JP2566847B2 - Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method - Google Patents
Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring methodInfo
- Publication number
- JP2566847B2 JP2566847B2 JP2269354A JP26935490A JP2566847B2 JP 2566847 B2 JP2566847 B2 JP 2566847B2 JP 2269354 A JP2269354 A JP 2269354A JP 26935490 A JP26935490 A JP 26935490A JP 2566847 B2 JP2566847 B2 JP 2566847B2
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- headlight
- irradiation area
- hole
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/06—Testing the alignment of vehicle headlight devices
- G01M11/064—Testing the alignment of vehicle headlight devices by using camera or other imaging system for the light analysis
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車その他の車両用ヘッドライトの光軸
測定方法及びこの測定方法を利用した光軸調整方法並び
にヘッドライトの位置測定方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for measuring an optical axis of a headlight for an automobile or other vehicle, an optical axis adjusting method using the measuring method, and a position measuring method for the headlight.
(従来の技術) ヘッドライトは、前方視界の確保と対向車への眩惑を
避けるために、照射方向が上下左右に亘って規制されて
いる。(Prior Art) In order to secure a front view and avoid dazzling an oncoming vehicle, a headlight is regulated in an irradiation direction vertically and horizontally.
国内規格によれば、ハイビームの10m先のスクリーン
上での光軸位置及び照度が規定されているが、測定のた
めのスペースを削減するために、3m先のスクリーン上で
の光軸位置や照度を測定して10m先のスクリーン上での
値に換算することも認められている。According to domestic standards, the optical axis position and illuminance on the screen 10 m ahead of the high beam are specified, but in order to reduce the space for measurement, the optical axis position and illuminance on the screen 3 m ahead Is also allowed to be measured and converted to a value on the screen 10 meters ahead.
従来、特公昭63−63849号公報により、スクリーン上
に照射されたヘッドライトの光線の照射パターンを撮影
し、画像処理によって照射パターンの中の所定照度以上
の等照度領域を特定し、この特定された等照度領域の重
心位置を算出して、スクリーン上の光軸位置を測定する
方法が知られている。Conventionally, according to Japanese Patent Publication No. 63-63849, an irradiation pattern of a light beam of a headlight irradiated on a screen is photographed, an image processing is performed to specify an equal illuminance region of a predetermined illuminance or more, and this identification is performed. A method is known in which the position of the optical axis on the screen is measured by calculating the position of the center of gravity of the iso-illuminance region.
(発明が解決しようとする課題) ヘッドライトは、近距離では路面や路肩部分の視認性
を向上させるために横方向に広がった光軸に対し非対称
の照射パターンを持ち、遠距離ではビームが絞られるよ
うに設計されており、そのために近距離のスクリーン上
には遠距離では現われない光線も照射され、3m先のスク
リーン上での照射パターンに基いて求めた光軸の位置か
ら算出される10m先のスクリーン上の光軸の位置と実際
の光軸の位置との間に誤差を生ずる。(Problems to be Solved by the Invention) A headlight has an asymmetric irradiation pattern with respect to an optical axis that spreads laterally in order to improve visibility of a road surface and a shoulder portion at a short distance, and a beam is narrowed at a long distance. It is designed so that a light beam that does not appear at a long distance is also projected on the screen at a short distance, and 10 m calculated from the position of the optical axis obtained based on the irradiation pattern on the screen 3 m ahead An error occurs between the position of the optical axis on the previous screen and the actual position of the optical axis.
又、従来は、ヘッドライトの光源(フィラメント)が
予め定めた設定位置に存するものとして、光軸の測定を
行っているが、サスペンションの初期なじみ、タイヤの
エア圧、組付誤差等により実際の光源の位置が設定位置
からずれてしまうことがあり、このずれによっても3m先
のスクリーン像の光軸位置から算出される10m先の光軸
位置と実際の光軸位置との間に誤差を生ずる。Conventionally, the optical axis is measured assuming that the light source (filament) of the headlight is located at a preset setting position. However, the actual lightness of the suspension, tire air pressure, assembly error, etc. The position of the light source may deviate from the set position, and this deviation also causes an error between the optical axis position 10 m ahead calculated from the optical axis position of the screen image 3 m ahead and the actual optical axis position. .
本発明は、以上の点に鑑み、遠距離の照射パターンに
は関与しない方向ベクトルを持つ光線を減衰し、近距離
での照射パターンに基いてヘッドライトの光軸を正確に
測定し得るようにした光軸測定方法を提供することをそ
の目的としている。In view of the above points, the present invention attenuates a light beam having a direction vector that is not involved in a long-distance irradiation pattern, so that the optical axis of the headlight can be accurately measured based on the short-distance irradiation pattern. It is an object of the present invention to provide an optical axis measuring method.
(課題を解決するための手段) 上記目的を達成すべく、本発明では、ヘッドライトの
前方に、前後方向に長手の格子孔であって、孔軸に対し
所定値以上傾いた方向ベクトルを持つ光線の透過を抑制
するものを孔軸を互に平行にした状態でマトリックス状
に複数設けた格子体を配置し、格子体を透過した光線の
照射パターンを計測してヘッドライトの光軸を測定する
ようにした。(Means for Solving the Problems) In order to achieve the above object, in the present invention, a grid hole that is long in the front-rear direction and has a direction vector that is inclined by a predetermined value or more with respect to the hole axis in front of the headlight. Arrangement of a plurality of lattice elements that suppress light transmission in a matrix with the hole axes parallel to each other, and measure the irradiation pattern of the light rays that have passed through the lattice element to measure the optical axis of the headlight. I decided to do it.
尚、格子体は、縦横複数枚の板を格子状に枠組みした
ものであっても、又筒体の複数本を集合したものであっ
ても良い。Note that the lattice body may be formed by arranging a plurality of vertical and horizontal plates in a lattice shape, or may be an aggregate of a plurality of cylindrical bodies.
(作 用) 格子孔が前後方向に長手のものであるため、遠距離の
照射パターンには関与しない、上下方向や横方向に大き
く傾いた方向ベクトルを持つ光線は格子孔を透過せず、
従って格子体を透過した光線の照射パターンは遠距離で
の照射パターンに相似し、近距離における格子体の透過
光の照射パターンに基いてヘッドライトの光軸を正確に
測定できる。(Working) Since the lattice holes are long in the front-back direction, rays that have a direction vector that is largely inclined in the vertical and horizontal directions that do not participate in long-distance irradiation patterns do not pass through the lattice holes.
Therefore, the irradiation pattern of the light rays transmitted through the lattice is similar to the irradiation pattern at a long distance, and the optical axis of the headlight can be accurately measured based on the irradiation pattern of the transmitted light at the short distance.
ところで、格子体を透過した光線の照射パターンは、
各格子孔によってマトリックス状に区分された各照射区
域に各格子孔の透過光が照射されるパターンとなり、こ
こで格子孔のうちその孔軸の延長線がヘッドライトの光
源を通る格子孔に対応する照射区域には、その全面に亘
って光線が照射されて照射面積が最大となり、一方、ヘ
ッドライトの孔軸に合致する格子孔に対応する照射区域
は、輝度が最大となる。By the way, the irradiation pattern of light rays that have passed through the lattice is
Each grid hole has a pattern in which the transmitted light of each grid hole is applied to each irradiation area divided into a matrix, and the extension line of the hole axis of the grid hole corresponds to the grid hole passing through the light source of the headlight. The irradiation area is irradiated with light rays over its entire surface to maximize the irradiation area, while the irradiation area corresponding to the lattice hole that matches the hole axis of the headlight has the maximum brightness.
従って、光源の位置がサスペンションの初期なじみや
タイヤのエア圧のばらつき等により設定位置からずれて
も、照射面積が最大となる照射区域から光源の位置を割
出すことができ、この光源の位置と輝度が最大となる照
射区域から割出される光軸の位置とから光軸の傾斜角を
算定し、この傾斜角と光軸の設定傾斜角との偏差に応じ
てヘッドライトの光軸を調整することにより、遠距離に
おける光軸の位置ずれを可及的に減少できる。Therefore, even if the position of the light source deviates from the set position due to the initial familiarity of the suspension and the variation of the tire air pressure, the position of the light source can be determined from the irradiation area where the irradiation area is the maximum. The tilt angle of the optical axis is calculated from the position of the optical axis indexed from the irradiation area where the brightness is maximum, and the optical axis of the headlight is adjusted according to the deviation between this tilt angle and the set tilt angle of the optical axis. As a result, the displacement of the optical axis at a long distance can be reduced as much as possible.
又、上記の如く光軸の傾斜角を算定しなくても、照射
面積が最大となる照射区域を基準にして、輝度が最大と
なる照射区域が所定範囲内に入るように光軸を調整すれ
ば、光軸の傾斜角を設定傾斜角に合わせることができ
る。Even if the tilt angle of the optical axis is not calculated as described above, the optical axis should be adjusted so that the irradiation area having the maximum brightness falls within the predetermined range with reference to the irradiation area having the maximum irradiation area. For example, the tilt angle of the optical axis can be adjusted to the set tilt angle.
この場合、各格子孔を、その孔軸が光軸の設定傾斜角
に等しい傾斜角を持つように傾斜させておけば、光軸の
傾斜角が設定傾斜角になったとき、光軸に合致する格子
孔の孔軸の延長線が光源を通り、かくて照射面積が最大
となる照射区域に輝度が最大となる照射区域が合致する
ように光軸を調整すれば、光軸の傾斜角は設定傾斜角に
合致する。In this case, if each grid hole is tilted so that the hole axis has a tilt angle equal to the set tilt angle of the optical axis, when the tilt angle of the optical axis reaches the set tilt angle, it matches the optical axis. If the optical axis is adjusted so that the extended line of the hole axis of the grid hole passes through the light source, and the irradiation area with the maximum brightness matches the irradiation area with the maximum irradiation area, the tilt angle of the optical axis will be Match the set tilt angle.
(実施例) 第1図を参照して、(1)は定位置に停止させる自動
車AのヘッドライトBの前方の3m程度の近距離に配置し
た光軸測定装置を示し、該装置は、第2図に示す如く、
前後方向に長手の格子孔(2)を孔軸を互に平行した状
態でマトリックス状に複数設けた格子体(3)と、格子
体(3)の前面(ヘッドライトと逆側)に設けたすりガ
ラス等から成るスクリーン(4)と、スクリーン(4)
の前方に対設したCCDカメラ(5)とで構成され、カメ
ラ(5)からの映像信号を画像処理回路を内蔵するコン
ピュータ(6)に入力し、ヘッドライトBの上下方向と
横方向の向きを調整する1対の工具(7)(7)を有す
るサーボドライバーユニット(8)を該コンピュータ
(6)により制御して、ヘッドライトBの光軸調整を行
うようにした。(Example) With reference to FIG. 1, (1) shows an optical axis measuring device arranged at a short distance of about 3 m in front of a headlight B of an automobile A to be stopped at a fixed position. As shown in Figure 2,
A lattice body (3) having a plurality of longitudinal lattice holes (2) arranged in a matrix with the hole axes parallel to each other and a front face (opposite the headlight) of the lattice body (3) are provided. A screen (4) made of frosted glass or the like, and a screen (4)
And a CCD camera (5) opposite to the front of the headlight B, and inputs the video signal from the camera (5) to the computer (6) with a built-in image processing circuit, and the headlight B is directed in the vertical direction and the horizontal direction. The servo driver unit (8) having a pair of tools (7) and (7) for adjusting is controlled by the computer (6) to adjust the optical axis of the headlight B.
格子体(3)の格子孔(2)の横長は、上下方向や横
方向に大きく傾いた方向ベクトルを持つ、遠距離の照射
パターンには関与しない光線を減衰するために充分な長
さ例えば30〜60cm程度に設定される。The lateral length of the lattice hole (2) of the lattice body (3) is long enough to attenuate a light beam having a direction vector greatly inclined in the vertical direction and the lateral direction and not involved in a long-distance irradiation pattern, for example, 30. It is set to about 60 cm.
