JP2575878B2 - Chemical cleaning waste liquid treatment method - Google Patents
Chemical cleaning waste liquid treatment methodInfo
- Publication number
- JP2575878B2 JP2575878B2 JP14304989A JP14304989A JP2575878B2 JP 2575878 B2 JP2575878 B2 JP 2575878B2 JP 14304989 A JP14304989 A JP 14304989A JP 14304989 A JP14304989 A JP 14304989A JP 2575878 B2 JP2575878 B2 JP 2575878B2
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- acid
- added
- cod
- equivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title claims description 87
- 239000002699 waste material Substances 0.000 title claims description 74
- 239000000126 substance Substances 0.000 title claims description 30
- 238000004140 cleaning Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 24
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 49
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 48
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 15
- 229910001448 ferrous ion Inorganic materials 0.000 claims description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 13
- 150000007524 organic acids Chemical class 0.000 claims description 13
- 229910001385 heavy metal Inorganic materials 0.000 claims description 12
- 230000003449 preventive effect Effects 0.000 claims description 11
- 239000002244 precipitate Substances 0.000 claims description 9
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 8
- 229940043430 calcium compound Drugs 0.000 claims description 8
- 150000001674 calcium compounds Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011790 ferrous sulphate Substances 0.000 claims description 6
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 6
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 6
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 6
- 239000010812 mixed waste Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 150000004692 metal hydroxides Chemical class 0.000 claims description 5
- 229960002089 ferrous chloride Drugs 0.000 claims description 4
- 229960004275 glycolic acid Drugs 0.000 claims description 4
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 32
- 239000000243 solution Substances 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000005406 washing Methods 0.000 description 11
- 238000006864 oxidative decomposition reaction Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 7
- 239000000920 calcium hydroxide Substances 0.000 description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000010979 pH adjustment Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 208000005156 Dehydration Diseases 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229960004887 ferric hydroxide Drugs 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000012028 Fenton's reagent Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- MGZTXXNFBIUONY-UHFFFAOYSA-N hydrogen peroxide;iron(2+);sulfuric acid Chemical compound [Fe+2].OO.OS(O)(=O)=O MGZTXXNFBIUONY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- -1 iron ion Chemical class 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学洗浄廃液の処理法に関し、更に詳しく
は、有機酸洗浄廃液及び防錆液を含む化学洗浄廃液を放
流するに際し、同廃液より有機物質(以下、CODと略記
する)、重金属及び有害物質を除去する方法に関する。The present invention relates to a method for treating a chemical cleaning waste liquid, and more particularly, to discharging a chemical cleaning waste liquid containing an organic acid cleaning waste liquid and a rust-preventive liquid from the same. It relates to a method for removing organic substances (hereinafter abbreviated as COD), heavy metals and harmful substances.
火力プラント、化学プラントのボイラ、熱交換器等の
金属表面に付着した酸化物スケール(主にFe3O4)をく
えん酸又はくえん酸とヒドロキシ酢酸とを混合した有機
酸に酸腐食抑制剤(以下インヒビターと略記する)を添
加した酸液で除去する酸洗浄及び酸洗後の金属表面を防
錆保護する一時防錆処理を例えば火力プラントの貫流ボ
イラに適用した場合の化学洗浄廃液の組成と性状の一例
を示せば第1表の如くである。Oxide scale (mainly Fe 3 O 4 ) adhering to metal surfaces in boilers, heat exchangers, etc. of thermal power plants, chemical plants, etc. is converted to citric acid or an organic acid obtained by mixing citric acid and hydroxyacetic acid into an acid corrosion inhibitor ( In the following, the composition of chemical cleaning waste liquid in the case of applying acid washing to remove with an acid solution to which an acid solution containing added acid has been added and temporary rust prevention treatment for preventing rust on the metal surface after pickling, for example, when applied to a once-through boiler of a thermal power plant. An example of the properties is shown in Table 1.
第1表から判るように処理前の混合廃液には有害成分
であるCOD、溶解鉄及びりん酸塩などが多量含有されて
いる。このような化学洗浄廃液は公害上そのまま排出す
ることはできない。排出する場合の排水基準値は第2表
に例示されるように地域自治体との公害防止協定などで
決められた規制値まで浄化処理することが必要である。 As can be seen from Table 1, the mixed effluent before treatment contains a large amount of harmful components such as COD, dissolved iron and phosphate. Such a chemical cleaning waste liquid cannot be discharged as it is due to pollution. As shown in Table 2, it is necessary to purify effluent standard values to the regulation values determined by a pollution prevention agreement with a local government as shown in Table 2.
