[go: up one dir, main page]

JP2563592B2 - Thermoelectric device control method - Google Patents

Thermoelectric device control method

Info

Publication number
JP2563592B2
JP2563592B2 JP1181117A JP18111789A JP2563592B2 JP 2563592 B2 JP2563592 B2 JP 2563592B2 JP 1181117 A JP1181117 A JP 1181117A JP 18111789 A JP18111789 A JP 18111789A JP 2563592 B2 JP2563592 B2 JP 2563592B2
Authority
JP
Japan
Prior art keywords
heat
thermoelectric device
current
control method
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1181117A
Other languages
Japanese (ja)
Other versions
JPH0344978A (en
Inventor
義明 山本
博由 田中
文俊 西脇
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1181117A priority Critical patent/JP2563592B2/en
Publication of JPH0344978A publication Critical patent/JPH0344978A/en
Application granted granted Critical
Publication of JP2563592B2 publication Critical patent/JP2563592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしく
は暖房を行う空調装置や冷蔵庫用冷却装置等に有用な熱
電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric device which utilizes the Peltier effect and is useful as an air conditioner or a refrigerator cooling device for electrically cooling or heating.

従来の技術 電気を熱に変換する熱電装置は、熱電素子の両側に空
気との熱交換を行なうフィンを有し、電流を通ずること
により冷却を行うものである。
2. Description of the Related Art A thermoelectric device that converts electricity into heat has fins on both sides of a thermoelectric element that exchange heat with air, and cools by passing an electric current.

基板上に、N型半導体、導電体、P型半導体からなる
電気回路が形成されており、通電により、半導体と導電
体と界面でペルチェ効果により発熱もしくは吸熱する。
このとき、発熱部と熱的に接するフィンと、吸熱部と熱
的に接するフィンにより、一方の空気から熱を汲み上
げ、他方の空気へ捨てるヒートポンプ回路を形成してい
る。
An electric circuit composed of an N-type semiconductor, a conductor, and a P-type semiconductor is formed on a substrate, and when energized, heat is generated or absorbed by the Peltier effect at the interface between the semiconductor and the conductor.
At this time, the fins that are in thermal contact with the heat generating portion and the fins that are in thermal contact with the heat absorbing portion form a heat pump circuit that pumps heat from one air and discards it to the other air.

発明が解決しようとする課題 しかしながら、従来の熱電装置では、冷却負荷低減時
には電流を零とし、その後、温度上昇がある値を越える
と通電して冷却を再開する、間欠制御を行なっている。
そのため、電流を零としたときには、熱電回路を通して
発熱側のコルゲートフィンから吸熱側のコルゲートフィ
ンに流れる熱により冷却効果が極度に低下し、空調の不
快感を感じたり、冷蔵庫の温度上昇を与えるという課題
があった。
However, in the conventional thermoelectric device, the current is set to zero when the cooling load is reduced, and thereafter, when the temperature rise exceeds a certain value, the current is supplied and the cooling is restarted to perform intermittent control.
Therefore, when the current is set to zero, the cooling effect is extremely reduced due to the heat flowing from the heat-generating side corrugated fins to the heat-absorbing side corrugated fins through the thermoelectric circuit, which makes the air conditioning uncomfortable and raises the refrigerator temperature. There were challenges.

また、着霜時には電源を切り霜を溶かしていたため
に、再運転までに時間を要し、室温の変化や冷蔵庫内の
温度上昇などの課題があった。
Further, since the power was turned off and the frost was melted during frost formation, it took time to restart the operation, and there were problems such as room temperature changes and temperature rises in the refrigerator.

本発明は、上記従来技術の課題を考慮し、冷却負荷低
減時に発熱側から吸熱側へ流れる熱流を抑え、装置の性
能向上を提供するとともに、除霜を短時間で行い、室温
の変化や冷蔵庫内の温度上昇を大幅に抑制する制御方法
を提供することを目的とするものである。
The present invention, in consideration of the above-mentioned problems of the prior art, suppresses the heat flow flowing from the heat generation side to the heat absorption side at the time of cooling load reduction, provides the performance improvement of the device, and defrosts in a short time, changes in room temperature and refrigerator It is an object of the present invention to provide a control method that significantly suppresses the internal temperature rise.

課題を解決するための手段 上記課題を解決するために、本発明では、ペルチェ効
果を利用する熱電装置において、最小電流値を、前記熱
電装置の発熱側から吸熱側へ流れる熱量と等しいペルチ
ェ吸熱量を得る電流値とする熱電装置の制御方法、およ
び、除霜時に逆方向の電流を流す制御方法を与えるもの
である。
Means for Solving the Problems In order to solve the above problems, in the present invention, in a thermoelectric device utilizing the Peltier effect, the minimum current value, Peltier heat absorption amount equal to the amount of heat flowing from the heat generation side of the thermoelectric device to the heat absorption side. The present invention provides a method for controlling a thermoelectric device having a current value that obtains the following value and a method for controlling a current flowing in the opposite direction during defrosting.

作用 上記のような制御方法によって、得られる本発明の作
用は次の通りである。
Action The action of the present invention obtained by the above control method is as follows.

1.熱電素子の冷却特性は、ペルチェ吸熱、ジュールー発
熱および内部の熱伝導のバランスによって決まり、通電
する電流値によって大きく変化する。電流を小さくする
と、ジュール発熱および熱伝導により吸熱側に流れる燃
料とペルチェ吸熱量が等しくなる。この時、被冷却物と
熱電素子との温度は等しくなり、熱電装置は全体的には
断熱壁と同様の効果を示すことになる。
1. The cooling characteristics of the thermoelectric element are determined by the balance of Peltier heat absorption, Joule heat generation and internal heat conduction, and vary greatly depending on the value of the applied current. When the current is reduced, the amount of heat absorbed by the Peltier becomes equal to that of the fuel flowing to the heat absorption side due to Joule heat generation and heat conduction. At this time, the temperature of the object to be cooled and the temperature of the thermoelectric element become equal, and the thermoelectric device as a whole exhibits the same effect as the heat insulating wall.

2.熱電素子は、流れる電流の方向を変えることにより、
発熱側と吸熱側を容易に変えることができる。また、温
度変化の速度は、電子が関与していることから、通常の
熱伝導に比較して大きくなる。除霜時に電流の方向を変
え、着霜時に熱を与えることにより霜は瞬時に融解でき
る。
2.The thermoelectric element changes the direction of the flowing current,
The heat generating side and the heat absorbing side can be easily changed. In addition, the rate of temperature change is higher than that of normal heat conduction due to the involvement of electrons. The frost can be instantly melted by changing the direction of the current during defrosting and applying heat during frost formation.

実施例 以下に本発明による実施例を図面により説明する。Embodiment An embodiment according to the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例にかかる熱電装置の構成を
示すものである。
FIG. 1 shows the configuration of a thermoelectric device according to an embodiment of the present invention.

まず、その構成を説明する。絶縁性フィルム基板1の
片面にはN型半導体2、導電体3、P型半導体4、導電
体3が順に成膜されている。2つのコルゲートフィン
5、5′は、フィルム基板1の両側に位置し、導電体3
に1つおきに、かつ、熱的に接する導電体3がおのおの
異なるように設置されている。矢印6は通常の冷却時の
電流方向を示す。電流6は、電流制御部7により制御さ
れた電源8から供給される。電流6により、半導体2、
4と導電体3の界面でペルチェ効果により発熱もしくは
吸熱する。
First, the configuration will be described. An N-type semiconductor 2, a conductor 3, a P-type semiconductor 4, and a conductor 3 are sequentially formed on one surface of the insulating film substrate 1. The two corrugated fins 5 and 5 ′ are located on both sides of the film substrate 1, and the conductor 3
Every other one, and the conductors 3 that are in thermal contact with each other are installed differently. Arrow 6 indicates the current direction during normal cooling. The current 6 is supplied from the power supply 8 controlled by the current controller 7. The current 6 causes the semiconductor 2,
Heat or heat is absorbed by the Peltier effect at the interface between the conductor 4 and the conductor 3.

このとき、N型半導体2とP型半導体4は交互に並ん
でいることから、導電体3は交互に発熱部または吸熱部
となり、前述のごとく導電体3の1つおきに熱的に接す
るコルゲートフィン5は、一方が発熱フィン他方が吸熱
フィンとなる。この実施例では、フィルム1上部の空気
から熱を吸収し、フィルム1の下部の空気への熱の発散
となる。なお、コルゲートフィン5′は、絶縁性フィル
ム基板1を介して、導電体3に押圧されているが、基板
1は十分に薄いので導電体3からの(あるいは導電体3
への)熱移動は、殆どコルゲートフィン5′を介して行
なわれる。
At this time, since the N-type semiconductors 2 and the P-type semiconductors 4 are alternately arranged, the conductors 3 alternately serve as heat generating portions or heat absorbing portions, and as described above, every other one of the conductors 3 is in thermal contact with each other. One of the fins 5 is a heat generating fin and the other is a heat absorbing fin. In this embodiment, heat is absorbed from the air above the film 1, and the heat is radiated to the air below the film 1. The corrugated fins 5 ′ are pressed against the conductor 3 via the insulating film substrate 1, but since the substrate 1 is sufficiently thin, the corrugated fin 5 ′ (or the conductor 3) is pressed.
The heat transfer (to) is mostly via the corrugated fins 5 '.

次に、上記実施例の熱電装置の制御法について説明を
行なうが、留意すべきは、この制御法は、以下の説明か
らも明かな様に、基本的な熱電装置において成立するも
のであるから、上記実施例の構成には全く限定されない
ことである。
Next, a control method of the thermoelectric device of the above-mentioned embodiment will be described, but it should be noted that this control method is established in a basic thermoelectric device, as is apparent from the following description. The configuration of the above embodiment is not limited at all.

第2図は、導体の両端部において半導体を接続し、そ
の一方の接続界面を発熱側界面とし、他方の接続界面を
吸熱側界面とする構成の熱電素子において、その両端部
にペルチェ効果に基ずく一定温度差が生じた場合の熱電
素子の冷却特性を示すものである。冷却特性は、素子の
物性および形状に依存するがその傾向は同じであり、こ
こでは定性的にその特性を示した。
FIG. 2 shows a thermoelectric element having a structure in which a semiconductor is connected at both ends of a conductor, one connection interface of which is a heat generation side interface, and the other connection interface of which is a heat absorption side interface. It shows the cooling characteristics of the thermoelectric element when a constant temperature difference is generated. The cooling characteristics depend on the physical properties and shape of the device, but the tendency is the same, and the characteristics are qualitatively shown here.

消費電力(Qin)は、熱電素子の抵抗と電流(I)か
ら、 Qin ≒ R・I2 で与えられ、電流にに対しほぼ2次関数となる。
The power consumption (Qin) is given by Qin ≈ R · I 2 from the resistance of the thermoelectric element and the current (I), and becomes a quadratic function with respect to the current.

一方、熱電素子の冷却出力は、ペルチェ吸熱、ジュー
ル発熱および内部の熱伝導のバランスによって決まる。
電流がI0以下では、ペルチェ吸熱量よりも熱伝導により
吸熱部に流れ込む熱量が大きく、冷却出力を得ることが
できない。電流に比例してペルチェ吸熱量は増加するこ
とから、電流が増大するにつれて冷却出力が増加すが、
Imを上回るとジュール発熱が支配的となる冷却出力は低
下する。通常の冷却時には、Im前後の電流を流すことに
なる。冷却負荷が減少するとその負荷に応じて電流を減
少させる。本発明による制御は、冷房負荷が零に近づい
た場合に、流す電流をI0に保つように制御するもので、
これにより、前記導体内を熱伝導により発熱側から吸熱
側に流れ込む熱量とペルチェ吸熱量が等しくなる。
On the other hand, the cooling output of the thermoelectric element is determined by the balance of Peltier heat absorption, Joule heat generation, and internal heat conduction.
When the current is I 0 or less, the amount of heat flowing into the heat absorbing portion due to heat conduction is larger than the amount of Peltier heat absorption, and a cooling output cannot be obtained. Since the Peltier heat absorption increases in proportion to the current, the cooling output increases as the current increases.
If it exceeds Im, the cooling output where Joule heat becomes dominant decreases. During normal cooling, a current of about Im will flow. When the cooling load decreases, the current decreases according to the load. The control according to the present invention is to control the current to flow to I 0 when the cooling load approaches zero,
As a result, the amount of heat flowing from the heat generating side to the heat absorbing side by heat conduction in the conductor becomes equal to the Peltier heat absorption amount.

すなわち、冷房負荷が零に近づいた場合にも、発熱側
から吸熱側への熱流入をあたかも遮断する様に動作す
る。これにより、被冷却物の温度と吸熱側界面の温度が
等しくなり、熱電装置は断熱壁と同様に働く。しかも、
この時の消費電力は、熱電素子の物性値によって異なる
が、一般にI0はImの10%程度であり、消費電力は通常運
転時の1%と非常に小さく、無視し得る。
That is, even when the cooling load approaches zero, it operates so as to block the heat inflow from the heat generating side to the heat absorbing side. As a result, the temperature of the object to be cooled becomes equal to the temperature of the heat absorption side interface, and the thermoelectric device functions like the heat insulating wall. Moreover,
The power consumption at this time varies depending on the physical property value of the thermoelectric element, but in general, I 0 is about 10% of Im, and the power consumption is 1% during normal operation, which is very small and can be ignored.

すなわち、本発明の制御法では、無視し得る程度の僅
かの消費電力で、上記した冷却負荷低減時の従来の問題
を解決できるのである。
That is, the control method of the present invention can solve the above-mentioned conventional problem at the time of reducing the cooling load with a negligible power consumption.

この制御法によって、第1図の熱電装置においても、
導電体3を伝わって発熱側から吸熱側へ流入する熱を打
ち消すことができ、従来の問題を解決できた。
By this control method, even in the thermoelectric device of FIG.
The heat that has passed through the conductor 3 and flows from the heat generating side to the heat absorbing side can be canceled, and the conventional problem can be solved.

次に、冷却運転時においてコルゲートフィン5の表面
が零度以下になると着霜を生じる。着霜量が大きくなる
と通風抵抗が大きくなり効率の低下を招くことから、除
霜する必要が生じてくる。本発明では、電流制御部7に
おいて、通常と逆の電流を印加する制御を行なってい
る。これにより通常は吸熱部となるコルゲートフィン5
が発熱部となり、霜はコルゲートフィン5の表面から融
解する。なお、温度上昇の速度は、電子が関与している
ことから、通常の熱伝導に比較して大きくなり、霜は瞬
時に融解される。
Next, during the cooling operation, when the surface of the corrugated fins 5 becomes zero degrees or less, frost is formed. When the amount of frost increases, the ventilation resistance increases and the efficiency decreases, so it becomes necessary to defrost. In the present invention, the current control unit 7 controls the application of a current that is the reverse of normal. As a result, the corrugated fins 5 that normally serve as heat absorbing parts
Becomes a heat generating part, and the frost melts from the surface of the corrugated fins 5. Since the rate of temperature rise is higher than that of normal heat conduction because electrons are involved, frost is instantly melted.

また、この例では、除霜は一度に全面を行なうよう説
明したが、分割して行なうことも容易である。第1図に
は熱電装置の構成を説明するために、コルゲートフィン
5、5′の枚数を限定して書いているが、一般に使用す
る場合には、コルゲートフィン5、5′を多数並べるこ
とになる。電源8を複数個設置し、その数と一致する電
流路を並列に設置することにより、分割して除霜するこ
とができる。これにより、除霜しながら冷却運転が可能
となり、さらに快適性および温度上昇を抑制することが
できる。
Further, in this example, the defrosting is described to be performed on the entire surface at once, but it is also easy to perform defrosting. Although the number of corrugated fins 5 and 5'is limited in FIG. 1 to explain the configuration of the thermoelectric device, in general use, a large number of corrugated fins 5 and 5'are arranged. Become. By installing a plurality of power supplies 8 and installing the current paths corresponding to the number in parallel, it is possible to divide and defrost. Thereby, the cooling operation can be performed while defrosting, and the comfort and the temperature rise can be further suppressed.

なお、上記した通常と逆の向きの電流を印加すること
で除霜を行なう熱電装置の制御法、更には、分割して除
霜を行なう制御法は、前述の基本的な熱電装置において
も適応できることは言うまでもない。
The control method of the thermoelectric device that performs defrosting by applying a current in the opposite direction to the above, and further, the control method that performs defrosting by dividing is also applicable to the basic thermoelectric device described above. It goes without saying that you can do it.

発明の効果 本発明による熱電装置の制御方法は、ペルチェ効果を
利用する熱電装置において、最小電流値を、熱電装置の
発熱側から吸熱側へ流れる熱量と等しいペルチェ吸熱量
を得る電流値とする熱電装置の制御方法、および、除霜
時に逆方向の電流を流す制御方法を与えたため、熱電回
路内を流れる熱流の影響を抑え、装置の性能向上を提供
するとともに、除霜を短時間で行い、室温の変化や冷蔵
庫内の温度上昇を大幅に抑制する熱電装置の実現が可能
となる。
Advantageous Effects of Invention According to the thermoelectric device control method of the present invention, in a thermoelectric device utilizing the Peltier effect, the minimum electric current value is a thermoelectric value that obtains a Peltier heat absorption amount equal to the amount of heat flowing from the heat generating side to the heat absorbing side of the thermoelectric device. Since the control method of the device, and a control method of flowing a current in the opposite direction at the time of defrosting, the influence of the heat flow flowing in the thermoelectric circuit is suppressed, while improving the performance of the device, defrosting is performed in a short time, It is possible to realize a thermoelectric device that significantly suppresses changes in room temperature and temperature rise in the refrigerator.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の制御法を用いた一実施例の熱電装置
の斜視図、第2図は熱電素子の冷却特性図である。 1……フィルム基板、2……N型半導体、3……導電
体、4……P型半導体、5、5′……コルゲートフィ
ン。
FIG. 1 is a perspective view of a thermoelectric device of one embodiment using the control method of the present invention, and FIG. 2 is a cooling characteristic diagram of a thermoelectric element. 1 ... Film substrate, 2 ... N-type semiconductor, 3 ... Conductor, 4 ... P-type semiconductor, 5 and 5 '... Corrugated fin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中桐 康司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−163745(JP,A) 特開 昭55−14417(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nakagiri 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 63-163745 (JP, A) JP 55- 14417 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ペルチェ効果を利用する熱電装置に流す最
小電流値を、前記熱電装置の発熱側から吸熱側へ流れる
熱量と等しいペルチェ吸熱量を得る電流値とする熱電装
置の制御方法。
1. A method for controlling a thermoelectric device, wherein a minimum current value flowing in the thermoelectric device utilizing the Peltier effect is a current value for obtaining a Peltier heat absorption amount equal to the heat amount flowing from the heat generating side to the heat absorbing side of the thermoelectric device.
【請求項2】複数個の吸熱側界面を有する熱電装置の除
霜時に、前記複数個の吸熱側界面の一部に逆方向の電流
を流す請求項1記載の熱電装置の制御方法。
2. The method of controlling a thermoelectric device according to claim 1, wherein when defrosting the thermoelectric device having a plurality of heat absorbing side interfaces, a reverse current is applied to a part of the plurality of heat absorbing side interfaces.
JP1181117A 1989-07-12 1989-07-12 Thermoelectric device control method Expired - Fee Related JP2563592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181117A JP2563592B2 (en) 1989-07-12 1989-07-12 Thermoelectric device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181117A JP2563592B2 (en) 1989-07-12 1989-07-12 Thermoelectric device control method

Publications (2)

Publication Number Publication Date
JPH0344978A JPH0344978A (en) 1991-02-26
JP2563592B2 true JP2563592B2 (en) 1996-12-11

Family

ID=16095148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181117A Expired - Fee Related JP2563592B2 (en) 1989-07-12 1989-07-12 Thermoelectric device control method

Country Status (1)

Country Link
JP (1) JP2563592B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042591D1 (en) * 2000-01-07 2009-09-03 Citizen Holdings Co Ltd THERMOELECTRIC SYSTEM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514417A (en) * 1978-07-14 1980-01-31 Tokyo Shibaura Electric Co Refrigerator
JPS63163745A (en) * 1986-12-26 1988-07-07 日本マランツ株式会社 Temperature locking type thermostatic device

Also Published As

Publication number Publication date
JPH0344978A (en) 1991-02-26

Similar Documents

Publication Publication Date Title
US20050263176A1 (en) Thermoelectric power generation system
JP3414004B2 (en) Electric vehicle battery temperature controller
JP2004526930A (en) Improved efficiency thermoelectric system using thermal separation
US3255593A (en) Thermoelectric system
JPH083391B2 (en) Radiator
JP2827461B2 (en) Electronic refrigerator
KR20090080184A (en) Heat exchanger using thermoelectric module and method of controlling the thermoelectric module
JP2563592B2 (en) Thermoelectric device control method
JPH06151979A (en) Thermoelectric device
CN111336727A (en) Air conditioner
JPH0539966A (en) Heat pump device
JP2002009477A (en) Power module refrigerator for controlling electric motors
CN107351642A (en) A kind of pure electric automobile air conditioning system using multistage TEC
KR20100093723A (en) Method for controlling temperature cooling and heating means using thermoelectric element modules
KR20130017239A (en) Fan control apparatus for thermoelectric module
CN113203246B (en) Rapid temperature control device and method based on ceramic refrigerating sheet
KR102122153B1 (en) Thermoelectric module separated between heating part and cooling part
JPH06163997A (en) Dehumidifier using thermoelectric effect, and method of controlling dehumidifier
JPH08121898A (en) Thermoelectric converter
US20240200834A1 (en) Device and Method for Magnetic Refrigeration
JPH0715140Y2 (en) Electronic component cooling system
KR200404457Y1 (en) A seat using thermoelement
KR101250278B1 (en) Thermoelectric element device for using assistance cooling and heating device of automobile
KR100781178B1 (en) Cooling device of car seat
JP7195807B2 (en) air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees