JP2590002B2 - Microelectrode cell for electrochemical measurement and method for producing the same - Google Patents
Microelectrode cell for electrochemical measurement and method for producing the sameInfo
- Publication number
- JP2590002B2 JP2590002B2 JP63100241A JP10024188A JP2590002B2 JP 2590002 B2 JP2590002 B2 JP 2590002B2 JP 63100241 A JP63100241 A JP 63100241A JP 10024188 A JP10024188 A JP 10024188A JP 2590002 B2 JP2590002 B2 JP 2590002B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- comb
- substrate
- electrodes
- resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、くし形電極,参照電極及び対向電極を一体
化して基板上に形成した電気化学測定用微小電極セルと
その製造方法に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microelectrode cell for electrochemical measurement in which a comb-shaped electrode, a reference electrode and a counter electrode are integrally formed on a substrate, and a method of manufacturing the same. is there.
従来、水中,有機溶媒中,生体中などに含まれるイオ
ン,分子の定性或は定量分析の方法として3つの電気化
学的な測定手法が提案されている。第1の手法は、物質
検出用の1本の電極、及びその対向電極、電位を規定す
るための基準となる参照物質を含む1本の参照電極の3
つの電極をポテンシオスタツトなどの測定器に接続して
行なうものである。また、第2の手法は、電気化学反応
で生成する中間体や活性種を検出し、反応機構を調べる
ため作用電極を2電極とし、一方で電気化学反応を起こ
し、近接するもう一方の電極で活性種や中間体の検出を
行なう回転リング・デイスク電極を用いるものである。
第3図はこの手法の活性種検出を示した原理図である。
回転リング・デイスク電極31とこの電極31を中心として
一定距離を隔てて取りまくリング電極32とから構成され
ている。そして、このデイスク電極31を中心にリング電
極32を回転することにより、測定しようとする溶液の流
れ33を発生させ、溶液層−デイスク電極−リング電極の
方向に溶液中の電解質を輸送する。この結果、電解質の
還元体(Red)は、デイスク電極31で電荷e-が奪われ活
性種である酸化体(Ox)となる。次に、この生成された
酸化体(Ox)がリング電極32で電荷e-を与えられること
により再び還元体(Red)となり、活性種による電荷e-
の移動が行われる。従つて、デイスク電極31とリング電
極32との電位を変えることにより、デイスク電極31で生
成した活性種に反中間体をリング電極32で検出して、そ
れらに関する情報を得ることができる。第3の手法は、
微小領域の電気化学測定を行なう手段として微小電極を
用いるものである。これは一対の電極を有しており、生
体計測用電極,バイオセンサーなどへの応用が数多く提
案されている。また、微小電極を作製する方法として近
年,リソグラフイ技術の応用が提案されている。この方
法は、レジストを基板に塗布し、電極パターンを有する
画像マスクを重ね、露光,及び現像した後、金属薄膜を
蒸着法等により形成させる。そして、レジストを剥離さ
せて、基板上に微小な電極を得ている。この方法では任
意の形状,一定の電極間距離を持つ微小電極を多量に再
現性良く、基板上に作製することができるため、近接さ
せた2本の作用電極を作製すればリング・デイスク電極
と同様な測定可能な電極対や、電気化学素子,センサー
のベース電極などへ応用が可能である。該微細電極作製
法を応用して、これまでにミクロな電気化学トランジス
タ(例えばJ.Phya.Chem.89,5133(1985)),くし形白
金電極を利用した低分子、または高分子錯体の電気化学
測定(Anal.Chem.,58,601(1986))等が行われてい
る。Conventionally, three electrochemical measurement methods have been proposed as a method for qualitative or quantitative analysis of ions and molecules contained in water, an organic solvent, a living body, and the like. The first method is to use one electrode for detecting a substance, its counter electrode, and one reference electrode including a reference substance serving as a reference for defining an electric potential.
One electrode is connected to a measuring instrument such as a potentiostat. In the second method, an intermediate or active species generated by an electrochemical reaction is detected, and the working electrode is used as two electrodes in order to investigate a reaction mechanism. A rotating ring / disk electrode for detecting active species and intermediates is used.
FIG. 3 is a principle diagram showing detection of active species by this method.
It comprises a rotating ring / disk electrode 31 and a ring electrode 32 surrounding the electrode 31 at a fixed distance. By rotating the ring electrode 32 around the disk electrode 31, a flow 33 of the solution to be measured is generated, and the electrolyte in the solution is transported in the direction of the solution layer, the disk electrode, and the ring electrode. As a result, the reduced form (Red) of the electrolyte is deprived of the electric charge e − by the disk electrode 31, and becomes an oxidized form (Ox) as an active species. Next, the generated oxidant (Ox) is again given a charge e − by the ring electrode 32 to become a reductant (Red) again, and the charge e − due to the active species.
Is performed. Therefore, by changing the potential between the disk electrode 31 and the ring electrode 32, the anti-intermediate of the active species generated at the disk electrode 31 can be detected at the ring electrode 32, and information on them can be obtained. The third approach is
A microelectrode is used as a means for performing an electrochemical measurement of a microregion. It has a pair of electrodes, and many applications to biometric electrodes, biosensors and the like have been proposed. In addition, in recent years, application of lithography technology has been proposed as a method for manufacturing a microelectrode. In this method, a resist is applied to a substrate, an image mask having an electrode pattern is overlaid, exposed, and developed, and then a metal thin film is formed by an evaporation method or the like. Then, the resist is peeled off to obtain minute electrodes on the substrate. According to this method, a large number of microelectrodes having an arbitrary shape and a constant interelectrode distance can be formed on a substrate with high reproducibility. The present invention can be applied to a similar electrode pair capable of measurement, a base electrode of an electrochemical device, a sensor and the like. By applying the microelectrode manufacturing method, a microelectrochemical transistor (for example, J. Phya. Chem. 89, 5133 (1985)), a low-molecular or high-molecular complex using a comb-shaped platinum electrode has been developed. Chemical measurements (Anal. Chem., 58, 601 (1986)) and the like have been performed.
しかしながら、従来の3つの電気化学的な測定法には
各々次に述べる欠点を有している。まず、第1手法は、
溶液中のイオン,分子などの被検出物質を直接検出でき
るが、一度分子あるいはイオンを電気化学的に反応さ
せ、その時生成する中間体や活性種を検出することは困
難で、物質の電気化学反応の機構の解明,中間体の同定
に使用するのは困難であつた。また、第2の手法におけ
る回転リング・デイスク電極は、測定時に電極を比較的
高速で回転させる必要があり、高い粘度の溶液系や、固
体電解質中での測定はできなかつた。そして、デイスク
電極で生成した活性種のリング電極上での検出される率
(補足率)が最大でも40%程度で、寿命の短い中間体で
は電極の回転数を向上させる必要があり測定には限界が
ある。さらに、測定100ml程度のかなり多量の溶液を必
要とするため生体サンプルなどの微量溶液測定への応用
は困難であつた。そして、第3の手法の場合、この微小
電極の多くはガラス細管中に金属ワイヤー,炭素線維,
金属塩化物等を封入して作製したもので、この場合、全
く同じ電極形状のものを作製することは困難であり、得
られる電気化学特性も電極形状によりそれぞれ異なるた
め、リング・デイスク電極のように電極形状,電極間距
離が重要な要素となる測定セルを構成することはできな
かつた。また、通常の3電極を用いた測定でも定性的な
データしか得られず、定量的なデータが必要な場合には
前もつて、電極を検定しておく必要があり、多大な測定
時間を必要とした。また、測定により電極が汚染される
等の理由により検定することができない場合には、定量
的なデータを得ることが非常に困難であつた。さらに、
これらの微細電極で電気化学測定用セルやセンサーなど
の電気化学素子を構成するためには、該微細電極以外に
参照電極や対向電極を別に必要とし、測定セル全体では
サイズが増加するため、微小領域における電気化学反応
の測定ができない、作用電極である微細電極と外部にお
いて参照電極または対向電極の間の距離が増加するため
固体電解質等高抵抗な系の測定ではシヤープな応答が得
られにくいなどの欠点があつた。However, each of the three conventional electrochemical measurement methods has the following disadvantages. First, the first method is
The substance to be detected such as ions and molecules in the solution can be directly detected, but it is difficult to electrochemically react the molecules or ions once and detect the intermediates and active species generated at that time. It was difficult to elucidate the mechanism of this and use it to identify intermediates. In addition, the rotating ring / disk electrode in the second method requires that the electrode be rotated at a relatively high speed during measurement, and cannot be measured in a solution system having a high viscosity or in a solid electrolyte. The rate at which active species generated at the disk electrode is detected on the ring electrode (capture rate) is at most about 40%. For intermediates with a short life, the number of revolutions of the electrode needs to be increased. There is a limit. Furthermore, since a considerably large amount of solution of about 100 ml is required for measurement, it has been difficult to apply it to measurement of a small amount of a solution such as a biological sample. In the case of the third method, most of the microelectrodes are made of metal wires, carbon fibers,
It is made by enclosing metal chloride etc.In this case, it is difficult to make the same electrode shape exactly, and the obtained electrochemical characteristics also differ depending on the electrode shape, such as a ring disk electrode In addition, it has not been possible to construct a measurement cell in which the shape of the electrode and the distance between the electrodes are important factors. In addition, only qualitative data can be obtained by measurement using ordinary three electrodes, and when quantitative data is required, it is necessary to test the electrodes beforehand, which requires a lot of measurement time. And Further, when it is not possible to carry out an assay for reasons such as contamination of electrodes by measurement, it has been very difficult to obtain quantitative data. further,
In order to construct an electrochemical element such as a cell for electrochemical measurement or a sensor using these fine electrodes, a reference electrode and a counter electrode are separately required in addition to the fine electrodes. Electrochemical reaction cannot be measured in the region, and the distance between the working electrode and the external reference electrode or counter electrode increases, so it is difficult to obtain a sharp response when measuring a high-resistance system such as a solid electrolyte. Disadvantages.
本発明の目的は、上記の欠点を解決するためになされ
たもので、くし形電極、参照電極及び対向電極の3つの
電極を同一基準上に形成し、外部電極を用いることなく
優れた電気化学測定を行なうことができる電気化学測定
用微小電極セルとその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks, and the three electrodes of a comb-shaped electrode, a reference electrode, and a counter electrode are formed on the same reference, and excellent electrochemical performance is achieved without using external electrodes. An object of the present invention is to provide a microelectrode cell for electrochemical measurement capable of performing measurement and a method for manufacturing the same.
上記の欠点を解決するため本発明は、対向する2つの
電極から交互にくし形状に配設したくし形電極と参照物
質を有する参照電極とこの参照電極に対向する対向電極
とを同一基板上に形成している。In order to solve the above-mentioned drawbacks, the present invention provides a comb-shaped electrode and a reference electrode having a reference substance, which are alternately arranged in a comb shape from two opposing electrodes, and a counter electrode facing the reference electrode on the same substrate. Has formed.
また、絶縁性の基板上に前記3つの電極をリソグラフ
イ技術によつて形成し、この3つの電極とこの電極パツ
ドのみを残して絶縁膜で覆い、前記参照電極を前記参照
物質で覆つている。Further, the three electrodes are formed on an insulating substrate by lithography technology, covered with an insulating film except for the three electrodes and the electrode pad, and the reference electrode is covered with the reference material. .
くし形電極と参照電極と対向電極とを測定しようとす
る溶液に浸漬させ、この3つの電極の電位を変えること
により、溶液中のイオン,分子を測定する。Ions and molecules in the solution are measured by immersing the comb-shaped electrode, the reference electrode, and the counter electrode in the solution to be measured, and changing the potentials of the three electrodes.
以下、本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
実施例1 1μmの酸化膜付きシリコンウエハー(大阪チタニウ
ム社製)上に、フオトレジスト(シツプレー社製AZ−14
00−27)を1μmの厚みに塗布した。このレジスト塗布
シリコンウエハーをオーブン中にいれ80℃,30分の条件
でベークした。その後、クロムマスクを用いて、マスク
アライナー(キヤノン製)により20秒間密着露光した。
露光したシリコンウエハーはモノクロルベンゼン中に10
分間浸漬した後、レジスト現像液(シプレー社製,AZデ
ベロパー)中で、20℃,120秒間現像を行い、水洗、乾燥
してマスクパターンをレジストに転写した。Example 1 A photoresist (AZ-14 manufactured by Shipley Co., Ltd.) was placed on a silicon wafer having a 1 μm oxide film (manufactured by Osaka Titanium Co., Ltd.).
00-27) was applied to a thickness of 1 μm. The resist-coated silicon wafer was placed in an oven and baked at 80 ° C. for 30 minutes. Thereafter, contact exposure was performed for 20 seconds with a mask aligner (manufactured by Canon) using a chrome mask.
The exposed silicon wafer is 10% in monochlorobenzene.
After immersion for 20 minutes, development was carried out at 20 ° C. for 120 seconds in a resist developing solution (AZ Developer, Shipley), washed with water and dried to transfer the mask pattern to the resist.
このレジストパターン付き基板をスパツタ装置(アネ
ルバ製:SPF332H)内の所定位置に取り付け、クロム、及
び白金を順次スパツタデポを行つた。圧力10-2Torr,ア
ルゴン雰囲気で、クロム10秒,白金:1分間スパツタを行
い全体で1000Aの膜厚とした。その後、基板をメチルエ
チルケトン中に浸漬して超音波処理を行い、電極形成部
分以外のレジストを剥離して電極パターンを得た。その
後、該基板の参照電極のみリード線を接続して60℃に加
熱した銀メツキに浸漬し、参照電極部分のみに電流密度
1mA,10秒間通電して、銀メツキを行い、参照電極上へ参
照物質にあたる銀を析出させた。The substrate with the resist pattern was mounted at a predetermined position in a spatter device (SPF332H, manufactured by Anelva), and chromium and platinum were sequentially sputter deposited. Sputtering was carried out under a pressure of 10 -2 Torr and an argon atmosphere for 10 seconds for chromium and for 1 minute for platinum, to a total thickness of 1000 A. Thereafter, the substrate was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist except for the portion where the electrode was formed was removed to obtain an electrode pattern. After that, only the reference electrode of the substrate was connected to a lead wire and immersed in a silver plating heated to 60 ° C.
By applying a current of 1 mA for 10 seconds, silver plating was performed to deposit silver as a reference substance on the reference electrode.
メツキ後、スピンオングラス(東京応化製OCDType−
7)を用い、該基板上にスピンコート法により塗布した
後、450℃で熱硬化し、再び、レジストを基板上へ塗布
し、80℃,30分ベーキングを行つた後、マスクを用いて
露光,現像し、くし型電極部分,参照電極先端部分,対
向電極を残して、レジストで覆つた。After Mekko, spin on glass (OCD Type-
7) Using spin coating on the substrate, heat-setting at 450 ° C., applying a resist on the substrate again, baking at 80 ° C. for 30 minutes, and exposing using a mask , Developed, and covered with resist except for the comb electrode portion, the reference electrode tip portion, and the counter electrode.
該パターニング後の基板はレジストをマスクにしてス
ピンオングラスのCF4ガスによる反応性イオンエツチン
グ(アネルバ製DM−451を使用)を行い、くし型電極部
分,参照電極先端部分,対向電極を露出させた。The substrate after the patterning was subjected to reactive ion etching (using DM-451 manufactured by Anelva) using CF 4 gas of spin-on glass using a resist as a mask to expose a comb-shaped electrode portion, a reference electrode tip portion, and a counter electrode. .
第1図は作製した電気化学測定用微小電極セルの平面
図である。図において、1a,2aは対向するように配設し
た櫛型電極のリード部、1b,2bはこの電極パッド、3は
参照電極、4は対向電極、3b,4bは各々リード部3a,4aで
接続された電極パツド、5は絶縁膜、6は絶縁基板にあ
たる酸化膜つきのシリコン基板である。また、第2図は
第1図の記号A部の拡大図である。図において、1及び
2は各々対向するリード部分1a,2aに対向して、かみ合
うよう複数配設したくし形電極である。第1の実施例に
おいては、電極のピツチを5μm,ギヤツプ2μm,櫛の長
さを2mmとした。FIG. 1 is a plan view of the manufactured microelectrode cell for electrochemical measurement. In the figure, reference numerals 1a and 2a denote lead portions of comb-shaped electrodes arranged so as to face each other, reference numerals 1b and 2b denote electrode pads, reference numeral 3 denotes a reference electrode, reference numeral 4 denotes a counter electrode, and reference numerals 3b and 4b denote lead portions 3a and 4a, respectively. The connected electrode pads 5, 5 are insulating films, and 6 is a silicon substrate with an oxide film corresponding to the insulating substrate. FIG. 2 is an enlarged view of a portion A in FIG. In the drawing, reference numerals 1 and 2 denote comb-shaped electrodes which are arranged so as to mesh with each other so as to face the lead portions 1a and 2a facing each other. In the first embodiment, the electrode pitch was 5 μm, the gap was 2 μm, and the comb length was 2 mm.
この微小電気化学測定用セルを1mmolのフエロセン,0.
1molの支持電解質(テトラエチルアンモニウム・パーク
ロレート)を溶かしたアセトニトリル溶液に浸し、パッ
ドをそれぞれバイポテンシオスタツトにリード線を介し
て接続し、1つのくし型電極を−0.3Vから0.5Vまで100m
V/secで電位走査を、他方を電位−0.3Vに固定して電流
値の測定を行うと、前者はフエロセンの酸化反応、後者
は還元反応を示す限界電流が観測された。両者の電流値
の大きさより一方のくし型電極で酸化されたフエロセン
分子の他方のくし型電極での補足率は67%あることがわ
かり、通常の回転リングデイスク電極で得られる値より
32%ほど高い補足率が得られた。また、サンプル溶液1m
l以下で充分に測定を行うことができ、リングデイスク
法に比較し溶液量を1/100以下に減らすことができた。The cell for microelectrochemical measurement was 1 mmol of ferrocene, 0.
Immerse in 1 mol of supporting electrolyte (tetraethylammonium perchlorate) in acetonitrile solution, connect each pad to bipotentiostat via lead wire, and connect one comb-shaped electrode from -0.3V to 0.5V for 100m.
When the potential was scanned at V / sec and the current was measured while the other was fixed at a potential of -0.3 V, the former showed a limit current indicating an oxidation reaction of ferrocene, and the latter a reduction current indicating a reduction reaction. From the magnitude of the current values of both, it was found that the capture ratio of oxidized ferrocene molecules at one comb-shaped electrode at the other comb-shaped electrode was 67%, which was higher than the value obtained with a normal rotating ring disk electrode.
A capture rate as high as 32% was obtained. Also, sample solution 1m
The measurement could be performed sufficiently at l or less, and the amount of solution could be reduced to 1/100 or less as compared with the ring disk method.
また、ポリエチレンオキサイド(アルドリツチ製,重
量平均分子量:600,000)0.9gとトリフルオロメタンスル
ホン酸リチウム0.2gをアセトニトリルとメタノール9対
1の混合溶媒100mlに溶解させ、溶液を該微小電極セル
上に30μlたらして溶媒を乾燥させ高分子フイルムを得
た。その後電極をバイポテンシオスタツトに接続し、1
つのくし型電極を−0.3Vから0.5Vまで100mV/secで電位
走査を、他方を電位−0.3Vに固定して電流値の測定を行
うと、前者はフエロセンの酸化反応、後者は還元反応を
示す限界電流が観測された。両者の電流値の大きさより
一方のくし型電極で酸化されたフエロセン分子の他方の
くし型電極での補足率は20%の値が得られ、従来のリン
グ・デイスク電極では測定できなかつた固体電解質中の
反応中間体の検出が充分可能であることが分かつた。Also, 0.9 g of polyethylene oxide (manufactured by Aldrich, weight average molecular weight: 600,000) and 0.2 g of lithium trifluoromethanesulfonate are dissolved in 100 ml of a mixed solvent of 9: 1 acetonitrile and methanol, and 30 μl of the solution is placed on the microelectrode cell. The solvent was dried to obtain a polymer film. The electrode is then connected to a bipotentiostat and
When the potential of one comb-shaped electrode is scanned from -0.3 V to 0.5 V at 100 mV / sec and the other is fixed at a potential of -0.3 V and the current value is measured, the former performs the oxidation reaction of ferrocene and the latter performs the reduction reaction. The indicated limiting current was observed. From the magnitude of both current values, the capture rate of the oxidized ferrocene molecules at one comb-shaped electrode at the other comb-shaped electrode is 20%, which is a solid electrolyte that cannot be measured with the conventional ring-disk electrode. It has been found that the detection of the reaction intermediate therein is sufficiently possible.
実施例2 1μmの酸化膜付きシリコンウエハー(大阪チタニウ
ム社製)上にフオトレジスト(シツプレー社製AZ−1400
−27)を1μmの厚みに塗布した。このレジスト塗布シ
リコンウエハーをオーブン中にいれ80℃,30分の条件で
ベークした。その後、クロムマスクを用いて、、マスク
アライナー(キヤノン製)により20秒間密着露光した。
露光したシリコンウエハーはモノクエロルベンゼン中に
10分間浸漬した後、レジスト現像液(シプレー社製,AZ
デベロパー)中で、20℃,120秒間現像を行い、水洗、乾
燥してマスクパターンをレジストに転写した。Example 2 A photoresist (AZ-1400 manufactured by Shipley Co., Ltd.) was placed on a silicon wafer having a 1 μm oxide film (manufactured by Osaka Titanium Co., Ltd.).
-27) was applied to a thickness of 1 μm. The resist-coated silicon wafer was placed in an oven and baked at 80 ° C. for 30 minutes. Thereafter, contact exposure was performed for 20 seconds by a mask aligner (manufactured by Canon Inc.) using a chrome mask.
Exposed silicon wafer in monochlorobenzene
After immersion for 10 minutes, use a resist developer (Zipley, AZ
(Developer), developed at 20 ° C. for 120 seconds, washed with water and dried to transfer the mask pattern to the resist.
このレジストパターン付き基板を真空蒸着装置(日本
真空製)内の所定位置に取り付け、抵抗線加熱蒸着法に
よりクロム、及び金を順次蒸着させた。クロムは5秒
間,金は3分間,圧力10-6Torr下で蒸着し、全体で1000
〜2000Aの膜厚になるように蒸着を行つた。その後、基
板をメチルエチルケトン中に浸漬して超音波処理を行
い、電極形成部分以外のレジストを剥離して電極パター
ンを得た。かみ合つたくし型電極の長さ:2mm,ピツチ:8
μm,ギヤツプ:5μmとした。その後、参照電極部分のみ
に実施例1と同一条件で、銀メツキを行い、参照電極上
へ参照物質にあたる銀を析出させた。The substrate with the resist pattern was attached to a predetermined position in a vacuum deposition apparatus (manufactured by Nippon Vacuum), and chromium and gold were sequentially deposited by a resistance wire heating deposition method. Chromium is deposited for 5 seconds and gold for 3 minutes under a pressure of 10 -6 Torr, for a total of 1000
Deposition was performed to a film thickness of 20002000 A. Thereafter, the substrate was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist except for the portion where the electrode was formed was removed to obtain an electrode pattern. Length of interdigitated comb-shaped electrode: 2 mm, pitch: 8
μm, gap: 5 μm. Thereafter, silver plating was performed only on the reference electrode portion under the same conditions as in Example 1, and silver as a reference substance was deposited on the reference electrode.
メツキ後、スピンオングラス(東京応化製OCDType−
7)を用い、該基板上にスピンコート法により塗布した
後、450℃で熱硬化し、再び、レジストを基板上へ塗布,
80℃,30分ベーキングを行つた後、マスクを用いて露
光,現像し、くし形電極部分,参照電極先端部分,対向
電極を残して、レジストで覆つた。After Mekko, spin on glass (OCD Type-
7) using spin coating method on the substrate, heat curing at 450 ° C., and applying resist again on the substrate.
After baking at 80 ° C. for 30 minutes, it was exposed and developed using a mask, and covered with a resist except for a comb-shaped electrode portion, a reference electrode tip portion, and a counter electrode.
該パターニング後の基板はレジストをマスクにしてス
ピンオングラスのCF4ガスによる反応性イオンエツチン
グ(アネルバ製DM−451を使用)を行い、くし型電極部
分,参照電極先端部分,対向電極を露出させた。The substrate after the patterning was subjected to reactive ion etching (using DM-451 manufactured by Anelva) using CF 4 gas of spin-on glass using a resist as a mask to expose a comb-shaped electrode portion, a reference electrode tip portion, and a counter electrode. .
この微小電気化学測定用セルを1mmolのフエロセン,0.
1molの支持電解質(テトラエチルアンモニウム・パーク
ロレート)を溶かしたアセトニトリル溶液に浸し、パッ
ドをそれぞれバイポテンシオスタツトにリード線を介し
て接続し、1つのくし型電極を−0.3Vから0.5Vまで100m
V/secで電位走査を、他方を電位−0.3Vに固定して電流
値の測定を行うと、前者はフエロセンの酸化反応、後者
は還元反応を示す限界電流が観測された。両者の電流値
の大きさより一方のくし型電極で酸化されたフエロセン
分子の他方のくし型電極での補足率は45%あることがわ
かり、通常の回転リングデイスク電極で得られる値より
10%ほど高い補足率が得られた。また、サンプル溶液1m
l以下で充分に測定を行うことができ、リングデイスク
法に比較し溶液を1/100以下に減らすことができた。The cell for microelectrochemical measurement was 1 mmol of ferrocene, 0.
Immerse in 1 mol of supporting electrolyte (tetraethylammonium perchlorate) in acetonitrile solution, connect each pad to bipotentiostat via lead wire, and connect one comb-shaped electrode from -0.3V to 0.5V for 100m.
When the potential was scanned at V / sec and the current was measured while the other was fixed at a potential of -0.3 V, the former showed a limit current indicating an oxidation reaction of ferrocene, and the latter a reduction current indicating a reduction reaction. From the magnitude of both current values, it was found that the capture rate of the oxidized ferrocene molecules at one comb-shaped electrode at the other comb-shaped electrode was 45%, which was higher than the value obtained with a normal rotating ring disk electrode.
A capture rate as high as 10% was obtained. Also, sample solution 1m
The measurement could be performed sufficiently at l or less, and the solution could be reduced to 1/100 or less as compared with the ring disk method.
実施例3 厚み0.5mmの石英基板上に、電子線レジスト(φ−MA
C,ダイキン工業社製)を0.5μmの厚みに塗布した。こ
のレジスト塗布石英基板をオーブン中にいれ180℃,60分
の条件でベークした。その後、電子線露光装置(日本電
子:JSM−840)に入れ、電子線の加速電圧:5KV,露光量:5
μC/cm2の条件でかみ合つたくし型部分のみを露光し
た。電子線露光後、専用現像液により現像,洗浄したレ
ジストパターン付き基板は、実施例1と同様な方法で順
次クロム,白金のスパツタを行つた後、レジストを剥離
除去した。この基板にフオトレジスト(シツプレー社製
AZ−1400−27)を1μmの厚みに塗布し、80℃,30分,
ベイク後、フオトマスクを位置合わせを行つてレジスト
付き基板に密着させ、リードおよび参照電極および対向
電極およびパツドのパターンを実施例2と同一条件で露
光後、クロルベンゼン処理,現像,クリーニング,クロ
ム,白金のスパツタデポ,レジストの剥離を行い、電極
セルパターンを形成した。Example 3 An electron beam resist (φ-MA) was formed on a quartz substrate having a thickness of 0.5 mm.
C, manufactured by Daikin Industries, Ltd.) to a thickness of 0.5 μm. The resist-coated quartz substrate was baked at 180 ° C. for 60 minutes in an oven. After that, it was put into an electron beam exposure system (JEOL: JSM-840), and the electron beam acceleration voltage: 5 KV, exposure amount: 5
Under the condition of μC / cm 2 , only the interdigitated comb-shaped portions were exposed. After the electron beam exposure, the resist-patterned substrate developed and washed with the dedicated developer was sequentially sputtered with chromium and platinum in the same manner as in Example 1, and then the resist was peeled off. A photoresist (made by Shipley Co., Ltd.)
AZ-1400-27) is applied to a thickness of 1 μm, and the temperature is 80 ° C., 30 minutes,
After baking, the photomask is aligned and brought into close contact with the resist-coated substrate, and the patterns of the lead, the reference electrode, the counter electrode and the pad are exposed under the same conditions as in Example 2, and chlorobenzene treatment, development, cleaning, chromium, platinum The spatter deposit and the resist were stripped to form an electrode cell pattern.
作製したかみ合つたくし型電極サイズはピツチ:35μ
m,ギヤツプ:0.5μm,くしの長さ:1.0mmとした。The fabricated interdigitated electrode size is pitch: 35μ.
m, gap: 0.5 μm, comb length: 1.0 mm.
電極セルパターンを形成した基板は実施例1と同様な
方法で参照電極上への銀メツキ,4本の電極,パツド部分
以外へのスピンオングラス絶縁膜作製を行つて、微小電
気化学測定用電極セルを得た。The substrate on which the electrode cell pattern was formed was fabricated in the same manner as in Example 1 by performing silver plating on the reference electrode, four electrodes, and spin-on-glass insulating films on portions other than the pad portion. I got
この微小電気化学測定用セルを1mmolのフエロセン,0.
1molの支持電解質(テトラエチルアンモニウム・パーク
ロレート)を溶かしたアセトニトリル溶液に浸し、パッ
ドをそれぞれバイポテンシオスタツトにリード線を介し
て接続し、1つのくし型電極を−0.3Vから0.5Vまで100m
V/secで電位走査を、他方を電位−0.3Vに固定して電流
値の測定を行うと、前者はフエロセンの酸化反応,後者
は還元反応を示す限界電流が観測された。両者の電流値
の大きさより一方のくし型電極で酸化されたフエロセン
分子の他方のくし型電極での補足率は80%あることがわ
かり、通常の回転リングデイスク電極で得られる値より
45%ほど高い補足率が得られた。また、サンプル溶液50
μmで充分に測定を行うことができ、リングデイスク法
に比較し溶液量を大幅に減らすことができる。The cell for microelectrochemical measurement was 1 mmol of ferrocene, 0.
Immerse in 1 mol of supporting electrolyte (tetraethylammonium perchlorate) in acetonitrile solution, connect each pad to bipotentiostat via lead wire, and connect one comb-shaped electrode from -0.3V to 0.5V for 100m.
When the potential scan was performed at V / sec and the other was fixed at a potential of −0.3 V, and the current value was measured, the limit current indicating the oxidation reaction of ferrocene and the reduction reaction was observed in the former and the latter, respectively. From the magnitude of both current values, it was found that the capture ratio of the oxidized ferrocene molecule at one comb electrode at the other comb electrode was 80%, which was higher than the value obtained with a normal rotating ring disk electrode.
A capture rate as high as 45% was obtained. Also, sample solution 50
The measurement can be performed sufficiently at μm, and the amount of solution can be significantly reduced as compared with the ring disk method.
実施例4〜7 実施例1と同様な方法によりくし型長:2mm,ピツチ:4
μm,ギヤツプ:1μm(実施例4),6μm,ギヤツプ:3μm
(実施例5),ピツチ:7μm,ギヤツプ:4μm(実施例
6)の、実施例3と同様な方法でくし形長:1mm,ピツチ:
1.5μm,ギヤツプ:0.5μm(実施例7)のかみ合つた2
つの微小くし型電極を含む微小電気化学測定用電極セル
を作製した。Examples 4 to 7 Comb mold length: 2 mm, pitch: 4 by the same method as in Example 1.
μm, gap: 1 μm (Example 4), 6 μm, gap: 3 μm
(Embodiment 5) Comb length: 1 mm, pitch: 7 μm, gap: 4 μm (embodiment 6), in the same manner as in embodiment 3, pitch:
1.5 μm, gap: 0.5 μm (Example 7)
An electrode cell for microelectrochemical measurement including two micro-comb electrodes was fabricated.
これらの電極セルを用いて実施例1と同様な方法で測
定したフエロセンの補足率(条件は実施例2と同様)と
微小くし型電極サイズの関係を実施例1〜3の結果と合
わせ表1に示す。Table 1 shows the relationship between the supplementation ratio of ferrocene (the conditions were the same as in Example 2) and the size of the micro-comb electrodes, which were measured in the same manner as in Example 1 using these electrode cells, together with the results of Examples 1 to 3. Shown in
このように、くし型電極ピツチ(ギヤツプ)と補足率
の関係(標準物質:1mmolフエロセン,0.1molテトラエチ
ルアンモニウム・パークロレートのアセトニトリル溶液
で測定)はいずれのセルも通常のリング・テイスク電極
を用いて得られる補足率より、極めて大きな値が得られ
ている。 As described above, the relationship between the comb-shaped electrode pitch (gap) and the capture rate (measured with acetonitrile solution of standard substance: 1 mmol ferrocene, 0.1 mol tetraethylammonium perchlorate) was measured using a normal ring-and-disk electrode in each cell. An extremely large value is obtained from the obtained supplementation ratio.
なお、本発明に係る電気化学測定用微小電極セルの作
製材料として、上記の実施例に示した材料を含め次に挙
げる材料を使用してもよい。表面あるいは全体が絶縁性
の基板としては、酸化膜つきシリコン基板,石英板,酸
化アルミニウム基板,ガラス基板,プラスチツク基板な
どを挙げることができる。電極用の金属としては金,白
金,銀,クロム,チタン,ステンレスなどを挙げること
ができる。電極用の半導体としてはp及びn型シリコ
ン,p型及びn型ゲルマニウム,硫化カドミウム,二酸化
チタン,酸化亜鉛,ガリウムリン,ガリウム砒素,イン
ジウムリン,カドミウムセレン,カドミウムテルル,二
硫化モリブデン、セレン化タングステン,二酸化銅,酸
化スズ,酸化インジウム,インジウムスズ酸化物などを
挙げることができる。半金属としては半導性カーボンを
挙げることができる。参照電極上の参照物質としては、
銀,塩化銀,ポリビニルフエロセン等を挙げることがで
きる。絶縁膜としては酸化シリコン,二酸化シリコン,
窒化シリコン,シリコーン樹脂,ポリイミド及びその誘
導体,エポキシ樹脂,高分子熱硬化物などを挙げること
ができる。In addition, the following materials including the materials shown in the above-described examples may be used as materials for manufacturing the microelectrode cell for electrochemical measurement according to the present invention. Examples of the substrate having an insulating surface or the whole include a silicon substrate provided with an oxide film, a quartz plate, an aluminum oxide substrate, a glass substrate, and a plastic substrate. Examples of the metal for the electrode include gold, platinum, silver, chromium, titanium, and stainless steel. Semiconductors for electrodes include p- and n-type silicon, p-type and n-type germanium, cadmium sulfide, titanium dioxide, zinc oxide, gallium phosphide, gallium arsenide, indium phosphide, cadmium selenium, cadmium tellurium, molybdenum disulfide, tungsten selenide , Copper dioxide, tin oxide, indium oxide, indium tin oxide and the like. The semimetal includes semiconductive carbon. As the reference substance on the reference electrode,
Silver, silver chloride, polyvinyl ferrocene and the like can be mentioned. Silicon oxide, silicon dioxide,
Examples thereof include silicon nitride, silicone resin, polyimide and its derivatives, epoxy resin, and thermosetting polymer.
また、微小電極を作製する際には、基板上にレジスト
を塗布し、そこに電流のパターンを有する画像マスクを
重ね、あるいは電子線などを用いて直接パターンを露光
し、現像してパターンを基板上のレジストに転写した
後、スパツタ,蒸着,CVD,塗布法により金属,半導体,
または半金属薄膜を形成し、その後レジストを剥離する
と基板上に4電極からなる微細電気化学セルを得るリフ
トオフ法や、基板上にスパツタ,蒸着,CVD,塗布法によ
り金属,半導体,または半金属膜を形成し、その上にレ
ジストを塗布し、電極のパターンを有する画像マスクを
重ね、あるいは電子線などを用いて直接パターンを露光
し、現像してパターンをレジストに転写した後、これを
マスクとして下地の金属,半導体,または半金属をエツ
チングすることにより基板上に4電極からなる微細電気
化学セルを得るエツチング法などを用いてもよい。Also, when fabricating microelectrodes, a resist is applied on the substrate, an image mask having a current pattern is overlaid thereon, or the pattern is directly exposed using an electron beam or the like and developed to develop the pattern on the substrate. After transfer to the resist above, metal, semiconductor, spatter, evaporation, CVD, coating method
Alternatively, a semi-metallic thin film is formed, and then the resist is peeled off to obtain a fine electrochemical cell consisting of four electrodes on the substrate, or a metal, semiconductor, or semi-metallic film on the substrate by sputtering, vapor deposition, CVD, or coating. After applying a resist on it, overlaying an image mask with an electrode pattern, or directly exposing the pattern using an electron beam, etc., developing and transferring the pattern to the resist, this is used as a mask An etching method for obtaining a fine electrochemical cell composed of four electrodes on a substrate by etching a base metal, semiconductor, or semimetal may be used.
さらに参照電極を作製するにはくし型電極以外の2つ
の電極のうち1つの電極上に参照物質となる金属,有機
酸化還元性高分子をメツキ,電解重合法により形成して
もよい。Further, in order to manufacture a reference electrode, a metal serving as a reference substance and an organic redox polymer may be formed on one of two electrodes other than the comb electrode by plating and electrolytic polymerization.
以上説明したように本発明は、同一基板上にくし型電
極、参照電極及び対向電極の3つの電極を形成している
ため、補足率が高く精度の良い測定が可能となる。ま
た、従来の回転リング・デイスク電極を用いた測定を比
較して外部電極や電極の回転を必要としないため、微量
試料の測定や生体サンプルなどの測定が可能になるなど
極めて顕著な効果を有する。As described above, according to the present invention, since the three electrodes of the comb-shaped electrode, the reference electrode, and the counter electrode are formed on the same substrate, the measurement can be performed with high capture rate and high accuracy. Also, compared with the measurement using the conventional rotating ring / disk electrode, there is no need to rotate the external electrode or the electrode, so it has a very remarkable effect such as the measurement of a trace sample or the measurement of a biological sample. .
さらに、絶縁基板上の電極をリソグラフイ技術を用い
て形成するため、電極形状の安定したものを得ることが
できると共に、形状の設計に自由度を与え、安価で多量
に生産できる効果を有する。Further, since the electrodes on the insulating substrate are formed by using lithography technology, it is possible to obtain a stable electrode shape, to provide a degree of freedom in shape design, and to produce inexpensively and in large quantities.
第1図は本発明に係る一実施例を示した電気化学測定用
微小電極セルの平面図、第2図は第1図の記号A部の拡
大図、第3図は従来の回転リング・デイスク電極の原理
図である。 1,2……くし型電極,1a,2a……リード部、1b,2b……電極
パツド、3……参照電極、4……対向電極、3a,4a……
リード部、3b,4b……電極パツド、5……絶縁膜、6…
…酸化膜つきのシリコン基板。FIG. 1 is a plan view of a microelectrode cell for electrochemical measurement showing an embodiment according to the present invention, FIG. 2 is an enlarged view of a symbol A in FIG. 1, and FIG. 3 is a conventional rotating ring disk. It is a principle diagram of an electrode. 1,2 ... comb-shaped electrode, 1a, 2a ... lead part, 1b, 2b ... electrode pad, 3 ... reference electrode, 4 ... counter electrode, 3a, 4a ...
Lead part, 3b, 4b ... electrode pad, 5 ... insulating film, 6 ...
... a silicon substrate with an oxide film.
Claims (2)
イオン,分子を測定する電気化学測定用微小電極セルに
おいて、 対向する2つの電極から交互にくし形状に配設したくし
形電極と参照物質を有する参照電極とこの参照電極に対
向する対向電極とを同一基板上に形成したことを特徴と
する電気化学測定用微小電極セル。1. A microelectrode cell for electrochemical measurement for measuring ions and molecules contained in water, an organic solvent, and a living body, comprising a comb-shaped electrode alternately arranged in a comb shape from two opposing electrodes. A microelectrode cell for electrochemical measurement, wherein a reference electrode having a reference substance and a counter electrode facing the reference electrode are formed on the same substrate.
交互にくし形に配設したくし形電極と、参照物質を有す
る参照電極と、この参照電極に対向する対向電極とをリ
ソグラフィ技術によって形成し、前記3つの電極及びこ
の電極パッドのみを残して絶縁膜で覆い、前記参照電極
を前記参照物質で覆うことを特徴とする電気化学測定用
微小電極セルの製造方法。2. A lithography technique comprising: a comb-shaped electrode alternately arranged from two electrodes facing each other on an insulating substrate; a reference electrode having a reference substance; and a counter electrode facing the reference electrode. A method of manufacturing a microelectrode cell for electrochemical measurement, comprising covering the insulating layer with only the three electrodes and the electrode pad, and covering the reference electrode with the reference substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100241A JP2590002B2 (en) | 1988-04-25 | 1988-04-25 | Microelectrode cell for electrochemical measurement and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100241A JP2590002B2 (en) | 1988-04-25 | 1988-04-25 | Microelectrode cell for electrochemical measurement and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01272958A JPH01272958A (en) | 1989-10-31 |
JP2590002B2 true JP2590002B2 (en) | 1997-03-12 |
Family
ID=14268755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63100241A Expired - Lifetime JP2590002B2 (en) | 1988-04-25 | 1988-04-25 | Microelectrode cell for electrochemical measurement and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590002B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1205474C (en) * | 2001-05-29 | 2005-06-08 | 松下电器产业株式会社 | biological sensor |
US9541518B2 (en) | 2012-05-17 | 2017-01-10 | Panasonic Intellectual Property Management Co., Ltd. | Electrochemical detector and method for producing same |
-
1988
- 1988-04-25 JP JP63100241A patent/JP2590002B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01272958A (en) | 1989-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0185941B1 (en) | Polymer-based microelectronic pH-sensor | |
US5378343A (en) | Electrode assembly including iridium based mercury ultramicroelectrode array | |
EP0569908B1 (en) | Electrochemical detection method and apparatus therefor | |
Niwa | Electroanalysis with interdigitated array microelectrodes | |
CN101960300B (en) | Method for detecting or quantifying target substance using electrochemical measuring device, electrochemical measuring device, and electrode plate for electrochemical measuring | |
WO2001001122A1 (en) | Micro reference electrode | |
Pak et al. | An ultrathin platinum film sensor to measure biomolecular binding | |
JPH0627081A (en) | Method and equipment for electrochemical detection | |
JPH052007A (en) | Wall jet-type electrochemical detector and its manufacture | |
JP2556993B2 (en) | Micropore electrode cell for electrochemical measurement and method for producing the same | |
JP2590002B2 (en) | Microelectrode cell for electrochemical measurement and method for producing the same | |
JPH03179248A (en) | Fine pore array electrode for electrochemical analysis and manufacture thereof | |
JP2622589B2 (en) | Microelectrode cell for electrochemical measurement and method for producing the same | |
Duan et al. | Geometry-on-demand fabrication of conductive microstructures by photoetching and application in hemostasis assessment | |
JP2590004B2 (en) | Comb-shaped modified microelectrode cell and method for producing the same | |
KR20120126977A (en) | CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same | |
CN108845017A (en) | A kind of flexible ion transducer based on two tungsten selenides | |
JP2564030B2 (en) | Method for producing carbon thin film electrode for electrochemical measurement | |
JP2009210362A (en) | Microelectrochemical detector | |
JPH02140655A (en) | Electrochemical detector and production thereof | |
JPH01301159A (en) | Very small electrode cell for electrochemical measurement and production thereof | |
JPH0251055A (en) | Electrode cell for electrochemical measurement and manufacture thereof | |
JPS58167951A (en) | Chlorine ion sensor | |
JPH09127039A (en) | Electrochemical detector and its manufacture | |
JP2566173B2 (en) | Electrochemical detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |