[go: up one dir, main page]

JP2566173B2 - Electrochemical detector - Google Patents

Electrochemical detector

Info

Publication number
JP2566173B2
JP2566173B2 JP2033965A JP3396590A JP2566173B2 JP 2566173 B2 JP2566173 B2 JP 2566173B2 JP 2033965 A JP2033965 A JP 2033965A JP 3396590 A JP3396590 A JP 3396590A JP 2566173 B2 JP2566173 B2 JP 2566173B2
Authority
JP
Japan
Prior art keywords
working electrode
electrode
comb
electrodes
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2033965A
Other languages
Japanese (ja)
Other versions
JPH03238350A (en
Inventor
雅夫 森田
勉 堀内
修 丹羽
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2033965A priority Critical patent/JP2566173B2/en
Publication of JPH03238350A publication Critical patent/JPH03238350A/en
Application granted granted Critical
Publication of JP2566173B2 publication Critical patent/JP2566173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フローセルあるいは液相クロマトグラフイ
などに適用される電気化学的検出器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrochemical detector applied to a flow cell, liquid phase chromatography or the like.

〔従来の技術〕[Conventional technology]

通常、血糖値測定などでは一定流速で流れるキヤリア
溶媒に検体試料を注入し、これを流路中に配置した検出
器により測定するフローセルと呼ばれる装置が使われて
いる。また、液相クロマトグラフイでは試料注入口と検
出器の間にクロマトグラフイのためのカラムが挿入され
ており、ここで注入試料が分離され、各成分ごとに検出
されるようになつている。
Usually, in blood glucose level measurement and the like, a device called a flow cell is used in which a sample sample is injected into a carrier solvent flowing at a constant flow rate and the sample is measured by a detector placed in a flow path. Also, in liquid phase chromatography, a column for chromatography is inserted between the sample inlet and the detector, where the injected sample is separated and each component is detected. .

この試料の検出には、紫外・可視などの分光学的方
法、屈折率測定、電導度測定、電気化学的方法などが知
られている。電気化学的方法では、流路中に電極を配置
し、そこに一定の電位を印加しておき、キヤリアにのつ
て流れる試料が電極に到達した際、電極との間で起こる
酸化還元電流をモニタすることで検出を行なつている。
このように電気化学的検出は、装置が単純で比較的高感
度であり、しかも電気化学的に不活性な物質や印加した
電位より低い酸化還元電位を持つ物質には応答しないの
で、特定物質を選択的に検出できるという特徴を有す
る。さらにグルコースなど電気化学的に不活性な物質に
おいても、グルコースオキシターゼ等の酵素で電極を修
飾することにより検出が可能になる。
Known methods for detecting this sample include ultraviolet and visible spectroscopic methods, refractive index measurements, electrical conductivity measurements, and electrochemical methods. In the electrochemical method, an electrode is placed in the flow path, a constant potential is applied to it, and when the sample flowing through the carrier reaches the electrode, the redox current that occurs with the electrode is monitored. By doing so, detection is performed.
As described above, the electrochemical detection is simple and relatively sensitive to the device, and does not respond to an electrochemically inactive substance or a substance having a redox potential lower than the applied potential. It has a feature that it can be selectively detected. Furthermore, even an electrochemically inactive substance such as glucose can be detected by modifying the electrode with an enzyme such as glucose oxidase.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

フローセルなどでは、電極のフロー方向に対する長さ
が長いほど検出物質との接触時間が長くなるため、応答
が鈍化してしまうという問題がある。また、参照電極と
作用電極の距離が遠いと、この間の液体の電気抵抗に対
応した電圧降下が生じ、信号が鈍化してしまう。これら
を抑えるためには電極を微細化して接触時間を短くし、
作用電極と参照電極の間隔を短くすればよいのだが、こ
うすると電極面積が小さいため、電流値が小さくなり検
出が困難になるという欠点を有している。さらに電流応
答は電極形状に依存するため、異なる形状では異なる応
答を示すことになる。微小電極の多くはガラス細管中に
白金,金などの金属線,炭素繊維,金属塩化物等を封入
して作製するため、全く同じ電極形状のものを得ること
ができず、作製に手間がかかり多量に得ることが困難で
作製した電極間のばらつきも大きいため、定量的なデー
タが必要な場合には前もつて電極を検定しておく必要が
あり、多大な測定時間を必要とした。このため、測定に
より電極が汚染,腐食される等の理由により検定するこ
とができない場合には、定量的なデータを得ることが非
常に困難であつた。
In a flow cell or the like, the longer the length of the electrode in the flow direction, the longer the contact time with the detection substance, which causes a problem that the response becomes slow. Further, if the distance between the reference electrode and the working electrode is long, a voltage drop corresponding to the electric resistance of the liquid between them occurs, and the signal becomes dull. In order to suppress these, miniaturize the electrode and shorten the contact time,
Although it suffices to shorten the distance between the working electrode and the reference electrode, this has the drawback that the current value becomes small and detection becomes difficult due to the small electrode area. Furthermore, the current response depends on the electrode shape, so different shapes will show different responses. Since many microelectrodes are manufactured by encapsulating metal wires such as platinum and gold, carbon fibers, metal chlorides, etc. in a glass thin tube, it is not possible to obtain electrodes with exactly the same electrode shape, which is troublesome to manufacture. Since it is difficult to obtain a large amount and the variation among the prepared electrodes is large, it is necessary to calibrate the electrodes in advance when quantitative data is required, which requires a great amount of measurement time. For this reason, it has been very difficult to obtain quantitative data when the measurement cannot be performed due to contamination or corrosion of the electrodes.

このような問題を解決するものとしては、リソグラフ
イ技術を応用して作製した微小電極を用いることが提案
されている(例えば、Analytical Chemistry,60巻2770
頁1988年)。この方法では、任意の形状,一定の電極間
距離を持つ微小電極を多量に再現性良く、基板上に作製
することができる。この方法を用いて2つのくし形電極
をかみ合わせた微小電極を作製し、一方を目的物質の酸
化電位に、他方を還元電位にすることにより、2つの電
極間で酸化と還元を繰り返させ、電流を増加させる方法
が提案されている(Journal of Electroanalytical Che
mistry,256巻269頁1988年)。しかし、この方法では、
2つの作用電極を異なる電位で同時に制御できるデユア
ルポテンシオスタツトが必要となり、また、2つの作用
電極に接続しなくてはならないので、検出部の構造が複
雑になるなどの欠点があり、既存の装置をそのまま使用
することはできなかつた。
To solve such a problem, it has been proposed to use a microelectrode manufactured by applying a lithographic technique (for example, Analytical Chemistry, Volume 60, 2770).
Page 1988). According to this method, a large number of microelectrodes having an arbitrary shape and a constant distance between electrodes can be produced on the substrate with good reproducibility. Using this method, a microelectrode in which two comb-shaped electrodes are interlocked with each other is prepared, and one of the electrodes is set to the oxidation potential of the target substance and the other is set to the reduction potential, whereby the oxidation and reduction are repeated between the two electrodes, and the current Have been proposed (Journal of Electroanalytical Che
mistry, 256, p. 269, 1988). But with this method,
A dual potentiostat that can control two working electrodes at different potentials at the same time is required, and since it has to be connected to two working electrodes, it has drawbacks such as a complicated structure of the detection unit. The device could not be used as it was.

〔課題を解決するための手段〕[Means for solving the problem]

このような課題を解決するために本発明による電気化
学的検出器は、絶縁性基板上に形成されたパターン状薄
膜電極からなる複数の作用電極を有し、検体に対する酸
化還元電位が印加され、検体を酸化もしくは還元する第
1の作用電極と、その第1の作用電極により酸化もしく
は還元された検体が還元もしくは酸化する第1の部分,
および,第1の部分とは電気的に接続し、第1の部分が
前記検体を還元もしくは酸化したとき、近傍の検体試料
溶液中の検体を酸化もしくは還元する第2の部分からな
り、電位が印加されない第2の作用電極とを備え、第1
の作用電極と第2の作用電極の第1の部分とは、微少な
平面的間隔および/あるいは絶縁層を介した立体的段差
による微小間隔により分離されているようにしたもので
ある。
In order to solve such a problem, the electrochemical detector according to the present invention has a plurality of working electrodes composed of patterned thin film electrodes formed on an insulating substrate, and an oxidation-reduction potential is applied to a specimen, A first working electrode that oxidizes or reduces the analyte, and a first portion that reduces or oxidizes the analyte that has been oxidized or reduced by the first working electrode,
And, when the first portion is electrically connected to the first portion and the first portion reduces or oxidizes the specimen, the second portion oxidizes or reduces the specimen in the specimen sample solution in the vicinity and has a potential of A second working electrode that is not applied,
The working electrode and the first portion of the second working electrode are separated by a minute planar interval and / or a minute interval due to a three-dimensional step through the insulating layer.

〔作用〕[Action]

本発明においては、これまで2つの作用電極をデユア
ルポテンシオスタツトに接続し、それぞれに異なる電位
を印加していたのに対し、一方の作用電極(第1の作用
電極)を通常のポテンシオスタットに接続し、他方の作
用電極(第2の作用電極)を第1の作用電極に近づけた
第1の部分と離した第2の部分とから構成することによ
り、2つの作用電極をデユアルポテンシオスタツトに接
続したのと同じ効果が得られることを見いだした。
In the present invention, two working electrodes have been connected to a dual potentiostat and a different potential has been applied to each of them, whereas one working electrode (first working electrode) is a normal potentiostat. Of the two working electrodes by connecting the two working electrodes (second working electrode) to the first working electrode close to the first working electrode and the second part separated from the first working electrode. I found that the same effect as connecting to the tatto can be obtained.

言い換えれば、電位が与えられる第1の作用電極で目
的物質を酸化あるいは還元すると、微小間隔で隔てられ
た第2の作用電極の第1の部分へ拡散するのに対し、そ
こより離れた第2の作用電極の第2の部分までは酸化あ
るいは還元された目的物質が拡散していないので、これ
ら第1の部分と第2の部分との間で濃度差を生じる。こ
の濃度差により第2の作用電極に電位が生じ、電位が与
えられている第1の作用電極で酸化あるいは還元された
目的物質を第2の作用電極の第1の部分で還元あるいは
酸化して元の物質に戻す、いわゆるレドックスサイクリ
ングが起こり、高感度化できることを見いだした。
In other words, when the target substance is oxidized or reduced by the first working electrode to which an electric potential is applied, the target substance diffuses to the first portion of the second working electrode separated by a minute interval, while the second substance separated from the first part of the second working electrode is separated. Since the oxidized or reduced target substance has not diffused to the second portion of the working electrode, the concentration difference is generated between the first portion and the second portion. Due to this concentration difference, an electric potential is generated in the second working electrode, and the target substance oxidized or reduced in the first working electrode to which the electric potential is applied is reduced or oxidized in the first portion of the second working electrode. We found that so-called redox cycling, which returns to the original substance, occurred and the sensitivity could be increased.

このとき、第2の作用電極の第1の部分で起こる電気
化学反応で生成あるいは消費される電子は、第2の部分
で起こる逆の電気化学反応で消費あるいは生成される。
なお、第1の作用電極と第2の作用電極の第1の部分と
の微小間隔は、小さければ小さいほど有効であるが、少
なくとも50μm以下であることが好ましい。
At this time, the electrons generated or consumed in the electrochemical reaction that occurs in the first portion of the second working electrode are consumed or generated in the reverse electrochemical reaction that occurs in the second portion.
Note that the smaller the minute gap between the first working electrode and the first portion of the second working electrode, the more effective it is, but it is preferably at least 50 μm or less.

この第2の作用電極の第2の部分は、フローセルやク
ロマトグラフイの液路の適当な位置に設けた電極あるい
は液路がステンレスパイプなど導電性の材料であるなら
ばそれ自体、さらには第1の部分より配線を延ばし、こ
の配線に白金などの金属を第2の部分として接続してフ
ローセルなどのキャリア液溜やその廃液受けに浸漬する
だけでもよい。また、第1の部分と第2の部分とは、10
μm以上離れていることが好ましい。
The second portion of the second working electrode is the electrode itself or the liquid passage provided at an appropriate position of the liquid passage of the flow cell or the chromatograph if it is a conductive material such as a stainless pipe, and further, the second portion. It is also possible to extend the wiring from the first portion, connect a metal such as platinum as the second portion to this wiring, and immerse the wiring in a carrier liquid reservoir such as a flow cell or its waste liquid receiver. Also, the first part and the second part are 10
It is preferable that they are separated by at least μm.

さらに、その配線の途中に電流計を設ければ、デユア
ルポテンシオスタツトを用いる場合と同様な測定が可能
となる。例えば、目的物質以外にアスコルビン酸を含む
ような検体では、第1の作用電極でアスコルビン酸と目
的物質を同時に参加させ、第2の作用電極の第1の部分
での目的物質の還元電流を上述の電流計で測定すること
により、目的物質のみの濃度を知ることができる。
Further, if an ammeter is provided in the middle of the wiring, the same measurement as in the case of using the dual potentiostat can be performed. For example, in a sample containing ascorbic acid in addition to the target substance, ascorbic acid and the target substance are simultaneously allowed to participate in the first working electrode, and the reduction current of the target substance in the first portion of the second working electrode is set to the above-mentioned value. It is possible to know the concentration of only the target substance by measuring with the ammeter.

また、第1および第2の作用電極としては、第1の作
用電極を微小電極とし、第2の作用電極を通常サイズの
電極とし、これらを微小間隔で平行あるいは対向させて
配置するようにしてもよい。
As the first and second working electrodes, the first working electrode is a microelectrode, the second working electrode is a normal size electrode, and these electrodes are arranged in parallel or opposite to each other at a minute interval. Good.

また、微小デイスク電極をマトリクス状に多数並べた
微小デイスクアレイ電極において、デイスク電極を第1
の作用電極として用い、デイスク電極間の絶縁膜をデイ
スク電極と電気的に隔離して導電体に置換した電極を第
2の作用電極として用いるようにしてもよく、従来の測
定装置の電極部分のみを変えればよいことになる。
In addition, in a minute disk array electrode in which a large number of minute disk electrodes are arranged in a matrix,
May be used as the second working electrode, in which the insulating film between the disk electrodes is electrically isolated from the disk electrodes and replaced with a conductor, and only the electrode part of the conventional measuring device is used. Should be changed.

〔実施例〕〔Example〕

以下、図面を参照して本発明を詳細に説明する。な
お、本発明は以下の実施例のみに限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following examples.

(実施例1) 第1図(a)〜(f)は、本発明による電気化学的検
出器の一実施例による構成をその製造方法に基づいて説
明する工程の断面図である。同図において、まず、同図
(a)に示すように表面に1μmの厚さの酸化膜1を有
するシリコン基板(大阪チタニウム社製)2上に5nmの
厚さのチタン膜を挾んで100nmの厚さの白金薄膜3を電
子線加熱蒸着装置(アネルバ製:VI−451)を用いて形成
した。次に同図(b)に示すようにこのシリコン基板2
上にフオトレジスト(シツプレー社製:MP1400−27)を
1μmの厚さで塗布した。このレジスト塗布シリコン基
板2をホツトプレート上で80℃,2分の条件でベークし
た。その後、クロムマスクを用いて噛み合つたくし形構
造の電極パターンを、マスクアライナー(キヤノン製:P
LA−501)により15秒間密着露光した。露光したシリコ
ン基板2は、レジスト現像液(シツプレー社製:MF319)
中で20℃,60秒間現像を行ない、水洗,乾燥してマスク
パターンをレジストに転写してレジストパターン4を形
成した。次に同図(c)に示すようにこのシリコン基板
2をイオンミリング装置(Commonwealth Scientific社
製:Millatron)内の所定位置に取り付け、アルゴンガス
2×10-4Torr,引き出し電圧550Vでミーリングを行な
い、レジストパターン4に覆われていない部分の白金お
よびその下層のチタン膜を取り除いた後、アツシング装
置(東京応化製:プラズマアツシヤ)にてレジストパタ
ーン4を除去して互いに噛合したくし形作用電極5,6を
形成した。次に同図(d)に示すようにこのシリコン基
板2をプラズマCVD装置(Applied Materials社製:AMP−
3300)内に入れ、シランガス23SCCM,アンモニアガス48S
CCMの流量で各ガスを流し、ガス圧0.2Torr,投入電力500
W,シリコン基板温度300℃で10分間堆積を行ない、厚さ4
00nmの窒化シリコン膜7で被覆した。次に同図(e)に
示すようにこの窒化シリコン膜7上に再びレジストをス
ピンコートし、マスクアライナで露光後、現像してレジ
ストパターン8を得た。次に同図(f)に示すようにこ
のシリコン基板2を反応性イオンエツチング装置(アネ
ルバ製:DEM−451)内に入れCF4ガスを流量25SCCM,圧力
0.25Pa,150Wの条件でレジストパターンをマスクにして1
5分間、窒化シリコン膜7のエツチングを行なつてくし
形作用電極5,6およびその接続パツドを露出させた。作
製したくし形作用電極5,6の形状は、各くしの電極幅1.5
μm,くし間隔1.5μm,くしの長さ2mmおよびくしの本数各
100本ずつであつた。
(Example 1) FIGS. 1 (a) to 1 (f) are cross-sectional views of steps for explaining the structure of an example of the electrochemical detector according to the present invention based on its manufacturing method. In the figure, first, as shown in (a) of the figure, a titanium film having a thickness of 5 nm is sandwiched between a silicon substrate (made by Osaka Titanium Co., Ltd.) 2 having an oxide film 1 having a thickness of 1 μm and a thickness of 100 nm. The platinum thin film 3 having a thickness was formed by using an electron beam heating vapor deposition apparatus (VI-451 manufactured by Anelva). Next, as shown in FIG.
Photoresist (MP1400-27, manufactured by Shipley Co., Ltd.) was applied on the top to a thickness of 1 μm. The resist-coated silicon substrate 2 was baked on a hot plate at 80 ° C. for 2 minutes. After that, the electrode pattern of the comb-shaped structure that meshes with a chrome mask is applied to the mask aligner (Canon: P
Contact exposure was performed with LA-501) for 15 seconds. The exposed silicon substrate 2 is a resist developer (made by Shipley Co., Ltd .: MF319).
It was developed at 20 ° C. for 60 seconds, washed with water and dried to transfer the mask pattern to a resist to form a resist pattern 4. Next, as shown in FIG. 7C, this silicon substrate 2 is attached to a predetermined position in an ion milling device (Millatron manufactured by Commonwealth Scientific), and milling is performed with argon gas 2 × 10 −4 Torr and extraction voltage 550V. A comb-shaped working electrode in which the platinum and the underlying titanium film not covered by the resist pattern 4 are removed, and then the resist pattern 4 is removed by an assuring device (Plasma Ashia made by Tokyo Ohka) to mesh with each other. Formed 5,6. Next, as shown in FIG. 3D, the silicon substrate 2 is placed on a plasma CVD apparatus (AMP-made by Applied Materials).
3300), silane gas 23SCCM, ammonia gas 48S
Flow each gas at CCM flow rate, gas pressure 0.2Torr, input power 500
W, silicon substrate temperature 300 ℃, 10 minutes deposition, thickness 4
It was covered with a silicon nitride film 7 of 00 nm. Next, as shown in FIG. 3E, a resist was spin-coated on the silicon nitride film 7 again, exposed by a mask aligner, and developed to obtain a resist pattern 8. Next, as shown in FIG. 6 (f), the silicon substrate 2 is placed in a reactive ion etching apparatus (DEM-451 manufactured by Anelva) and CF 4 gas is supplied at a flow rate of 25 SCCM and pressure.
Using the resist pattern as a mask under the conditions of 0.25Pa and 150W 1
The silicon nitride film 7 was etched for 5 minutes to expose the comb-shaped working electrodes 5, 6 and their connecting pads. The shape of the manufactured comb-shaped working electrodes 5 and 6 is 1.5 for each comb.
μm, comb spacing 1.5 μm, comb length 2 mm and number of combs
It was 100 each.

このようにして形成された電気化学的検出器をフロー
セルシステム(BAS社製:LC−4B/17AT)に装着し、2つ
のくし形作用電極5,6の一方はフローセルシステムのポ
テンシオスタツトに、他方はフエロセンを加えた廃液溜
に浸漬した白金線に接続した。参照電極に対してくし形
作用電極の電位を0.7Vに設定し、1μmol/のフエロセ
ン100μを流速0.8ml/minのもとで注入したところ、該
くし形作用電極は直ちに応答し、30msecでピーク電流値
55nAを示し、50msecで元に戻つた。また、ディアルポテ
ンシオスタツトを用い、参照電極に対してくし形作用電
極の一方の電位を0.7Vに他方の電位を−0.1Vに設定して
同様の実験を行なつて同様の結果を得た。一方、同一面
積の円形電極を用いて同様の実験を行なつたところ、50
msecでピーク電流値0.29nAとなり、500msecで元に戻つ
た。
The electrochemical detector thus formed was attached to a flow cell system (manufactured by BAS: LC-4B / 17AT), and one of the two comb-shaped working electrodes 5 and 6 was used as a potentiostat for the flow cell system. The other side was connected to a platinum wire immersed in a waste reservoir containing ferrocene. When the potential of the comb-shaped working electrode was set to 0.7 V with respect to the reference electrode and 100 μ of 1 μmol / ferocene was injected at a flow rate of 0.8 ml / min, the comb-shaped working electrode responded immediately and peaked at 30 msec. Current value
It showed 55nA and returned to its original value in 50msec. Also, using a dial potentiostat, similar results were obtained by performing similar experiments with one potential of the comb-shaped working electrode set to 0.7 V and the other potential of -0.1 V with respect to the reference electrode. . On the other hand, when a similar experiment was conducted using circular electrodes of the same area,
The peak current reached 0.29nA in msec, and returned to the original value in 500msec.

(実施例2) 第2図(a)〜(f)は本発明による電気化学的検出
器の製造方法の他の実施例を説明する工程の断面図であ
り、前述の図と同一部分には同一符号を付してある。同
図において、まず、同図(a)に示すように表面に1μ
mの厚さの酸化膜1を有するシリコン基板2をステツパ
装置(アネルバ製:SPF−332H)内の所定位置にメタルマ
スクとともに取り付け、圧力1.3Pa,アルゴン中,パワー
50Wでクロムのスパツタを10秒間行ない、真空を破るこ
となく続いてパワー70Wで1分間白金のスパツタを行な
い、同図(b)に示すように膜厚100nmのクロム−白金
膜の下部電極9を形成した。次にメタルマスクを外して
同図(c)に示すように二酸化シリコン膜10をスパツタ
法で堆積させた。次に同図(d)に示すようにパワー50
W,10分のスパツタを行ない、二酸化シリコン膜10を300n
mの膜厚とした後、再び別のメタルマスクを装着し、ク
ロム−白金の表面電極11を100nm堆積した。その後、こ
のシリコン基板2上にフオトレジスト(シツプレー社
製:MP1400−27)を1μmの厚さに塗布した。そして、
このレジスト塗布シリコン基板2をオーブン内に入れ80
℃,30分の条件でベークした。その後、レチクルを用い
てステツパ(ニコン製:NSR1010G)により0.3秒間縮小投
影露光した。露光したシリコン基板2は、レジスト現像
液(シツプレー社製:MF−319)中で20℃,60秒間現像を
行ない、水洗,乾燥して同図(e)に示すようにレチク
ルパターンをレジストに転写したレジストパターン12を
形成した。次に現像後、このシリコン基板2はイオンミ
リング装置内の所定位置に取り付け、アルゴンガス圧2
×10-4Torr,引き出し電圧550Vでミリングを行ない、同
図(f)に示すように上部作用電極13を形成するととも
に続いて反応性イオンエツチング装置内に入れ、CF4
ス,流量25SCCM,圧力0.25Pa,150Wの条件で10分間、二酸
化シリコン膜10のエツチングを行なつて同図(f)に示
すように微細孔を有する多数の微小デイスクアレイ電極
14を形成した。この場合、各デイスクアレイ電極14の直
径は1μm,デイスクアレイ電極14の間隔は10μm,個数は
10000個とした。その後、このシリコン基板2をメチル
エチルケトン中に浸漬して超音波処理を行ない、電極形
成部分以外のレジストを剥離して電極パターンを得た。
このようにして作製した電気化学測定用セルの概略を第
3図に斜視図で示す。同図において、9A,13Aは接続パツ
ドである。
(Embodiment 2) FIGS. 2 (a) to 2 (f) are sectional views of steps for explaining another embodiment of the method for manufacturing an electrochemical detector according to the present invention. The same reference numerals are attached. In the figure, first, as shown in FIG.
A silicon substrate 2 having an m-thick oxide film 1 was attached to a predetermined position in a stepper device (Anerva: SPF-332H) together with a metal mask, pressure 1.3Pa, in argon, power.
Sputtering chromium at 50 W for 10 seconds, then spattering platinum at power 70 W for 1 minute without breaking the vacuum, and as shown in FIG. 7B, the lower electrode 9 of chromium-platinum film having a thickness of 100 nm is formed. Formed. Next, the metal mask was removed, and the silicon dioxide film 10 was deposited by the sputtering method as shown in FIG. Next, as shown in FIG.
W, spatter for 10 minutes, silicon dioxide film 10 300n
After setting the film thickness to m, another metal mask was mounted again, and a chromium-platinum surface electrode 11 was deposited to 100 nm. Then, a photoresist (MP1400-27 manufactured by Shipley Co., Ltd.) was applied on the silicon substrate 2 to a thickness of 1 μm. And
Put this resist-coated silicon substrate 2 in the oven 80
Baking was carried out under the conditions of ℃ and 30 minutes. Then, reduction projection exposure was performed for 0.3 seconds by a stepper (manufactured by Nikon: NSR1010G) using a reticle. The exposed silicon substrate 2 is developed in a resist developer (MF-319 manufactured by Shipley Co., Ltd.) at 20 ° C. for 60 seconds, washed with water and dried to transfer the reticle pattern to the resist as shown in FIG. A resist pattern 12 was formed. Next, after development, the silicon substrate 2 is attached at a predetermined position in the ion milling apparatus, and the argon gas pressure 2
Milling was performed at × 10 -4 Torr and extraction voltage of 550 V, and the upper working electrode 13 was formed as shown in (f) of the figure, and then it was put into the reactive ion etching device, CF 4 gas, flow rate 25 SCCM, pressure. The silicon dioxide film 10 is etched for 10 minutes under the conditions of 0.25 Pa and 150 W, and a large number of minute disk array electrodes having fine holes as shown in FIG.
14 formed. In this case, the diameter of each disk array electrode 14 is 1 μm, the distance between the disk array electrodes 14 is 10 μm, and the number is
The number was set to 10,000. Then, this silicon substrate 2 was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist other than the electrode forming portion was peeled off to obtain an electrode pattern.
An outline of the electrochemical measurement cell thus manufactured is shown in a perspective view in FIG. In the figure, 9A and 13A are connection pads.

このように構成された電気化学的検出器をフローセル
システムに装着し、下部の微小デイスクアレイ電極14を
フローセルシステムのポテンシオスタットに接続した。
参照電極に対して作用電極となる下部の微小デイスクア
レイ電極14の電位を0.7Vに設定し、1μmol/のフエロ
セン100μを流量0.8ml/minのもとで注入したところ、
この微小デイスクアレイ電極14は直ちに反応し、30msec
でピーク電流値55nAを示し、50msecで元に戻った。これ
に対して、デユアルポテンシオスタツトを用い、参照電
極に対して微小デイスクアレイ電極14の電位を0.7Vに設
定し、これに加えて、この場合は、その廻りの上部作用
電極13にも−0.1Vの電位を設定して同様の実験を行った
ところ、同様の結果を得た。
The electrochemical detector configured as described above was attached to the flow cell system, and the lower microdisk array electrode 14 was connected to the potentiostat of the flow cell system.
When the electric potential of the lower minute disk array electrode 14 serving as the working electrode with respect to the reference electrode was set to 0.7 V and 100 μ of 1 μmol /% ferrocene was injected at a flow rate of 0.8 ml / min,
This minute disk array electrode 14 reacts immediately, 30msec
Showed a peak current value of 55 nA and returned to the original value at 50 msec. On the other hand, by using a dual potentiostat, the potential of the minute disk array electrode 14 is set to 0.7 V with respect to the reference electrode. In addition to this, in this case, the upper working electrode 13 around it is also − When a similar experiment was conducted by setting a potential of 0.1 V, similar results were obtained.

(実施例3) 第4図(a)〜(g)は本発明による電気化学的検出
器の製造方法のさらに他の実施例を説明する工程の断面
図であり、前述の図と同一部分には同一符号を付してあ
る。同図において、まず、同図(a)に示すように表面
に1μmの厚さの酸化膜1を有するシリコン基板2をス
パツタ装置内の所定位置に取り付け、クロム,白金を順
次スパツタデポを行なつた。そして、圧力10-2Torr,ア
ルゴン雰囲気でクロムを50W,10秒,白金を70W,1分間ス
パツタを行ない、膜厚100nmの白金/クロム薄膜を得
た。その後、このシリコン基板2上にフオトレジストを
1.0μmの厚さに塗布した。このレジスト塗布シリコン
基板2をホツトプレート上で90℃,2分の条件でベークし
た。その後、マスクアライナにより15秒間密着露光し
た。露光したシリコン基板2は、レジスト現像液中で20
℃,60秒間現像を行ない、水洗,乾燥してマスクパター
ンをレジストに転写した。次にこのレジスト転写シリコ
ン基板2をイオンミリング装置内の所定位置に取り付
け、アルゴンガス圧2×10-4Torr,引き出し電圧550Vで
白金/クロム薄膜のミリングを2分間行ない、アツシン
グ装置にてレジストを除去して同図(b)に示すような
下部くし形作用電極15を形成した。次にこのシリコン基
板2は再びスパツタ装置内に入れ、同図(c)に示すよ
うに基板全面を100nmの二酸化シリコン膜10で覆つた。
その後、再びこのシリコン基板2をスパツタ装置に取り
付け、クロム,白金を順次スパツタデポを行ない、膜厚
100nmの白金/クロム薄膜を形成した。その後、このシ
リコン基板2上にフオトレジストを1μm厚さに塗布
し、位置合わせを行なつてくし形電極パターンを密着露
光した。現像後、再び白金/クロム薄膜のミリングを行
ない、レジストをアツシングで剥離して同図(d)に示
すように上部くし形作用電極16を形成した。次にこのシ
リコン基板2は再びスパツタ装置内に入れ、同図(e)
に示すように基板全面に100nmの二酸化シリコン膜10で
覆つた。次にこのシリコン基板2上にフオトレジストを
1μmの厚さに塗布し、クロムマスクを用いて上下に噛
み合つたくし形電極部分(1mm×0.25mm),パツド部分
のみを露光,現像し、同図(f)に示すようにその部分
を露出させた。次にこのシリコン基板2は反応性イオン
エツチング装置内に入れ、CF4ガス,流量25SCCM,圧力0.
25Pa,150Wの条件でレジストパターン8をマスクにして
5分間、二酸化シリコン膜10のエツチングを行なつて同
図(g)に示すように上部くし形作用電極16および下部
くし形作用電極15を露出させた。この結果、上下に分か
れた2つの作用電極間が極めて小さい噛み合つたくし形
電極化学測定用セルが得られた。作製したくし形作用電
極15,16の形状は、各くしの電極幅1.5μm,くし形電極間
の段差0.3μm,くしの長さ2mm,くしの本数各200本ずつで
あつた。作製したくし形電気化学測定用セルの電極部分
の概略図を第5図に斜視図で示す。
(Embodiment 3) FIGS. 4 (a) to 4 (g) are cross-sectional views of steps for explaining still another embodiment of the method for manufacturing an electrochemical detector according to the present invention. Are given the same reference numerals. In the figure, first, as shown in (a) of the figure, a silicon substrate 2 having an oxide film 1 having a thickness of 1 μm on its surface is attached at a predetermined position in a sputtering apparatus, and chromium and platinum are sequentially deposited by sputtering. . Then, sputtering was performed under a pressure of 10 -2 Torr and an argon atmosphere for 50 W of chromium for 10 seconds and 70 W of platinum for 1 minute to obtain a platinum / chromium thin film having a film thickness of 100 nm. After that, a photoresist is formed on the silicon substrate 2.
It was applied to a thickness of 1.0 μm. The resist-coated silicon substrate 2 was baked on a hot plate at 90 ° C. for 2 minutes. After that, contact exposure was carried out for 15 seconds by a mask aligner. The exposed silicon substrate 2 is stored in a resist developer for 20
After development at 60 ° C for 60 seconds, the mask pattern was transferred to the resist by washing with water and drying. Next, this resist-transferred silicon substrate 2 is attached to a predetermined position in the ion milling machine, a platinum / chromium thin film is milled for 2 minutes at an argon gas pressure of 2 × 10 −4 Torr and a withdrawal voltage of 550 V, and the resist is removed by an assing machine. After removal, a lower comb-shaped working electrode 15 as shown in FIG. Next, this silicon substrate 2 was placed again in the sputtering apparatus, and the entire surface of the substrate was covered with a 100 nm silicon dioxide film 10 as shown in FIG.
After that, the silicon substrate 2 is attached to the sputtering device again, and chromium and platinum are sequentially deposited by sputtering to obtain a film thickness.
A 100 nm platinum / chrome thin film was formed. After that, a photoresist was applied to the silicon substrate 2 to a thickness of 1 μm, alignment was performed, and a comb-shaped electrode pattern was exposed by contact. After development, the platinum / chromium thin film was milled again, and the resist was stripped by assing to form the upper comb-shaped working electrode 16 as shown in FIG. Next, this silicon substrate 2 is put into the sputter device again, and the same figure (e)
As shown in, the entire surface of the substrate was covered with a 100 nm silicon dioxide film 10. Next, a photoresist is applied to this silicon substrate 2 to a thickness of 1 μm, and only a comb-shaped electrode portion (1 mm × 0.25 mm) and a pad portion that are vertically engaged with each other are exposed and developed using a chrome mask. The part was exposed as shown in FIG. Next, this silicon substrate 2 is put into a reactive ion etching apparatus, CF 4 gas, flow rate 25 SCCM, pressure 0.
Using the resist pattern 8 as a mask under the conditions of 25 Pa and 150 W, the silicon dioxide film 10 is etched for 5 minutes to expose the upper comb-shaped working electrode 16 and the lower comb-shaped working electrode 15 as shown in FIG. Let As a result, an interdigitated comb-shaped electrode chemical measurement cell having a very small space between two upper and lower working electrodes was obtained. The shapes of the comb-shaped working electrodes 15 and 16 thus produced were: electrode width of each comb: 1.5 μm, step difference between comb electrodes: 0.3 μm, comb length: 2 mm, 200 combs each. FIG. 5 is a perspective view showing a schematic view of the electrode portion of the produced comb-shaped electrochemical measurement cell.

このようにして作製された電気化学的検出器を高速液
体クロマトグラフイ装置(日本分光社製:800シリーズに
カラムとしてカテコールパツクを取り付け)に装着し、
上部くし形作用電極16は目的検体を加えた廃液溜めに浸
漬した白金に接続し、下部くし形作用電極15の電位を飽
和カロメル電極に対して0.7Vに設定した。ノルアドレナ
リン,エピネフリン,ドーパミンを各400pgずつPH3.1の
リン酸緩衝液1mlに溶かし、溶液100μを流速1ml/min
のもとで注入したところ、各試料はカラムにより分離さ
れ、各試料とも5nAのピーク電流を示した。通常のグラ
ツシーカーボンを電極とした場合には、ピーク電流は0.
5nAであつた。
Attach the electrochemical detector thus prepared to a high performance liquid chromatography device (manufactured by JASCO Corporation: 800 series with a catechol pack attached as a column),
The upper comb-shaped working electrode 16 was connected to platinum immersed in the waste liquid reservoir containing the target sample, and the potential of the lower comb-shaped working electrode 15 was set to 0.7 V with respect to the saturated calomel electrode. Noradrenaline, epinephrine, and dopamine were dissolved in 1 ml of PH3.1 phosphate buffer (400 pg each), and 100 μl of the solution was supplied at a flow rate of 1 ml / min.
Each sample was separated by a column when injected under the condition of 5 nA and showed a peak current of 5 nA. When normal glassy carbon is used as the electrode, the peak current is 0.
It was 5 nA.

(実施例4) 前記実施例3で作製した電気化学的検出器を液相クロ
マトグラフイに装着し、参照電極に対して上部くし形作
用電極16の電位を0.7Vに設定し、下部くし形作用電極15
とドーパミンを加えた廃液溜めの白金との間に電流計を
装着し、下部くし形作用電極15の電流を測定できるよう
にした。100μmol/のアスコルビン酸,100μmol/の
ドーパミンの混合溶液100μを流速0.8ml/minのもとで
注入した。その結果、注入後、3分で上部くし形作用電
極16側のみにアスコルビン酸の酸化電流が観測され、下
部くし形作用電極15ではほとんど電流が観測されなかつ
た。さらに注入後、8分で上部くし形作用電極16側では
ドーパミンの酸化電流(85nA)、下部くし形作用電極15
側では酸化されたドーパミンの還元電流が観測された。
下部くし形作用電極15を接続せず、上部くし形作用電極
16の電位を0.7Vに設定して同様のことを行なつたとこ
ろ、ドーパミンの酸化電流は、下部くし形作用電極15を
接続して行なつた場合の20分の1(4.2nA)であつた。
(Example 4) The electrochemical detector prepared in Example 3 was attached to liquid phase chromatography, the potential of the upper comb-shaped working electrode 16 was set to 0.7 V with respect to the reference electrode, and the lower comb-shaped. Working electrode 15
An ammeter was attached between the electrode and the platinum in the waste liquid reservoir containing dopamine so that the current of the lower comb-shaped working electrode 15 could be measured. 100 μmol / ascorbic acid and 100 μmol / dopamine mixed solution 100 μ were injected at a flow rate of 0.8 ml / min. As a result, 3 minutes after the injection, an ascorbic acid oxidation current was observed only on the upper comb-shaped working electrode 16 side, and almost no current was observed on the lower comb-shaped working electrode 15. 8 minutes after the injection, the upper comb-shaped working electrode 16 side had a dopamine oxidation current (85 nA), and the lower comb-shaped working electrode 15
On the side, a reduction current of oxidized dopamine was observed.
Upper comb-shaped working electrode without connecting lower comb-shaped working electrode 15
When the potential of 16 was set to 0.7 V and the same thing was done, the oxidation current of dopamine was 1/20 (4.2 nA) of that when the lower comb-shaped working electrode 15 was connected. It was

(実施例5) 前記実施例4で電気化学的検出器を液相クロマトグラ
フイに代えてフローセルに装着し、参照電極に対して上
部くし形作用電極16の電位を0.7Vに設定し、下部くし形
作用電極15とドーパミンを加えた廃液溜めの白金との間
に電流計を装着し、下部くし形作用電極15の電流を測定
できるようにした。100μmol/のアスコルビン酸,100
μmol/のドーパミンの混合溶液100μを流速0.8ml/m
inのもとで注入した。その結果、注入後、3分で上部く
し形作用電極16側ではアスコルビン酸とドーパミンの酸
化電流が観測され、下部くし形作用電極15ではドーパミ
ンのみの電流が観測された。下部くし形作用電極15を接
続せず、上部くし形作用電極16の電位を0.7Vに設定して
同様のことを行なつたところ、酸化電流は、下部くし形
作用電極15を接続して行なつた場合の20分1(4.2nA)
以下であり、しかもアスコルビン酸の信号と重なつてし
まい、分離することができなかつた。
(Example 5) In Example 4, the electrochemical detector was installed in a flow cell instead of liquid phase chromatography, and the potential of the upper comb-shaped working electrode 16 was set to 0.7 V with respect to the reference electrode, and the lower part was set. An ammeter was attached between the comb-shaped working electrode 15 and the platinum in the waste liquid reservoir containing dopamine so that the current of the lower comb-shaped working electrode 15 could be measured. 100 μmol / ascorbic acid, 100
100 μl of a mixed solution of μmol / dopamine at a flow rate of 0.8 ml / m
Injected under in. As a result, 3 minutes after the injection, the oxidation currents of ascorbic acid and dopamine were observed on the side of the upper comb-shaped working electrode 16 and the current of only dopamine was observed on the lower comb-shaped working electrode 15. When the same operation was performed by setting the potential of the upper comb-shaped working electrode 16 to 0.7 V without connecting the lower comb-shaped working electrode 15, the oxidation current was measured by connecting the lower comb-shaped working electrode 15. 20 minutes for Natsuta 1 (4.2nA)
It was below, and moreover, it could not be separated because it overlapped with the signal of ascorbic acid.

なお、前述した実施例において、表面あるいは全体が
絶縁性の基板としては、酸化膜付シリコン基板を用いた
が、この他に石英板,酸化アルミニウム基板,ガラス基
板,プラスチツク基板などを挙げることができる。ま
た、電極用の金属としては、金,白金,銀,クロム,チ
タン,ステンレスなどを挙げることができる。さらに電
極用の半導体としてはpおよびn型シリコン,pおよびn
型ゲルマニウム,硫化カドミウム,二酸化チタン,酸化
亜鉛,ガリウムリン,ガリウム砒素,インジウムリン,
カドミウムセリン,カドミウムテルル,二酸化モリブデ
ン,セレン化タングステン,二酸化銅,酸化スズ,酸化
インジウム,インジウムスズ酸化物などを挙げることが
できる。半金属としては導電性カーボンを挙げることが
できる。絶縁膜としては、酸化シリコン,二酸化シリコ
ン,窒化シリコン,シリコーン樹脂,ポリイミドおよび
その誘導体,エポキシ樹脂,高分子熱硬化物などを挙げ
ることができる。参照電極上の参照物質としては、銀,
塩化銀,ポリビニルフエロセン等を挙げることができ
る。
In the above-mentioned embodiment, the silicon substrate with an oxide film is used as the substrate whose surface or the whole is insulative, but other than this, a quartz plate, an aluminum oxide substrate, a glass substrate, a plastic substrate and the like can be mentioned. . Further, examples of the metal for the electrode include gold, platinum, silver, chromium, titanium, stainless steel, and the like. Further, as semiconductors for electrodes, p and n type silicon, p and n
Type germanium, cadmium sulfide, titanium dioxide, zinc oxide, gallium phosphide, gallium arsenide, indium phosphide,
Cadmium serine, cadmium tellurium, molybdenum dioxide, tungsten selenide, copper dioxide, tin oxide, indium oxide, indium tin oxide and the like can be mentioned. Conductive carbon can be mentioned as a semimetal. Examples of the insulating film include silicon oxide, silicon dioxide, silicon nitride, silicone resin, polyimide and its derivatives, epoxy resin, and polymer thermosetting material. As the reference substance on the reference electrode, silver,
Examples thereof include silver chloride and polyvinyl ferrocene.

また、微小電極の作製は、薄膜形成法,レジストパタ
ーン形成法,エツチング法などのリソグラフイ技術を組
み合わせて行なう。薄膜形成法としては蒸着法,スパツ
タ法,CVD法または塗布法をあげることができる。レジス
トパターン形成法としては、ホトリソグラフイ,電子線
リソグラフイ,X線リソグラフイなどを利用することがで
きる。また、パターン形成法としては、まず、基板全面
に薄膜を形成し、そこにレジストパターンを形成し、こ
れをマスクに下層の薄膜をエツチングするエツチング法
またはレジストパターンを形成後、その上に薄膜を堆積
させ、レジストを剥離することにより、レジストに覆わ
れていなかつた鵜分のみに薄膜パターンを形成するリフ
トオフ法などが利用できる。電極作製後、作製した電極
のうち、一方に支持物質となる金属,有機酸化還元性高
分子をメツキ,電解重合法により、形成し参照電極とす
ることも可能である。
Further, the microelectrodes are manufactured by combining lithographic techniques such as a thin film forming method, a resist pattern forming method and an etching method. The thin film forming method may be a vapor deposition method, a sputtering method, a CVD method or a coating method. As the resist pattern forming method, photolithography, electron beam lithography, X-ray lithography and the like can be used. As the pattern forming method, first, a thin film is formed on the entire surface of the substrate, a resist pattern is formed on the thin film, and an etching method or a resist pattern for etching a lower thin film with this as a mask is formed, and then the thin film is formed thereon. A lift-off method or the like can be used in which a thin film pattern is formed only on the cormorant that is not covered with the resist by depositing and peeling the resist. After the electrode is manufactured, it is also possible to form a metal as a supporting material or an organic redox polymer on one of the manufactured electrodes by plating or an electrolytic polymerization method to form a reference electrode.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明による電気化学的検出器に
よれば、2つの作用電極を有しながら、デユアルポテン
シオスタツトを必要とせず、従来の検出電極を置き換え
て使用するのみで、レドツクスサイクルによる電流増加
が起り、従来の検出器に比べて10倍〜100倍以上感度を
向上させることができた。また、これまで、アスコルビ
ン酸が妨害物質となつて測定が困難であつた試料につい
ても、一方の電極でアスコルビン酸を酸化させ、電気化
学的に不活性にした後、他方の電極で目的物質を検出す
ることにより、アスコルビン酸に妨害されることなく、
検出できた。さらにリソグラフイ技術を用いて作製する
ため、任意のサイズ,形状,電極間距離の作用電極,参
照電極,対向電極を有する測定セルを安価で多量に得る
ことができ、簡単な装置で測定可能となるなどの利点が
得られるので、フローセルや液相クロマトグラフイ用の
電気化学的検出として極めて利用価値が大きいなどの極
めて優れた効果が得られる。
As described above, the electrochemical detector according to the present invention has two working electrodes, does not require a dual potentiostat, and can be used by replacing a conventional detection electrode with a redox cycle. As a result, the current increased, and the sensitivity could be improved 10 to 100 times more than the conventional detector. In the case of samples for which ascorbic acid was an interfering substance and was difficult to measure, the ascorbic acid was oxidized at one electrode to make it electrochemically inactive, and then the target substance at the other electrode. By detecting, without being disturbed by ascorbic acid,
I was able to detect it. Furthermore, because it is manufactured using the lithographic technique, it is possible to obtain a large number of measuring cells with working electrodes, reference electrodes, and counter electrodes of any size, shape, and interelectrode distance at low cost, and to measure with a simple device. Since such advantages can be obtained, an extremely excellent effect such as extremely high utility value as an electrochemical detection for a flow cell or liquid phase chromatography can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(f)は本発明による電気化学的検出器
の製造方法の一実施例を説明する工程の断面図、第2図
(a)〜(f)は本発明の他の実施例を説明する工程の
断面図、第3図は本発明による電気化学的検出器の一実
施例による構成を示す斜視図、第4図(a)〜(g)は
本発明のさらに他の実施例を説明する工程の断面図、第
5図は本発明のさらに他の実施例による構成を示す要部
概略図である。 1……シリコン酸化膜、2……シリコン基板、3……白
金薄膜、4……レジストパターン、5,6……くし形作用
電極、7……窒化シリコン膜、8……レジストパター
ン、9……下部電極、9A……接続パツド、10……二酸化
シリコン膜、11……表面電極、12……レジストパター
ン、13……上部作用電極、13A……接続パツド、14……
微小デイスクアレイ電極、15……下部くし形作用電極、
16……上部くし形作用電極。
1 (a) to 1 (f) are cross-sectional views of steps for explaining an embodiment of the method for manufacturing an electrochemical detector according to the present invention, and FIGS. 2 (a) to 2 (f) are other sectional views of the present invention. FIG. 3 is a perspective view showing a structure of an electrochemical detector according to an embodiment of the present invention, and FIGS. 4 (a) to 4 (g) show still another embodiment of the present invention. FIG. 5 is a sectional view of a process for explaining an embodiment, and FIG. 5 is a schematic view of a main part showing a structure according to still another embodiment of the present invention. 1 ... Silicon oxide film, 2 ... Silicon substrate, 3 ... Platinum thin film, 4 ... Resist pattern, 5,6 ... Comb-shaped working electrode, 7 ... Silicon nitride film, 8 ... Resist pattern, 9 ... … Lower electrode, 9A …… Connecting pad, 10 …… Silicon dioxide film, 11 …… Surface electrode, 12 …… Resist pattern, 13 …… Upper working electrode, 13A …… Connecting pad, 14 ……
Micro disk array electrode, 15 ... Lower comb-shaped working electrode,
16 ... Upper comb-shaped working electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田部井 久男 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平1−301159(JP,A) 特開 平2−19757(JP,A) 特開 平2−268265(JP,A) 特開 平2−179248(JP,A) 実開 昭61−50263(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisao Tabei 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (56) Reference JP-A-1-301159 (JP, A) JP-A 2-19757 (JP, A) JP-A-2-268265 (JP, A) JP-A-2-179248 (JP, A) Actual Development Sho 61-50263 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に形成された複数のパターン
状薄膜電極からなる作用電極を有し、検体試料溶液を流
入してそれに溶解している検体試料を電気的に検出する
電気化学的検出器において、 前記検体に対する酸化還元電位が印加され、前記検体を
酸化もしくは還元する第1の作用電極と、 前記第1の作用電極により酸化もしくは還元された検体
が還元もしくは酸化する第1の部分,および,前記第1
の部分とは電気的に接続し、前記第1の部分が前記検体
を還元もしくは酸化したとき、近傍の前記検体試料溶液
中の検体を酸化もしくは還元する第2の部分からなり、
電位が印加されない第2の作用電極と を備え、 前記第1の作用電極と第2の作用電極の第1の部分と
は、微少な平面的間隔および/あるいは絶縁層を介した
立体的段差による微小間隔により分離されていることを
特徴とする電気化学的検出器。
1. An electrochemical having a working electrode composed of a plurality of patterned thin-film electrodes formed on an insulating substrate, for inflowing a sample solution to electrically detect a sample dissolved therein. In the detector, a first working electrode for applying an oxidation-reduction potential to the analyte to oxidize or reduce the analyte, and a first portion for reducing or oxidizing the analyte oxidized or reduced by the first working electrode , And the first
Is electrically connected to the portion of, and when the first portion reduces or oxidizes the specimen, the second portion oxidizes or reduces the specimen in the specimen sample solution in the vicinity,
A second working electrode to which an electric potential is not applied, and the first working electrode and the first portion of the second working electrode are formed by a minute planar space and / or a three-dimensional step through an insulating layer. An electrochemical detector characterized by being separated by minute intervals.
JP2033965A 1990-02-16 1990-02-16 Electrochemical detector Expired - Lifetime JP2566173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033965A JP2566173B2 (en) 1990-02-16 1990-02-16 Electrochemical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033965A JP2566173B2 (en) 1990-02-16 1990-02-16 Electrochemical detector

Publications (2)

Publication Number Publication Date
JPH03238350A JPH03238350A (en) 1991-10-24
JP2566173B2 true JP2566173B2 (en) 1996-12-25

Family

ID=12401206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033965A Expired - Lifetime JP2566173B2 (en) 1990-02-16 1990-02-16 Electrochemical detector

Country Status (1)

Country Link
JP (1) JP2566173B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246460A (en) * 1990-02-26 1991-11-01 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector
CN101627301B (en) 2007-11-01 2012-08-08 松下电器产业株式会社 Electrode plate for electrochemical measurement, electrochemical measuring instrument having the electrode plate for electrochemical measurement, and method for determining target substance using the
JP4418030B2 (en) 2008-05-28 2010-02-17 パナソニック株式会社 Method for detecting or quantifying target substance using electrochemical measuring device, electrochemical measuring device, and electrode plate for electrochemical measurement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345177Y2 (en) * 1984-09-05 1991-09-24
JP2556993B2 (en) * 1989-04-10 1996-11-27 日本電信電話株式会社 Micropore electrode cell for electrochemical measurement and method for producing the same

Also Published As

Publication number Publication date
JPH03238350A (en) 1991-10-24

Similar Documents

Publication Publication Date Title
Niwa Electroanalysis with interdigitated array microelectrodes
EP0569908A2 (en) Electrochemical detection method and apparatus therefor
CA2105510C (en) Amperometric measuring device having an electrochemical sensor
JP3289059B2 (en) Electrochemical detection method and detection device
JP4283880B2 (en) Electrode measurement electrode plate, electrochemical measurement apparatus having the electrode plate, and method for quantifying a target substance using the electrode plate
JP4418030B2 (en) Method for detecting or quantifying target substance using electrochemical measuring device, electrochemical measuring device, and electrode plate for electrochemical measurement
Iwasaki et al. Electrochemical measurements with interdigitated array microelectrodes
JP2992603B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
Fiaccabrino et al. Interdigitated microelectrode arrays based on sputtered carbon thin-films
JP2566173B2 (en) Electrochemical detector
JP4283881B1 (en) Electrochemical measurement electrode plate, electrochemical measurement apparatus having the electrochemical measurement electrode plate, and method for quantifying a target substance using the electrochemical measurement electrode plate
JPH03179248A (en) Fine pore array electrode for electrochemical analysis and manufacture thereof
JP3108499B2 (en) Microelectrode cell for electrochemical detection and method for producing the same
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
JPH09127039A (en) Electrochemical detector and its manufacture
JP3047048B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JP2590004B2 (en) Comb-shaped modified microelectrode cell and method for producing the same
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JPH02140655A (en) Electrochemical detector and production thereof
JPH03246460A (en) Electrochemical detector
JPH09101283A (en) Electrochemical detector and its manufacture
JP3509064B2 (en) Electrochemical detector for capillary electrophoresis and method for producing the same
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP2577045B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPH0251055A (en) Electrode cell for electrochemical measurement and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14