従来は、このような化学洗浄廃液の処理法として、焼
却処理又は湿式による化学的処理等がある。湿式による
化学的処理法として、本発明者らは、先に有機酸洗浄液
及び防錆液を含む廃液にカルシウム化合物をくえん酸に
対し0.7当量以上添加し、次に硫酸を添加してpHを3〜
5.5の範囲に調整したのち、第一鉄イオン濃度として、2
000ppm以上になるよう硫酸第一鉄を添加し、さらに過酸
化水素を廃液中のCODに対し1当量以上添加して酸化分
解して蓚酸カルシウムを沈殿生成させ次いで同廃液に水
酸化カルシウムを添加してpHを7〜8.6の範囲に調整し
て同廃液中の重金属を重金属水酸化物として沈殿生成さ
せた後、沈殿物を沈降分離する方法を提案している。
(特願昭62−98519号(特開昭63−264193号公報)) 〔発明が解決しようとする課題〕 上述した先に提案したような方法では、有機酸洗浄液
と防錆液を廃液処理槽へ受け入れた際、酸液は防錆液
(pH9.5程度)によつて中和されてpHが6以上に上昇す
るため酸液中に溶解していた第一鉄イオン(溶解鉄中の
ほぼ100%Fe2+として存在)は空気酸化を受けてほぼ100
%第二鉄イオン(Fe3+)に変化してしまうので、過酸化
水素によるCODの酸化処理時において有利な酸化助剤(F
e2+)の役割は全くなくなつてしまうこと、また過酸化
水素の添加要領においても全量を2〜3時間て一度に添
加するので酸化助剤(Fe2+)の添加濃度も2000ppm以上
を必要とすること、次にアルカリ剤を同廃液に添加中和
したとき鉄の水酸化物沈殿生成量が、鉄イオン濃度に比
例して増加するので、その沈殿物の処理(プレスフイル
ター方式又は遠心分離方式による脱水)に長時間を要
し、かつ処理費を高くするなどの問題点があつた。 Conventionally, as a treatment method of such a chemical cleaning waste liquid, there is an incineration treatment or a chemical treatment by a wet method. As a wet chemical treatment method, the present inventors first added a calcium compound to a waste solution containing an organic acid washing solution and a rust preventive solution at 0.7 equivalent or more with respect to citric acid, and then added sulfuric acid to adjust the pH to 3. ~
After adjusting to the range of 5.5, as ferrous ion concentration, 2
Ferrous sulfate is added so that the concentration becomes 000 ppm or more. Further, hydrogen peroxide is added at least one equivalent to COD in the waste liquid to oxidize and decompose to form calcium oxalate, and then calcium hydroxide is added to the waste liquid. A method is proposed in which the pH is adjusted to a range of 7 to 8.6 to precipitate heavy metals in the waste liquid as heavy metal hydroxides, and then the precipitates are precipitated and separated.
(Problem to be Solved by the Invention) In the above-mentioned method as proposed above, an organic acid cleaning liquid and a rust preventive liquid are treated with a waste liquid treatment tank. When the acid solution is received, the acid solution is neutralized by a rust preventive solution (about pH 9.5) and the pH rises to 6 or more, so that ferrous ions dissolved in the acid solution (almost (Present as 100% Fe 2+ )
% Ferric ion (Fe 3+ ), which is advantageous when oxidizing COD with hydrogen peroxide.
The role of e 2+ ) is completely lost. Also, in the procedure for adding hydrogen peroxide, since the entire amount is added at once in a few hours, the concentration of the oxidizing aid (Fe 2+ ) must be 2000 ppm or more. The necessity is that, when an alkaline agent is added to the waste liquid and then neutralized, the amount of iron hydroxide precipitate generated increases in proportion to the iron ion concentration, so the treatment of the precipitate (press filter method or centrifugation) However, there are problems that it takes a long time to perform the dehydration by the separation method, and the processing cost is increased.
本発明は上記技術水準に鑑み、前記提案方法における
ような不具合のない化学洗浄廃液の処理法を提供しよう
とするものである。The present invention has been made in view of the above-mentioned state of the art, and aims to provide a method for treating a chemical cleaning waste liquid which does not have a problem as in the proposed method.
本発明はくえん酸又はくえん酸とヒドロキシ酢酸とを
混合した有機酸洗浄液及び防錆液を含む化学洗浄廃液の
処理において、硫酸又は塩酸により上記有機酸洗浄廃液
のpHを1.5〜2まで下げた後に上記防錆液と混合し、こ
の混合廃液をエアバブリングしながら該廃液にカルシウ
ム化合物をカルシウム濃度として、くえん酸に対し0.7
当量以上添加し、次に硫酸又は塩酸を添加してpHを1.5
〜3.5の範囲に調整し、更に第一鉄イオン濃度として100
0ppm以上になるよう硫酸第一鉄又は塩化第一鉄を添加し
た後、該廃液中の有機物質に対し過酸化水素をまず1.1
当量以上を1.5〜2時間程度かけて添加して2日間程度
静置してから、更に0.1当量以上の過酸化水素を添加す
ることにより同廃液中の有機物質に対して全体として過
酸化水素を1.2当量以上添加して該廃液中の有機物質を
酸化分解し、次いで該廃液にアルカリ剤を添加してpHを
5.8〜8.6の範囲に調整して該廃液中の重金属を重金属水
酸化物として沈殿生成させた後、該沈殿物を沈降分離す
ることを特徴とする化学洗浄廃液の処理法である。The present invention relates to the treatment of an organic acid cleaning solution containing citric acid or a mixture of citric acid and hydroxyacetic acid and a chemical cleaning waste solution containing a rust preventive solution, after reducing the pH of the organic acid washing waste solution to 1.5 to 2 with sulfuric acid or hydrochloric acid. Mix with the above rust preventive liquid, and while air bubbling the mixed waste liquid, the waste liquid has a calcium concentration of calcium, 0.7
At least, and then add sulfuric acid or hydrochloric acid to adjust the pH to 1.5.
~ 3.5 range, and further adjust the ferrous ion concentration to 100
After adding ferrous sulfate or ferrous chloride so as to be 0 ppm or more, hydrogen peroxide was first added to the organic substances in the waste liquid to 1.1 ppm.
Add more than equivalent over 1.5 to 2 hours and let it stand for about 2 days, then add more than 0.1 equivalent of hydrogen peroxide to reduce the total amount of hydrogen peroxide to organic substances in the waste liquid. The organic substance in the waste liquid is oxidatively decomposed by adding 1.2 equivalents or more, and then an alkaline agent is added to the waste liquid to adjust the pH.
This is a method for treating a chemical cleaning waste liquid, comprising adjusting to 5.8 to 8.6 to precipitate heavy metals in the waste liquid as heavy metal hydroxide, and then sedimenting and separating the precipitate.
更に本発明をやゝ詳細に説明すると、本発明はくえん
酸又はくえん酸とヒドロキシ酢酸とを混合した有機酸洗
浄液及び防錆液を含む化学洗浄廃液の処理において、有
機酸洗浄液を廃液処理槽へ受け入れる際、硫酸又は塩酸
を同時に添加して有機酸洗浄廃液pHを1.5〜2程度まで
下げた後に防錆液を受け入れエアバブリングしながら同
廃液に水酸化カルシウム、塩化カルシウム、炭酸カルシ
ウム、酸化カルシウム等のカルシウム化合物の少なくと
も1種以上をカルシウム濃度として、くえん酸に対し0.
7当量以上添加し、更に硫酸又は塩酸を添加してpHを1.5
〜3.5の範囲に調整し、次に第一鉄イオン(Fe2+)濃度
として1000ppm以上になるよう硫酸第一鉄又は塩化第一
鉄を添加した後、過酸化水素を廃液中のCODに対し1.2当
量以上添加するに際し、まず1.1当量以上を1.5〜2時間
程度かけて添加し、残りの0.1当量以上は廃液を2日間
程度静置しておいた後、添加してCODを酸化分解し、次
いで同廃液に水酸化ナトリウム、水酸化カリウム、水酸
化カルシウム等のアルカリ剤を少なくとも1種以上添加
してpHを5.8〜8.6の範囲に調整して廃液中の重金属を重
金属水酸化物として沈殿生成させた後、沈殿物を沈降分
離し、その上澄液はなんらpH調整することなく、そのま
ま放流し、沈殿物はプレスフイルター又は遠心分離機等
の脱水処理装置により脱水処理するようにした化学洗浄
廃液の処理方法である。The present invention will be described in more detail.In the present invention, in the treatment of an organic acid cleaning solution containing citric acid or an organic acid cleaning solution obtained by mixing citric acid and hydroxyacetic acid and a rust preventive solution, the organic acid cleaning solution is transferred to a waste liquid treatment tank. At the time of receiving, add sulfuric acid or hydrochloric acid at the same time to lower the pH of the organic acid washing waste liquid to about 1.5 to 2, then receive the rust preventive liquid and air-bubble the waste liquid into calcium hydroxide, calcium chloride, calcium carbonate, calcium oxide, etc. The calcium concentration of at least one of the calcium compounds is 0.1 to citric acid.
7 equivalents or more, and further add sulfuric acid or hydrochloric acid to adjust the pH to 1.5.
~ 3.5, then add ferrous sulfate or ferrous chloride so that the concentration of ferrous ion (Fe 2+ ) becomes 1000ppm or more, and then add hydrogen peroxide to COD in waste liquid. When adding 1.2 equivalents or more, first add 1.1 equivalents or more over about 1.5 to 2 hours, and leave the remaining 0.1 equivalents or more after leaving the waste liquid to stand for about 2 days, and then oxidize and decompose COD, Next, at least one or more alkali agents such as sodium hydroxide, potassium hydroxide, calcium hydroxide and the like are added to the waste liquid to adjust the pH to the range of 5.8 to 8.6, and heavy metals in the waste liquid are precipitated as heavy metal hydroxide. After the sedimentation, the sediment is separated by sedimentation, the supernatant liquid is discharged without any pH adjustment, and the sediment is subjected to chemical washing by a dehydration treatment device such as a press filter or a centrifugal separator. This is a method for treating waste liquid.
次に本発明の方法をさらに具体的に説明するため、第
1表に示した組成及び性状の化学洗浄廃液を対象として
述べる。Next, in order to more specifically explain the method of the present invention, the chemical cleaning waste liquid having the composition and properties shown in Table 1 will be described.
まず、廃液処理槽に酸洗浄廃液1容を受け入れる際、
硫酸又は塩酸を同時に注入するか、予め硫酸又は塩酸を
廃液処理槽に添加しておくかして、廃液処理槽に受け入
れた酸洗浄廃液のpHを1.5〜2程度まで下げて同廃液中
の第一鉄イオン(Fe2+)の空気酸化を抑制した後、酸洗
浄後の水洗水廃液約3容、最後に防錆廃液1容を受け入
れた混合廃液に水酸化カルシウム、塩化カルシウム、炭
酸カルシウム及び酸化カルシウム等のカルシウム化合物
の少なくとも1種以上をカルシウム濃度としてくえん酸
に対し0.7当量以上添加し、pHを確認した後、必要に応
じて硫酸又は塩酸を添加してpHを1.5〜3.5の範囲に調整
し、次に第一鉄イオン(Fe2+)濃度として1000ppm以
上、好ましくは1500ppmになるよう硫酸第一鉄又は塩化
第一鉄を添加(混合廃液中のFe2+濃度を測定し、1500pp
m以上含有している場合は添加の必要なし)した後、過
酸化水素を廃液中のCODに対し1.2当量以上添加するに際
し、まず1.1当量以上を1.5〜2時間かけて添加してCOD
負荷成分の約99%程度まで酸化分解し、残りの0.1当量
以上は廃液を2日間程度静置して後、添加してCODをほ
ぼ100%近くまで酸化分解し、次いで同廃液に水酸化ナ
トリウム、水酸化カリウム、水酸化カルシウム等のアル
カリ剤を少なくとも1種以上添加してpHを5.8〜8.6の範
囲に調整する。このように一連の薬品添加に当つてはエ
アバブリングによつて廃液を強制的に撹拌するのが液の
均一化及び酸化反応速度を速める上で好ましい。First, when receiving one volume of acid washing waste liquid in the waste liquid treatment tank,
By injecting sulfuric acid or hydrochloric acid at the same time, or adding sulfuric acid or hydrochloric acid to the waste liquid treatment tank in advance, the pH of the acid washing waste liquid received in the waste liquid treatment tank is lowered to about 1.5 to 2 to reduce the pH of the waste liquid. After suppressing the air oxidation of ferrous ion (Fe 2+ ), calcium hydroxide, calcium chloride, calcium carbonate and At least one kind of calcium compounds such as calcium oxide is added as a calcium concentration to 0.7 equivalent or more to citric acid, and after confirming the pH, if necessary, sulfuric acid or hydrochloric acid is added to adjust the pH to a range of 1.5 to 3.5. Adjust and then add ferrous sulfate or ferrous chloride so that the ferrous ion (Fe 2+ ) concentration is 1000 ppm or more, preferably 1500 ppm (measure the Fe 2+ concentration in the mixed waste liquid,
m), then add 1.2 equivalents or more of hydrogen peroxide to the COD in the waste liquid. First, add 1.1 equivalents or more over 1.5 to 2 hours.
Oxidatively decompose to about 99% of the load components, and for the remaining 0.1 equivalent or more, the waste liquid is allowed to stand for about two days, and then added to oxidatively decompose COD to almost 100%, and then sodium hydroxide is added to the waste liquid. , Potassium hydroxide, calcium hydroxide or the like is added to at least one kind of alkali agent to adjust the pH to the range of 5.8 to 8.6. For such a series of chemical additions, it is preferable to forcibly agitate the waste liquid by air bubbling in order to homogenize the liquid and increase the oxidation reaction rate.
次いで沈殿生成する重金属水酸化物(主に水酸化第二
鉄)、蓚酸カルシウム及びりん酸カルシウム(第1表の
混合廃液がD−1の場合)はセツトリングを行なつて上
澄液と沈殿物(以下スラツジという)に完全分離し、上
澄液とスラツジの脱水液は、なんらpH調整することもな
く、そのまま放流し、スラツジは適宜な脱水処理装置に
より脱水して焼却、その他の方法で処理する。Then, the heavy metal hydroxide (mainly ferric hydroxide), calcium oxalate and calcium phosphate (when the mixed waste liquid in Table 1 is D-1) which precipitates are settled and settled with the supernatant. (Hereinafter referred to as sludge), the supernatant and the dehydrated sludge are discharged without any pH adjustment, and the sludge is dehydrated by an appropriate dehydration treatment device and incinerated. To process.
本発明において、酸洗浄廃液を廃液処理槽へ受け入れ
る際、硫酸又は塩酸を廃液中に添加して廃液のpHを1.5
〜2程度に調整することにより、廃液中の第一鉄イオン
(Fe2+)は空気酸化を受けることなく維持できるので過
酸化水素によるCODの酸化処理時において有効な酸化助
剤(Fe2+)としての役割を果すばかりでなく、そのFe2+
濃度が1500ppm程度含有している場合は、CODの酸化処理
時あらためて添加する必要もなくなる。またCOD負荷成
分の中で最も酸化分解が困難なくえん酸を例にとつて過
酸化水素による酸化分解作用を示すと下記の第1式の化
学反応によるためと考えられる。In the present invention, when receiving the acid washing waste liquid into the waste liquid treatment tank, sulfuric acid or hydrochloric acid is added to the waste liquid to adjust the pH of the waste liquid to 1.5.
By adjusting the degree to 2, ferrous ion in the effluent (Fe 2+) is effective oxidizing aid in the oxidation process of COD with hydrogen peroxide can be maintained without being air oxidation (Fe 2+ ) As well as its Fe 2+
When the concentration is about 1500 ppm, there is no need to add COD again during the oxidation treatment of COD. Further, it is considered that oxidative decomposition by hydrogen peroxide is the most difficult of the COD load components and the oxidative decomposition effect of hydrogen peroxide is cited as an example of citric acid because of the following chemical reaction of the first formula.
過酸化水素は単独では酸化分解力は、ほとんどない
が、酸性或で第一鉄イオンとの混合溶液はフエントン試
薬として酸化効果の高いことが知られており、過酸化水
素による酸化分解率を効果的に高めるために酸化助剤
(Fe2+)の添加以外に第1式の化学反応で示すように予
め水酸化カルシウム、酸化カルシウム、塩化カルシウム
等のカルシウム化合物を添加しておくことにより、くえ
ん酸の酸化分解率は顕著に向上し、COD成分を効果的に
除去する。 Hydrogen peroxide alone has almost no oxidative decomposition power, but acidic or mixed solutions with ferrous ion are known to have a high oxidizing effect as a Fenton's reagent. By adding a calcium compound such as calcium hydroxide, calcium oxide or calcium chloride in advance as shown by the chemical reaction of the first formula, in addition to the addition of an oxidation aid (Fe 2+ ) in order to increase the concentration, The oxidative decomposition rate of the acid is significantly improved, and the COD component is effectively removed.
即ち第1式の化学反応から判るようにカルシウム化合
物を添加しておくことにより、イオン化したカルシウム
はくえん酸が酸化分解して生成する蓚酸と瞬時に反応し
て蓚酸カルシウム(CaC2O4)の沈殿を生成し、瞬時的に
は蓚酸はなくなる状態となるため、化学平衡はくえん酸
がほぼ完全に酸化分解されるまで反応は右方向に進むた
めと考えられる。このようにCOD成分の酸化分解除去は
過酸化水素、第一鉄イオン及びカルシウム化合物の三者
併用によつて効果的に発揮されるが、この場合、過酸化
水素の添加要領、即ち過酸化水素をCODに対し1.2当量以
上好ましくは1.3当量を添加するのに、その全量を1度
に添加したのでは、その添加濃度に応じたCODの除去効
果は小さいが、過酸化水素の添加に際し、例えば、まず
1.1当量分以上を1.5〜2時間程度時間をかけて添加し充
分にCODを酸化分解したら、残りの0.1または0.2当量分
以上は同廃液を2日間程度静置し、間をおいてから添加
する、いわゆる2回添加法によればCOD成分をほぼ100%
近くまで効果的に除去することを確認している。過酸化
水素の2回添加法がCOD除去効果を高めるのは次のこと
が考えられる。That is, by adding a calcium compound as can be seen from the chemical reaction of the first formula, ionized calcium reacts instantaneously with oxalic acid generated by oxidative decomposition of citric acid to form calcium oxalate (CaC 2 O 4 ). Since a precipitate is formed and oxalic acid disappears instantaneously, it is considered that the chemical equilibrium is that the reaction proceeds to the right until citric acid is almost completely oxidatively decomposed. As described above, the oxidative decomposition and removal of the COD component can be effectively exerted by the combined use of hydrogen peroxide, ferrous ion, and a calcium compound. Is added to the COD in an amount of 1.2 equivalents or more, preferably 1.3 equivalents, but if the entire amount is added at once, the COD removal effect according to the addition concentration is small, but when adding hydrogen peroxide, for example, First
Add 1.1 equivalents or more over 1.5 to 2 hours and add enough time to oxidize and decompose COD. For the remaining 0.1 or 0.2 equivalents or more, allow the waste liquid to stand for about 2 days and add after a while According to the so-called double addition method, almost 100% COD component
It has been confirmed that it is effectively removed up to a nearby area. It is considered that the double addition method of hydrogen peroxide enhances the COD removal effect as follows.
即ちCOD成分を過酸化水素(H2O2)で酸化分解するに
は酸化分解機構に関与する活性種(HO・ラジカル,HO2・
ラジカル)が必要とされており、この活性種生成には第
2式乃至第4式反応で示すように第1鉄イオン(Fe2+)
の存在が必要不可欠であることから未分解のCOD成分を
酸化分解してさらにCODの除去率を高めるためには酸化
された第二鉄イオン(Fe3+)を第一鉄イオン(Fe2+)に
還元する必要がある。That is, in order to oxidize and decompose the COD component with hydrogen peroxide (H 2 O 2 ), active species (HO radical, HO 2
Radical) is required, and ferrous ion (Fe 2+ ) is required for the generation of the active species as shown by the second to fourth reactions.
Since the presence of is indispensable, in order to oxidatively decompose the undecomposed COD component and further increase the COD removal rate, the oxidized ferric ion (Fe 3+ ) is converted into ferrous ion (Fe 2+ ).
Fe2++H2O2→Fe3++OH-+HO・ ……第2式 HO・+H2O2→H2O+HO2・ ……第3式 HO・又はHO2・+COD成分→COD酸化分解 ……第4式 この還元反応(Fe3+→Fe2+)が廃液を静置することに
よつて起こることを見いだし、2日間の静置で約85%還
元されることを確認した。またCOD成分の酸化処理時の
適正pH範囲は1.5〜3.5が好ましく、適正pH範囲をはずれ
るとCODの除去効率は悪くなる。またCOD酸化処理時にお
ける第一鉄イオン(Fe2+)の適正濃度は1000ppm以上好
ましくは1500ppm程度がよい。1000ppm未満でもCODの酸
化分解は進むが、CODが第2表の排水基準値までは低下
しない。 Fe 2+ + H 2 O 2 → Fe 3+ + OH - + HO · ...... second equation HO · + H 2 O 2 → H 2 O + HO 2 · ...... third equation HO · or HO 2 · + COD components → COD oxidative decomposition ... ... Formula 4 It has been found that this reduction reaction (Fe 3+ → Fe 2+ ) occurs when the waste liquid is allowed to stand, and it has been confirmed that about 85% reduction is achieved by allowing the waste liquid to stand for two days. Further, the appropriate pH range during the oxidation treatment of the COD component is preferably 1.5 to 3.5, and if the pH is out of the appropriate pH range, the efficiency of COD removal becomes poor. The appropriate concentration of ferrous ion (Fe 2+ ) at the time of the COD oxidation treatment is 1000 ppm or more, preferably about 1500 ppm. Even if the concentration is less than 1000 ppm, the oxidative decomposition of COD proceeds, but the COD does not decrease to the effluent standard value in Table 2.
実用に当つての過酸化水素の添加量は、廃液のCODを
測定することにより決めればよいが、第2表の排水基準
値内に処理するためにはCODに対し1.2当量以上好ましく
は1.3当量の添加が必要であり、その添加要領は、まず
1.1当量以上を1.5〜2時間程度時間をかけて添加した
ら、残りの0.1当量以上は同廃液を2日間程度静置し間
をおいてから添加することが必要である。The amount of hydrogen peroxide added for practical use may be determined by measuring the COD of the waste liquid, but in order to treat the wastewater within the effluent standard values shown in Table 2, it should be at least 1.2 equivalents, preferably 1.3 equivalents, relative to the COD. Need to be added.
After adding 1.1 equivalents or more over a period of about 1.5 to 2 hours, it is necessary to add the remaining 0.1 equivalents or more after allowing the waste liquid to stand for about 2 days with a delay.
本発明の処理法によれば化学洗浄廃液中のCOD、重金
属、SSなどの規制項目を第2表の排水基準値内まで除去
可能となり、またプランクトン富養剤物質といわれる燐
酸塩の除去もほぼ完全にでき、かつ、スラツジを沈降分
離した上澄液も無臭で無色透明にすることができるの
で、処理水の放流に際しては何らpH調整することなく、
そのまま放流できる。According to the treatment method of the present invention, it is possible to remove the control items such as COD, heavy metals, and SS in the chemical cleaning waste liquid to within the effluent standard values shown in Table 2, and also to remove the phosphate called plankton fertilizer substance almost completely. Completely, and the supernatant from which the sludge was settled and separated can also be made odorless and colorless and transparent, so no pH adjustment is required when discharging the treated water.
It can be released as it is.
第3表に本発明の実施例を示す。 Table 3 shows examples of the present invention.
有機酸洗浄液及び防錆液を含む化学洗浄廃液の処理に
おいて下記のような試験を行なつた。この試験は第1表
に示した組成及び性状の化学洗浄廃液を対象として行な
つたもので、まず第1表の混合廃液を調製する前に(A
−1)及び(A−2)の酸洗浄廃液(pH5程度)に硫酸
を添加してpH2以下になるよう調整して(D−1),
(D−2),(D−3)3種何れの混合廃液pHが3以下
になるよう調製したそれぞれ1にカルシウム化合物を
くえん酸に対し0.7当量添加し、次に硫酸を添加してpH
を1.5〜3.5に調整したのち第一鉄イオン(Fe2+)濃度と
して1000〜1500ppmになるよう硫酸第一鉄を添加(Fe2+1
000ppmの場合は既に廃液中に含有しているのであらたに
添加する必要なし)し、撹拌しながら過酸化水素を廃液
中のCOD分に対し1.2当量以上添加するに際し、まず1.1
当量以上を1.5〜2時間かけて添加し、残りの0.1当量以
上は廃液を2日間静置しておいてのち添加し4時間撹拌
を続けたのち、同廃液に塩化カルシウム{実施例(2)
〜(6),(12)〜(16)}あるいは水酸化カルシウム
{実施例(8)〜(10)及び比較例(17)〜(22)}を
添加してpHを5.8〜8.6に調整して、水酸化第二鉄、蓚酸
カルシウム及び燐酸カルシウムを完全に沈殿生成させ、
その処理水のCOD、溶解鉄、燐酸根及びSS(固形浮遊
物)を測定し第3表の試験番号(2)〜(6),(8)
〜(10),(12)〜(16)の如き結果を得た。又比較の
ため過酸化水素による酸化処理時の過酸化水素添加を1
時間ほどかけて1回ですませる従来法についても行つた
(試験番号((17)〜(22))。The following tests were conducted in the treatment of a chemical cleaning waste liquid containing an organic acid cleaning liquid and a rust preventive liquid. This test was conducted on chemical cleaning waste liquids having the composition and properties shown in Table 1 before preparing the mixed waste liquid shown in Table 1 (A
Sulfuric acid is added to the acid washing waste solution (about pH 5) of (A-1) and (A-2) to adjust the pH to 2 or less (D-1).
(D-2) and (D-3) each of the three kinds of mixed effluents prepared so as to have a pH of 3 or less, a calcium compound was added to each 1 in an amount of 0.7 equivalent to citric acid, and then sulfuric acid was added.
Was adjusted to 1.5 to 3.5, and then ferrous sulfate was added so that the ferrous ion (Fe 2+ ) concentration became 1000 to 1500 ppm (Fe 2 + 1
In the case of 000 ppm, it is already contained in the waste liquid, so there is no need to add it again), and when adding hydrogen peroxide with stirring at least 1.2 equivalents to the COD content in the waste liquid, first add 1.1 equivalents.
The equivalent was added over 1.5 to 2 hours, and the remaining 0.1 equivalent or more was added after the waste liquid was allowed to stand for 2 days, followed by stirring for 4 hours, and calcium chloride was added to the waste liquid {Example (2).
To (6), (12) to (16)} or calcium hydroxide {Examples (8) to (10) and Comparative Examples (17) to (22)} to adjust the pH to 5.8 to 8.6. To completely precipitate ferric hydroxide, calcium oxalate and calcium phosphate,
The COD, dissolved iron, phosphate groups and SS (solid suspended solids) of the treated water were measured, and the test numbers (2) to (6) and (8) in Table 3 were measured.
To (10) and (12) to (16). For comparison, the addition of hydrogen peroxide during the oxidation treatment with hydrogen peroxide was 1
The conventional method, which can be performed once over a period of time, was also performed (test numbers ((17) to (22)).
試験番号(1),(7)及び(11)の参考例は第1表
に示す混合廃液(D−1),(D−2)及び(D−3)
で廃液処理前の性状を示す。The reference examples of the test numbers (1), (7) and (11) are the mixed waste liquids (D-1), (D-2) and (D-3) shown in Table 1.
Indicates the properties before waste liquid treatment.
〔発明の効果〕 本発明により次のような効果が奏せられる。 [Effects of the Invention] The present invention has the following effects.
(1) pHがほぼ5以上になつている酸洗浄廃液を廃液
処理槽へ受け入れる際、硫酸又は塩酸を廃液中に添加し
て廃液のpHを1.5〜2程度に調整しておくことにより、
その後の水洗水や中和防錆液を廃液処理槽を受け入れ
て、エアバブリングにより十分撹拌しても廃液中の第一
鉄イオン(Fe2+)は空気酸化を受けることなく維持でき
るのでCODの酸化処理時において有用な酸化助剤(F
e2+)としての役割を果すばかりでなく、そのFe2+濃度
が1500ppm程度含有している場合はCOD酸化処理時にあら
ためて添加する必要もなくなつた。(1) When acid washing waste liquid having a pH of about 5 or more is received into the waste liquid treatment tank, sulfuric acid or hydrochloric acid is added to the waste liquid to adjust the pH of the waste liquid to about 1.5 to 2,
Even if the subsequent washing water and neutralized rust preventive liquid are received in the waste liquid treatment tank and sufficiently stirred by air bubbling, the ferrous ions (Fe 2+ ) in the waste liquid can be maintained without undergoing air oxidation. Useful oxidation aids (F
Not only does it play a role as e 2+ ), but when its Fe 2+ concentration is about 1500 ppm, it is not necessary to add it again during the COD oxidation treatment.
(2) 上記(1)の作用効果により、COD酸化処理時
にFe2+の添加量がその分、節約できるばかりでなく、ア
ルカリ剤を同廃液に添加中和したとき生成する重金属
(主に鉄)の水酸化物沈殿量もその分減少するので沈殿
物処理(プレスフイルター方式又は遠心分離方式による
脱水)費も安くなる。(2) The effect of the above (1) not only saves the amount of Fe 2+ added during the COD oxidation treatment, but also saves heavy metals (mainly iron The amount of hydroxide precipitation in (1) is also reduced by that amount, so that the cost of precipitate treatment (dehydration by press filter method or centrifugal separation method) is reduced.
(3) 過酸化水素によるCOD酸化処理において、過酸
化水素の添加要領、即ち過酸化水素をCODに対し1.2当量
以上添加するのにまず1.1当量以上を1.5〜2時間程度時
間をかけて添加したら、残りの0.1当量以上は同廃液を
2日間程度静置し間をおいてから添加するいわゆる2回
添加法によりCOD成分を効果的に除去し得た。(3) In the COD oxidation treatment with hydrogen peroxide, the procedure for adding hydrogen peroxide, that is, when adding hydrogen peroxide to COD at 1.2 equivalents or more, first add 1.1 equivalents or more over 1.5 to 2 hours. The remaining 0.1 equivalent or more could effectively remove the COD component by a so-called double addition method in which the waste liquid was allowed to stand for about two days and then added after a while.
(4) 酸化処理後のpH調整は排水基準値pH範囲内で無
色透明な処理水が得られるので放流に際しては何らpH調
整することなくそのまま放流可能となつた。(4) In the pH adjustment after the oxidation treatment, colorless and transparent treated water can be obtained within the pH range of the wastewater standard value, so that the water can be discharged without any pH adjustment at the time of discharge.
Claims (1)
を混合した有機酸洗浄液及び防錆液を含む化学洗浄液の
処理において、硫酸又は塩酸により上記有機酸洗浄液の
pHを1.5〜2まで下げた後に上記防錆液と混合し、この
混合廃液をエアバブリングしながら該廃液にカルシウム
化合物をカルシウム濃度として、くえん酸に対し0.7当
量以上添加し、次に硫酸又は塩酸を添加してpHを1.5〜
3.5の範囲に調整し、更に第一鉄イオン濃度として1000p
pm以上になるよう硫酸第一鉄又は塩化第一鉄を添加した
後、該廃液中の有機物質に対し過酸化水素をまず1.1当
量以上を1.5〜2時間程度かけて添加して2日間程度静
置してから、更に0.1当量以上の過酸化水素を添加する
ことにより同廃液中の有機物質に対して全体として過酸
化水素を1.2当量以上添加して該廃液中の有機物質を酸
化分解し、次いで該廃液にアルカリ剤を添加してpHを5.
8〜8.6の範囲に調整して該廃液中の重金属を重金属水酸
化物として沈殿生成させた後、該沈殿物を沈降分離する
ことを特徴とする化学洗浄廃液の処理法。In the treatment of an organic acid cleaning solution containing citric acid or a mixture of citric acid and hydroxyacetic acid and a chemical cleaning solution containing a rust preventive solution, the organic acid cleaning solution is treated with sulfuric acid or hydrochloric acid.
After lowering the pH to 1.5 to 2, the mixture is mixed with the above rust preventive liquid, and while the mixed waste liquid is air-bubbled, a calcium compound is added to the waste liquid at a calcium concentration of 0.7 equivalent or more based on citric acid, and then sulfuric acid or hydrochloric acid is added. PH to 1.5
Adjusted to the range of 3.5, and the ferrous ion concentration as 1000p
pm or more, ferrous sulfate or ferrous chloride is added thereto, and then hydrogen peroxide is added to the organic substance in the waste liquid at a rate of 1.1 equivalent or more over 1.5 to 2 hours, and the mixture is allowed to stand for about 2 days. After that, further add hydrogen equivalent of at least 1.2 equivalents to the organic substance in the waste liquid by adding more than 0.1 equivalent of hydrogen peroxide to oxidatively decompose the organic substance in the waste liquid, Next, an alkaline agent was added to the waste liquid to adjust the pH to 5.
A method for treating a chemical cleaning waste liquid, comprising adjusting the amount to 8 to 8.6 to precipitate heavy metals in the waste liquid as heavy metal hydroxide, and then sedimenting and separating the precipitate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14304989A JP2575878B2 (en) | 1989-06-07 | 1989-06-07 | Chemical cleaning waste liquid treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14304989A JP2575878B2 (en) | 1989-06-07 | 1989-06-07 | Chemical cleaning waste liquid treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH038492A JPH038492A (en) | 1991-01-16 |
JP2575878B2 true JP2575878B2 (en) | 1997-01-29 |
Family
ID=15329721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14304989A Expired - Lifetime JP2575878B2 (en) | 1989-06-07 | 1989-06-07 | Chemical cleaning waste liquid treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2575878B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110265170B (en) * | 2019-06-25 | 2022-12-09 | 华东理工大学 | Method for recycling steel pickling waste liquid by electrochemically synthesizing ferrite |
-
1989
- 1989-06-07 JP JP14304989A patent/JP2575878B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH038492A (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575886B2 (en) | Chemical cleaning waste liquid treatment method | |
JP2575878B2 (en) | Chemical cleaning waste liquid treatment method | |
JPH0714514B2 (en) | Chemical cleaning waste liquid treatment method | |
JP2721740B2 (en) | Chemical cleaning waste liquid treatment method | |
JPS63264194A (en) | Treatment of chemical cleaning waste solution | |
JPS62262789A (en) | Method for removing phosphorus | |
CN100431979C (en) | Comprehensive process of treating alkaline waste water from alumina plant and domestic sewage | |
JPS6328492A (en) | Treatment of waste liquid of stack gas scrubbing | |
JPS59196796A (en) | Treatment of liquid waste | |
JPS632678B2 (en) | ||
KR19990014376A (en) | Fluorine-containing wastewater treatment agent and wastewater treatment method using the same | |
JPS5940513B2 (en) | Processing method for chemical cleaning waste liquid | |
JPS6111193A (en) | Treatment of waste liquid of chemical cleaning | |
JP7448129B2 (en) | How to treat wastewater | |
JPH01293187A (en) | Treatment of spent chemical cleaning solution | |
JPS5813230B2 (en) | Treatment method for water containing fluoride ions | |
JPS63256106A (en) | Treatment of waste liquid of water-soluble coolant | |
JPH0829319B2 (en) | Chemical cleaning waste liquid treatment method | |
JPH0361519B2 (en) | ||
KR950005911B1 (en) | Treatment method for waste water including fluorine | |
JPH0722752B2 (en) | Wafer process wastewater treatment method | |
JPH06485A (en) | Chelate wastewater treatment method | |
JPH0361512B2 (en) | ||
JPS5834191B2 (en) | emulsion | |
JPS6140759B2 (en) |