格子体(3)を透過した光線のスクリーン(4)に対
する照射パターンは、各格子孔(2)に対応するマトリ
ックス状に区分された各照射区域に該各格子孔(2)の
透過光が照射されるパターンとなり、これを縦断面にお
ける照射パターンを例にして説明すると、各格子孔
(2)の孔軸が水平の場合、第3図に示す如く、ヘッド
ライトBの光源B1と同レベルの格子孔(2)に対応する
の照射区域にその全面に亘って透過光が照射され、そ
こから離れるに従って透過光の照射面積が減少し、一
方、輝度は、ヘッドライトBの光軸B2に合致する格子孔
(2)に対応するの照射区域が最大となり、そこから
離れるに従って低下する。第3図の斜線示部分の上下幅
が照射面積、横幅が輝度を示す。As for the irradiation pattern of the light beam transmitted through the lattice body (3) to the screen (4), the transmitted light of each lattice hole (2) irradiates each irradiation area divided into a matrix corresponding to each lattice hole (2). This is explained by taking an irradiation pattern in a vertical section as an example. When the hole axis of each lattice hole (2) is horizontal, as shown in FIG. 3, it is at the same level as the light source B 1 of the headlight B. The transmitted light is radiated over the entire surface of the irradiation area corresponding to the grating hole (2), and the irradiation area of the transmitted light decreases with increasing distance from the irradiation area, while the brightness is determined by the optical axis B 2 of the headlight B. The irradiation area corresponding to the lattice hole (2) matching the maximum area becomes maximum, and the irradiation area decreases with increasing distance. The vertical width of the hatched portion in FIG. 3 indicates the irradiation area, and the horizontal width indicates the luminance.
かくて、スクリーン(4)上の照射パターンをカメラ
(5)によって撮影し、撮影された画像をコンピュータ
(6)により処理して、照射面積が最大となるの照射
区域の位置と、輝度が最大となるの照射区域の位置と
を求めれば、の照射区域から光源B1の位置と、の照
射区域から光軸B2の位置とを割出すことができる。そし
て、割出された光源B1の位置と光源B2の位置とから幾何
学的な演算によって光軸B2の傾斜角θを算定でき、光軸
の設定傾斜角θSとの偏差を求めてこの偏差に応じてド
ライバーユニット(8)を駆動することにより、光軸B2
をその傾斜角がθSになるように調整できる。Thus, the irradiation pattern on the screen (4) is photographed by the camera (5), the photographed image is processed by the computer (6), and the position of the irradiation area where the irradiation area is maximum and the brightness are maximum. If the position of the irradiation area is obtained, the position of the light source B 1 can be determined from the irradiation area of and the position of the optical axis B 2 can be determined from the irradiation area of. Then, the tilt angle θ of the optical axis B 2 can be calculated from the indexed position of the light source B 1 and the position of the light source B 2 by a geometric calculation, and the deviation from the set tilt angle θ S of the optical axis is obtained. By driving the driver unit (8) according to the lever deviation, the optical axis B 2
Can be adjusted so that its inclination angle is θ S.
ところで、光軸B2の傾斜角がθSになれば、輝度が最
大となる照射区域は第3図にで示す区域となり、の
区域を基準にしてθSに応じた所定の範囲内に輝度最大
の照射区域が位置するから、この範囲内に輝度最大の照
射区域が移行するようにフィードバック制御で光軸を調
整しても、光軸の傾斜角をθSに合わせることができ
る。By the way, when the inclination angle of the optical axis B 2 becomes θ S , the irradiation area where the brightness becomes maximum becomes the area shown in FIG. 3, and the brightness is within a predetermined range corresponding to θ S with reference to the area. Since the maximum irradiation area is located, the inclination angle of the optical axis can be adjusted to θ S even if the optical axis is adjusted by feedback control so that the irradiation area having the maximum brightness moves within this range.
又、各格子孔(2)を、その孔軸が光軸の設定傾斜角
θSに等しい傾斜角を持つように傾斜させた場合には、
第4図に示す如く、光軸B2の傾斜角がθSに合致する
と、光軸B2が通る格子孔(2)の孔軸の延長線が光源B1
を通り、この格子孔(2)に対応する照射区域の照射
面積と輝度とが共に最大になるから、照射面積最大の照
射区域に輝度最大の照射区域が合致するように、光軸を
調整すれば、光軸の傾斜角を設定傾斜角θSに合わせる
ことができる。Further, when each lattice hole (2) is inclined so that its hole axis has an inclination angle equal to the set inclination angle θ S of the optical axis,
Fourth, as shown in FIG., The inclination angle of the optical axis B 2 matches the theta S, the optical axis B 2 lattice hole (2) of the hole axis of the extension line light source B 1 through
Since the irradiation area and the brightness of the irradiation area corresponding to the lattice hole (2) are both maximized, the optical axis should be adjusted so that the irradiation area having the maximum brightness matches the irradiation area having the maximum irradiation area. For example, the tilt angle of the optical axis can be matched with the set tilt angle θ S.
以上の如くして、光軸の傾斜角を設定傾斜角に合わせ
れば、光源B1の位置がばらついても、光軸は設定傾斜角
を保ったまま平行移動するから、正軸の正規位置からの
誤差はヘッドライトBからの距離の如何に係わらず光源
B1の位置のばらつきの範囲内に収められる。As described above, if the tilt angle of the optical axis is adjusted to the set tilt angle, even if the position of the light source B 1 varies, the optical axis moves in parallel while maintaining the set tilt angle. The error of the light source is regardless of the distance from the headlight B.
It is kept within the range of the variation of the position of B 1 .
(発明の効果) 以上の説明から明らかなように、請求項1の発明によ
れば、格子体により遠距離の照射パターンには関与しな
い方向ベクトルを持つ光線を減衰できるため、格子体を
透過した光線の近距離における照射パターンに基いて光
軸を正確に測定でき、更には請求項2,6の発明の如く、
格子体の各格子孔に対応する各照射区域の照射面積を測
定することにより、光源の位置も割出すことができ、光
軸の位置のみでは不明な光軸の傾きを計測することが可
能となり、そのため請求項3乃至5の発明のように、光
源の位置のばらつきに係わらず光軸をその傾斜角が所要
の所定角になるように調整でき、遠距離における光軸位
置の誤差を可及的に減少できる効果を有する。(Effects of the Invention) As is clear from the above description, according to the invention of claim 1, since the light beam having the direction vector that is not involved in the irradiation pattern at a long distance can be attenuated by the grating body, it is transmitted through the grating body. The optical axis can be accurately measured based on the irradiation pattern at a short distance of the light beam, and further, as in the invention of claims 2 and 6,
By measuring the irradiation area of each irradiation area corresponding to each lattice hole of the lattice, the position of the light source can also be indexed, and it becomes possible to measure the tilt of the optical axis that is unknown only by the position of the optical axis. Therefore, as in the inventions of claims 3 to 5, the optical axis can be adjusted so that the inclination angle thereof becomes the required predetermined angle regardless of the variation in the position of the light source, and the error of the optical axis position at a long distance can be minimized. It has the effect that it can be reduced.
第1図は本発明方法の実施に用いる装置の1例の概略線
図、第2図は格子体の斜視図、第3図及び第4図は夫々
作用を説明する線図である。 B……ヘッドライト B1……光源 B2……光軸 (2)……格子孔 (3)……格子体FIG. 1 is a schematic diagram of an example of an apparatus used for carrying out the method of the present invention, FIG. 2 is a perspective view of a lattice, and FIGS. 3 and 4 are diagrams for explaining the operation, respectively. B ... Headlight B 1 ... light source B 2 ...... optical axis (2) ...... grating holes (3) ...... grid
Claims (6)
格子孔であて、孔軸に対し所定値以上傾いた方向ベクト
ルを持つ光線の透過を抑制するものを孔軸を互に平行に
した状態でマトリックス状に複数設けた格子体を配置
し、格子体を透過した光線の照射パターンを計測してヘ
ッドライトの光軸を測定することを特徴とするヘッドラ
イトの光軸測定方法。1. The front of the headlight, which is a lattice hole elongated in the front-rear direction, in which the transmission of a light beam having a direction vector inclined by a predetermined value or more with respect to the hole axis is made parallel to each other. A method for measuring an optical axis of a headlight, comprising arranging a plurality of grids arranged in a matrix in a state, and measuring an irradiation pattern of a light beam transmitted through the grid to measure an optical axis of the headlight.
によってマトリックス状に区分される各照射区域におけ
る該各格子孔の透過光の照射面積と輝度とを測定するこ
とで行い、照射面積が最大となる照射区域からヘッドラ
イトの光源の位置と、輝度が最大となる照射区域からヘ
ッドライトの光軸の位置とを割出すことを特徴とする請
求項1に記載のヘッドライトの光軸測定方法。2. The irradiation pattern is measured by measuring the irradiation area and the brightness of the transmitted light of each grid hole in each irradiation area divided into a matrix by each grid hole, and the irradiation area is The optical axis measurement of the headlight according to claim 1, wherein the position of the light source of the headlight from the maximum irradiation area and the position of the optical axis of the headlight from the irradiation area of maximum brightness are determined. Method.
格子孔であって、孔軸に対し所定値以上傾いた方向ベク
トルを持つ光線の透過を抑制するものを孔軸を互に平行
にした状態でマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における該各格子孔の透過光の照射面積と輝度と
を測定し、照射面積が最大となる照射区域からヘッドラ
イトの光源の位置と、輝度が最大となる照射区域からヘ
ッドライトの光軸の位置とを割出し、割出された光源の
位置と光軸の位置とから光軸の傾斜角を算定し、算定さ
れた傾斜角と光軸の設定傾斜角との偏差に応じてヘッド
ライトの光軸を調整することを特徴とするヘッドライト
の光軸調整方法。3. A grid hole elongated in the front-rear direction in front of the headlight, which restricts transmission of light rays having a direction vector inclined by a predetermined value or more with respect to the hole axis, is parallel to the hole axis. In this state, a plurality of grids provided in a matrix are arranged, and the irradiation area and brightness of the transmitted light of each grid hole in each irradiation area divided by each grid hole in a matrix are measured, and the irradiation area is maximum. The position of the light source of the headlight from the irradiation area that becomes, and the position of the optical axis of the headlight from the irradiation area that maximizes the brightness, and the position of the optical axis from the position of the indexed light source and the position of the optical axis A method for adjusting an optical axis of a headlight, which comprises calculating an inclination angle and adjusting an optical axis of the headlight according to a deviation between the calculated inclination angle and a set inclination angle of the optical axis.
格子孔であって、孔軸に対し所定値以上傾いた方向ベク
トルを持つ光線の透過を抑制するものを孔軸を互に平行
にした状態でマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における該各格子孔の透過光の照射面積と輝度と
を測定し、照射面積が最大となる照射区域を基準にし
て、輝度が最大となる照射区域が所定範囲内に入るよう
にヘッドライトの光軸を調整することを特徴とするヘッ
ドライトの光軸調整方法。4. A grid hole elongated in the front-rear direction in front of the headlight, which restricts transmission of light rays having a direction vector inclined by a predetermined value or more with respect to the hole axis, is parallel to the hole axis. In this state, a plurality of grids provided in a matrix are arranged, and the irradiation area and brightness of the transmitted light of each grid hole in each irradiation area divided by each grid hole in a matrix are measured, and the irradiation area is maximum. A method for adjusting the optical axis of a headlight, wherein the optical axis of the headlight is adjusted so that the irradiation area having the maximum brightness falls within a predetermined range with reference to the irradiation area having the following.
斜角に等しい傾斜角を持つように傾斜させ、照射面積が
最大となる照射区域に輝度が最大となる照射区域が合致
するようにヘッドライトの光軸を調整することを特徴と
する請求項4に記載のヘッドライトの光軸調整方法。5. The grid holes are tilted so that the hole axis has a tilt angle equal to the set tilt angle of the optical axis, and the irradiation area having the maximum irradiation area matches the irradiation area having the maximum brightness. The optical axis adjusting method for a headlight according to claim 4, wherein the optical axis of the headlight is adjusted so as to do so.
格子孔であって、孔軸に対し所定値以上傾いた方向ベク
トルを持つ光線の透過を抑制するものを孔軸を互に平行
にした状態でマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における該各格子孔の透過光の照射面積を測定
し、照射面積が最大となる照射区域からヘッドライトの
光源の位置を割出すことを特徴とするヘッドライトの位
置測定方法。6. A grid hole elongated in the front-rear direction in front of the headlight, which restricts transmission of a light beam having a direction vector inclined by a predetermined value or more with respect to the hole axis, is parallel to the hole axis. In this state, a plurality of grids arranged in a matrix are arranged, and the irradiation area of the transmitted light of each lattice hole in each irradiation area divided by each lattice hole in a matrix is measured, and irradiation that maximizes the irradiation area is performed. A method for measuring the position of a headlight, which comprises indexing the position of a light source of the headlight from an area.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2269354A JP2566847B2 (en) | 1990-10-09 | 1990-10-09 | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method |
GB9121350A GB2248679B (en) | 1990-10-09 | 1991-10-09 | Method of measuring and adjusting optical axis of headlight |
US08/031,468 US5392111A (en) | 1990-10-09 | 1993-03-15 | Method of measuring and adjusting optical axis of headlight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2269354A JP2566847B2 (en) | 1990-10-09 | 1990-10-09 | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04147030A JPH04147030A (en) | 1992-05-20 |
JP2566847B2 true JP2566847B2 (en) | 1996-12-25 |
Family
ID=17471213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2269354A Expired - Fee Related JP2566847B2 (en) | 1990-10-09 | 1990-10-09 | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2566847B2 (en) |
GB (1) | GB2248679B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180068783A (en) * | 2016-12-14 | 2018-06-22 | 현대자동차주식회사 | Head lamp aiming direction compensation system, and compensation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3015997B2 (en) * | 1993-12-28 | 2000-03-06 | 本田技研工業株式会社 | Headlight optical axis adjusting measuring device and optical axis adjusting method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53106078A (en) * | 1977-02-26 | 1978-09-14 | Ritsuo Hasumi | Luminous radiation angle measuring instrument |
JPS5877610A (en) * | 1981-11-04 | 1983-05-11 | Akai Electric Co Ltd | Measuring device for spread angle of light beam |
JPS6363849A (en) * | 1986-09-01 | 1988-03-22 | 清水建設株式会社 | Structural member for pillar |
-
1990
- 1990-10-09 JP JP2269354A patent/JP2566847B2/en not_active Expired - Fee Related
-
1991
- 1991-10-09 GB GB9121350A patent/GB2248679B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53106078A (en) * | 1977-02-26 | 1978-09-14 | Ritsuo Hasumi | Luminous radiation angle measuring instrument |
JPS5877610A (en) * | 1981-11-04 | 1983-05-11 | Akai Electric Co Ltd | Measuring device for spread angle of light beam |
JPS6363849A (en) * | 1986-09-01 | 1988-03-22 | 清水建設株式会社 | Structural member for pillar |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180068783A (en) * | 2016-12-14 | 2018-06-22 | 현대자동차주식회사 | Head lamp aiming direction compensation system, and compensation method |
KR102406120B1 (en) * | 2016-12-14 | 2022-06-07 | 현대자동차 주식회사 | Head lamp aiming direction compensation system, and compensation method |
Also Published As
Publication number | Publication date |
---|---|
GB9121350D0 (en) | 1991-11-20 |
JPH04147030A (en) | 1992-05-20 |
GB2248679A (en) | 1992-04-15 |
GB2248679B (en) | 1993-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7599521B2 (en) | Vehicle vicinity monitoring apparatus | |
US9096171B2 (en) | Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method | |
JPWO2014057681A1 (en) | Vehicle headlamp device | |
JP2013545083A (en) | Method and apparatus for testing lighting driving assistance systems | |
JPWO2009147799A1 (en) | Headlamp aiming system | |
JP7057262B2 (en) | Vehicle inspection equipment | |
WO2019159765A1 (en) | Vehicle detection device and vehicle light system | |
JP3015997B2 (en) | Headlight optical axis adjusting measuring device and optical axis adjusting method | |
KR20230117231A (en) | Micro lens array projection devices, lighting devices, and vehicles | |
US3077139A (en) | Apparatus for aiming headlamps | |
JP2021025868A (en) | Stereo camera | |
JP2566847B2 (en) | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method | |
JP6983011B2 (en) | Headlight controller | |
US7590263B2 (en) | Vehicle vicinity monitoring apparatus | |
US7275847B2 (en) | Headlamp optical axis adjusting method | |
JP4798182B2 (en) | Dazzle detection device, dazzle detection program, and headlamp control device | |
CN104648228B (en) | The control device of Vehicular lamp | |
JPH05288643A (en) | Optical axis measuring apparatus for head lamp | |
CN109154493A (en) | The application of the method and this method in vehicle directional direction for identification | |
JP3041557B2 (en) | Headlight optical axis adjustment method | |
JP2020020657A (en) | Stereo camera device, stereo camera system, and moving object | |
JP2681584B2 (en) | Headlight optical axis adjustment method | |
JP3074423B2 (en) | Model identification method for headlight optical axis adjustment | |
US10414453B2 (en) | System and method for aiming a vehicular headlamp | |
JP4535162B2 (en) | Anti-glare area map, generation method and generation apparatus thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |