is used, and one surface of this electrode is passivated with a silicon nitride film 61 to reduce the interface area between the p layer 2 and the i layer 3. It is a point that has been reduced. Since the p / i interface area is reduced, the dark current is reduced and the open-circuit voltage is improved.
以上の実施例では真性層に非晶質シリコン層を用いて
いるが、熱CVDで形成した多結晶シリコン層を用いても
同様な効果を得ることができる。またp層とn層を入れ
換えることもできる。しかし、一般的に正孔の拡散長が
電子の拡散長に比較して約1桁低いため、真性層の厚さ
方向の中央にp層が存在する方が好ましい結果を得てい
る。Although the amorphous silicon layer is used as the intrinsic layer in the above embodiment, the same effect can be obtained by using a polycrystalline silicon layer formed by thermal CVD. Further, the p layer and the n layer can be exchanged. However, since the diffusion length of holes is generally about one digit lower than the diffusion length of electrons, it is preferable to have a p-layer at the center of the intrinsic layer in the thickness direction.
本発明によれば、第一電極を第一導電形の層を介して
囲む真性半導体層の光入射側には第二導電形のドーピン
グ層を設けず、反光入射側に設けた第二導電形の層とに
よって形成されるp−i−n接合のi層に直接光を入射
させることにより、短絡電流の大幅な向上が可能とな
り、高い変換効率を得ることができ、しかも、複雑なフ
ォトプロセスが必要でないため、安価な光電変換装置を
製造することができる。According to the present invention, the second conductivity type doping layer is not provided on the light incidence side of the intrinsic semiconductor layer surrounding the first electrode with the first conductivity type layer interposed therebetween, and the second conductivity type provided on the anti-light incidence side is not provided. By directly injecting light into the i-layer of the pin junction formed by the above-mentioned layers, the short-circuit current can be greatly improved, high conversion efficiency can be obtained, and a complicated photo process can be achieved. Is not required, so that an inexpensive photoelectric conversion device can be manufactured.
第1図は本発明の一実施例の太陽電池の部分断面図、第
2図は第1図の太陽電池の特性と繊維電極の太さとの関
係を従来品の特性と比較して示す線図、第3図は本発明
の別の実施例の太陽電池の部分断面図である。 1:繊維電極、2:p形非晶質シリコン層、3:真性非晶質シ
リコン層、4:n形非晶質シリコン層、5:層状電極、11:多
孔平面電極。FIG. 1 is a partial cross-sectional view of a solar cell according to one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the characteristics of the solar cell of FIG. FIG. 3 is a partial sectional view of a solar cell according to another embodiment of the present invention. 1: fiber electrode, 2: p-type amorphous silicon layer, 3: intrinsic amorphous silicon layer, 4: n-type amorphous silicon layer, 5: layered electrode, 11: porous flat electrode.
Claims (1)
が第一導電形の半導体層で覆われた第一電極が分散して
埋められており、前記真性半導体層の一面上に第二導電
形の半導体層を介して第二電極が被着することを特徴と
する光電変換装置。A first electrode having at least a part of a surface covered with a semiconductor layer of a first conductivity type is dispersed and buried in an intrinsic semiconductor layer, and a second electrode is formed on one surface of the intrinsic semiconductor layer. A photoelectric conversion device, wherein a second electrode is attached via a conductive semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1265839A JP2661286B2 (en) | 1989-10-12 | 1989-10-12 | Photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1265839A JP2661286B2 (en) | 1989-10-12 | 1989-10-12 | Photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03126267A JPH03126267A (en) | 1991-05-29 |
JP2661286B2 true JP2661286B2 (en) | 1997-10-08 |
Family
ID=17422782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1265839A Expired - Lifetime JP2661286B2 (en) | 1989-10-12 | 1989-10-12 | Photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2661286B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10054558A1 (en) * | 2000-10-31 | 2002-05-16 | Univ Stuttgart Inst Fuer Physi | Flexible fiber, semiconductor device and textile product |
KR101408376B1 (en) * | 2012-01-27 | 2014-06-19 | 최대규 | Solar cell |
-
1989
- 1989-10-12 JP JP1265839A patent/JP2661286B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03126267A (en) | 1991-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101000064B1 (en) | Heterojunction solar cell and its manufacturing method | |
JP7168800B1 (en) | Solar cells and photovoltaic modules | |
CN1217420C (en) | Photoelectric component and assembly | |
EP1949450A1 (en) | Solar cell of high efficiency and process for preparation of the same | |
CN106531816A (en) | Back-junction back-contact solar cell | |
US20120247539A1 (en) | Rear-Contact Heterojunction Photovoltaic Cell | |
JP2008085374A (en) | Photovoltaic element | |
JP7639208B1 (en) | Solar cell and its manufacturing method, stacked cell, and photovoltaic module | |
US12113139B1 (en) | Solar cell and photovoltaic module | |
CN111799348A (en) | Heterojunction back-contact solar cell and method for forming the same | |
JPS5846074B2 (en) | Method of manufacturing photovoltaic device | |
JP3721620B2 (en) | Parallel integrated solar cell | |
JP2004071763A (en) | Photovoltaic element | |
JP2661286B2 (en) | Photoelectric conversion device | |
JPH11224954A (en) | Solar cell, solar cell module, installation of the solar cell module and manufacture thereof | |
JP6000008B2 (en) | Photoelectric conversion element | |
JP4945916B2 (en) | Photoelectric conversion element | |
JP2004071828A (en) | Solar cell | |
JPH07105513B2 (en) | Photovoltaic device | |
JP2005005376A (en) | Photovoltaic element | |
JPH0548123A (en) | Photoelectric conversion element | |
JP7644287B1 (en) | Solar Cells and Photovoltaic Modules | |
JP7636605B1 (en) | Solar Cells and Photovoltaic Modules | |
CN119342905B (en) | Solar cell and preparation method | |
US20250098365A1 (en) | Solar cell, method for preparing the same, and photovoltaic module |