[go: up one dir, main page]

JP2560421B2 - Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device - Google Patents

Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device

Info

Publication number
JP2560421B2
JP2560421B2 JP63145061A JP14506188A JP2560421B2 JP 2560421 B2 JP2560421 B2 JP 2560421B2 JP 63145061 A JP63145061 A JP 63145061A JP 14506188 A JP14506188 A JP 14506188A JP 2560421 B2 JP2560421 B2 JP 2560421B2
Authority
JP
Japan
Prior art keywords
electrostatic coating
cup
rotary atomizing
atomizing electrostatic
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63145061A
Other languages
Japanese (ja)
Other versions
JPH01315361A (en
Inventor
豊 大橋
徳人 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63145061A priority Critical patent/JP2560421B2/en
Publication of JPH01315361A publication Critical patent/JPH01315361A/en
Application granted granted Critical
Publication of JP2560421B2 publication Critical patent/JP2560421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転霧化静電塗装方法及びその実施に使用
する回転霧化静電塗装装置に関する。
Description: TECHNICAL FIELD The present invention relates to a rotary atomizing electrostatic coating method and a rotary atomizing electrostatic coating apparatus used for carrying out the method.

(従来の技術) 自動車外板等の塗装において、ベル状カップを高速度
で回転させかつこれに高電圧を印加して塗料を霧化し塗
装を施す回転霧化静電塗装方法が広く採用されている。
これは、単にエアで塗料を霧化するエア霧化塗装方法あ
るいはエア霧化静電塗装方法に比して塗着効率が非常に
高く、塗料使用量を最小限に迎えることができるためで
ある。
(Prior Art) When coating automobile outer panels, etc., a rotary atomization electrostatic coating method is widely adopted in which a bell-shaped cup is rotated at high speed and a high voltage is applied to atomize the coating to apply the coating. There is.
This is because the coating efficiency is very high compared to the air atomization coating method in which the paint is simply atomized with air or the air atomization electrostatic coating method, and the amount of paint used can be minimized. .

第8図は、上記回転霧化静電塗装方法の実施に従来一
般に用いられている回転霧化静電塗装装置を示したもの
である。同図において、1はハウジングで、該ハウジン
グ1には図示を略すモータによって駆動される回転軸2
が内装されている。前記回転軸2のハウジング1外まで
延びる一端にベル状カップ3が固定されており、該カッ
プ3には図示を略す給電手段から高電圧が印加されるよ
うになっている。4は前記カップ3の後背となるハウジ
ング1の先端に一体化されたキャップで、これには前記
カップ3の前面に塗料を供給するための塗料供給管5が
取付けられている。前記キャップ4にはまた、吹出口6
が円環状に多数(通常100個前後)配列されており、同
じくキャップ4が設けたエア通路7を通じて圧送された
エアがシェーピングエアとして前記吹出口6からa矢印
のように吐出されるようになっている。なおこのシェー
ピングエアは塗装パターン、塗装品質等に重要な影響を
当えるので、従来から前記吹出口6の設置位置や口径、
あるいは吐出圧力や吐出向き等に種々の配慮がなされて
いる(例えば実開昭62−13557号公報、特開昭62−61663
号公報等)。
FIG. 8 shows a rotary atomizing electrostatic coating apparatus which has been generally used in the past for carrying out the rotary atomizing electrostatic coating method. In FIG. 1, reference numeral 1 denotes a housing, and the housing 1 has a rotating shaft 2 driven by a motor (not shown).
Is decorated. A bell-shaped cup 3 is fixed to one end of the rotary shaft 2 extending to the outside of the housing 1, and a high voltage is applied to the cup 3 from a power feeding means (not shown). Reference numeral 4 denotes a cap integrated with the tip of the housing 1, which is the back of the cup 3, and a paint supply pipe 5 for supplying paint is attached to the front surface of the cup 3. The cap 4 also has an outlet 6
Are arranged in an annular shape (usually around 100), and the air pressure-fed through the air passage 7 also provided with the cap 4 is discharged as shaping air from the outlet 6 as shown by an arrow a. ing. Since this shaping air has an important influence on the coating pattern, coating quality, etc., conventionally, the installation position and diameter of the air outlet 6,
Alternatively, various consideration is given to the discharge pressure, the discharge direction, etc. (for example, Japanese Utility Model Laid-Open No. 62-13557 and Japanese Patent Laid-Open No. 62-61663).
No.

かゝる構成により、いま図示を略す被塗物からアース
をとり、カップ3に高電圧を印加しつゝこれを高速度で
回転させ、このカップ3に塗料供給管5から塗料を給送
すると、塗料はカップ3の前面を伝わってその周部に移
動し、そこで遠心力によって霧化される。前記霧化され
た塗粒は、前記カップ3上を移動する間に帯電してお
り、該カップ3と被塗物との間に発生する電界の引力と
前記吹出口6から吐出されるシェーピングエアとにより
被塗物の表面まで飛行し、そこに塗着する。
With such a structure, the grounding is applied to the coating object (not shown), a high voltage is applied to the cup 3 and the cup 3 is rotated at a high speed, and the coating material is supplied from the coating material supply pipe 5 to the cup 3. The paint moves along the front surface of the cup 3 to the peripheral portion thereof, where it is atomized by centrifugal force. The atomized coating particles are charged while moving on the cup 3, and the attractive force of the electric field generated between the cup 3 and the object to be coated and the shaping air discharged from the air outlet 6 And fly to the surface of the object to be coated, and apply it there.

(発明が解決しようとする課題) ところで、上記従来の回転霧化静電塗装方法により、
アルミニウム片や雲母等の顔料を含むメタリック塗料を
塗装しようとすると、エア霧化塗装方法にあるいはエア
霧化静電塗装方法により塗装した場合に比し、被塗物の
仕上がり外観が著しく暗くなることが知られている。こ
れは、上記ベル状カップ3は、通常70mm前後の外径を有
する大きさに形成され、しかも20000〜50000rpmという
極めて高速度で回転されているため、その遠心力は非常
に大きく、この大きな遠心力によってメタリック塗料中
のアルミニウム片や雲母等が破壊、変形してしまうこと
に主として起因する。したがって、通常は、該回転霧化
静電塗装方法を単独で採用することはせず、これとエア
霧化静電塗装方法とを併用するか、これに代えてエア霧
化静電塗装方法のみを用いるかしており、このため、メ
タリック塗装の塗料使用量は、他のソリッドやクリア塗
装における塗料使用量に比して著しく多くなり、コスト
アップの大きな要因となっていた。
(Problems to be Solved by the Invention) By the way, according to the conventional rotary atomization electrostatic coating method,
When attempting to apply metallic paint containing pigments such as aluminum flakes or mica, the finished appearance of the object to be coated will be significantly darker than when applied by the air atomization coating method or the air atomization electrostatic coating method. It has been known. This is because the bell-shaped cup 3 is usually formed with a size having an outer diameter of about 70 mm and is rotated at an extremely high speed of 20000 to 50000 rpm, so that its centrifugal force is very large. This is mainly due to the fact that aluminum fragments and mica in the metallic paint are destroyed and deformed by force. Therefore, normally, the rotary atomization electrostatic coating method is not adopted alone, but it is used in combination with the air atomization electrostatic coating method, or instead, only the air atomization electrostatic coating method is used. Therefore, the amount of paint used in metallic coating is significantly larger than the amount of paint used in other solid or clear coating, which is a major factor in cost increase.

なお、塗装面の明度を高めるには、塗粒の被塗物への
衝突速度を上げることが効果的であることが既に知ら
れ、現に上記先行技術の1つである実開昭62−13557号
公報においては、シェーピングエアの吹出口6の角度、
形状等を改良して塗粒の飛行速度を高める工夫をしてい
る。しかしながら、この場合は、明度低下に大きな影響
を与える上記遠心力による顔料の破壊・変形に対して何
らの対策もしていないため、根本的な解決とはならな
い。
It is already known that it is effective to increase the collision speed of the coating particles on the article in order to increase the brightness of the coated surface, and in fact, one of the above-mentioned prior arts, SAIKAI Sho 62-13557. In the publication, the angle of the outlet 6 of the shaping air,
The shape is improved to improve the flight speed of coated particles. However, in this case, since no countermeasure is taken against the destruction and deformation of the pigment due to the centrifugal force, which has a great influence on the decrease in brightness, it is not a fundamental solution.

本発明では、上記従来の問題点に鑑みてなされたもの
で、その課題とするところは、遠心力を可及的に下げる
ことにより顔料の破壊・変形を抑制し、もってメタリッ
ク塗料を塗装しても所望の明度を確保することができる
ようにすることにある。
In the present invention, what was made in view of the above-mentioned conventional problems, the problem is to suppress the destruction and deformation of the pigment by reducing the centrifugal force as much as possible, thus applying a metallic paint. Is to ensure the desired brightness.

(課題を解決するための手段) 上記課題を解決するため、本発明は、回転軸の一端に
固定されたベル状カップにメタリック塗料を供給すると
共に、該カップの後方に配列された吹出口からシェーピ
ングエアを吐出させ、該カップを回転させることで被塗
物にメタリック塗装を施す回転霧化塗装方法および装置
において、前記ベル状カップの回転数C(回転/sec)と
その半径R(m)との関係をR×C2≦5000に設定し、更
に、所望により前記シェーピングエアを、被塗物表面に
おける垂直方向の風速が10m/sec以上となるように制御
するようにしたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention supplies metallic paint to a bell-shaped cup fixed to one end of a rotary shaft, and from a blowout port arranged behind the cup. In a rotary atomizing coating method and apparatus for ejecting shaping air and rotating the cup to perform metallic coating on an object to be coated, the rotational speed C (rotation / sec) of the bell-shaped cup and its radius R (m) And R × C 2 ≦ 5000, and if desired, the shaping air is controlled so that the wind speed in the vertical direction on the surface of the coated object is 10 m / sec or more. To do.

(作用) 上記構成の回転霧化静電塗装方法および装置において
は、ベル状カップの回転数C(回転/sec)とその半径R
(m)との関係をR×C2≦5000に設定したことにより、
遠心力を一定の大きさ以下に抑えることができ、メタリ
ック塗料中のアルミニウム片、雲母等の顔料の破壊・変
形を抑制することができる。またこれと共に被塗物の表
面での垂直方向の風速が10m/sec以上となるようにシェ
ーピングエアを抑制した場合は、塗粒の被塗装物への衝
突速度を可及的に高めることができ、この面でも明度の
向上に寄与する。
(Operation) In the rotary atomizing electrostatic coating method and apparatus having the above-described configuration, the number of rotations C (rotation / sec) of the bell-shaped cup and its radius R
By setting the relationship with (m) to R × C 2 ≦ 5000,
Centrifugal force can be suppressed to a certain level or less, and destruction and deformation of pigment such as aluminum flakes and mica in the metallic paint can be suppressed. In addition, if the shaping air is controlled so that the vertical wind speed on the surface of the object to be coated becomes 10 m / sec or more, the collision speed of the coating particles on the object can be increased as much as possible. , This also contributes to the improvement of brightness.

(実施例) 以下、本発明の実施例を添付図面にもとづいて説明す
る。
(Example) Hereinafter, an example of the present invention is described based on an accompanying drawing.

第1図は本発明の回転霧化静電塗装装置を示したもの
である。なお、本装置の基本構成は前出の第8図に示し
たものと変わるところがないので、こゝでは同一部分に
は同一符号を付して重複する説明を避けることとする。
本実施例の特徴とするところは、ベル状カップ3を従来
より大径に形成し、かつシェーピングエアの吹出口6
を、前記カップ3の最外周径とほゞ同一径のピッチ円上
に配設すると共にその吐出向きを前記回転軸2の軸心と
平行となるように構成した点にある。このようにカップ
3を大径に形成したことにより、塗料供給管5から供給
された塗料のカップ面上での拡散範囲が拡大され、塗料
が薄膜となり、霧変塗粒は微細変し易くなる。しかも前
記拡散範囲の拡大により、高圧印加部での塗料の帯電時
間が長くなり、その分、塗粒の帯電量が増加する。また
シェーピングエアは、カップ3の外周面上を回転軸2の
軸線と平行にb矢印のように通過して図示を略す被塗物
に向かい、したがって被塗物の上面での垂直方向の風速
が高まるようになる。さらに前記カップ3を大径化した
ことで塗装パターン中央部への塗粒の集中化をも低減す
ることができる。
FIG. 1 shows a rotary atomizing electrostatic coating apparatus of the present invention. Since the basic structure of this device is the same as that shown in FIG. 8 described above, the same parts are designated by the same reference numerals to avoid redundant description.
The feature of this embodiment is that the bell-shaped cup 3 is formed to have a larger diameter than the conventional one, and the shaping air outlet 6 is formed.
Is arranged on a pitch circle having a diameter substantially the same as the outermost circumference of the cup 3, and its discharge direction is parallel to the axis of the rotary shaft 2. By forming the cup 3 with a large diameter in this way, the diffusion range of the coating material supplied from the coating material supply pipe 5 on the cup surface is expanded, the coating material becomes a thin film, and the atomized coating particles are likely to be finely changed. . Moreover, due to the expansion of the diffusion range, the charging time of the coating material in the high voltage applying section becomes longer, and the charging amount of the coating particles increases accordingly. Further, the shaping air passes on the outer peripheral surface of the cup 3 in parallel with the axis of the rotary shaft 2 as shown by an arrow b, and heads for the object to be coated (not shown). Will increase. Further, by increasing the diameter of the cup 3, it is possible to reduce the concentration of coating particles in the central portion of the coating pattern.

こゝで、上記回転霧化静電塗装装置におけるベル状カ
ップ3の直径Dを77mmと100mmの2種類に変化させ、そ
れぞれカップ3の回転数を変えてアルミニウム片を含む
メタリック塗料をガラス板を塗装し、その後顕微鏡観察
により塗粒中のアルミニウム片の平均粒径を測定したと
ころ、その平均粒径はそれぞれの条件で変化することが
分かった。
Here, the diameter D of the bell-shaped cup 3 in the rotary atomizing electrostatic coating device is changed to two types of 77 mm and 100 mm, and the rotational speed of the cup 3 is changed for each of the metallic paints containing aluminum pieces on the glass plate. When the average particle size of the aluminum pieces in the coated particles was measured by coating and then microscopic observation, it was found that the average particle size changed under each condition.

第2図は、上記アルミニウム片の平均粒径Dを遠心力
の目安となる係数Wにて整理したものである。なお遠心
力Fは、カップ3の半径をR(m),回転数をC(回転
/sec),塗粒の質量をmとすると、F=4π2RC2m
(N)で与えられるが、この式中のRC2は便宜的に遠心
力の目安となるので、これを係数Wとした。第2図に示
す結果より、塗粒中のアルミニウム片は、カップ3の外
径Dに関係なく、係数Wが1300までは極めて粗く、これ
を越えると急激に細かくなることが確認できた。これ
は、遠心力が大きくなると、カップ3による塗料の霧化
時にメタリック塗料のアルミニウムが片が破壊してしま
うためであり、したがって、該遠心力は出来るだけ小さ
くすることが望ましいことが分かる。因みに、従来汎用
の回転霧化静電塗装装置(第8図)を用いて一般の塗装
条件で塗装すれば、上記係数Wは一万以上の大きさとな
り、このようなオーダーでは図示のようにアルミニウム
片の平均粒径は極めて小さくなることが推定される。
FIG. 2 shows the average particle diameter D of the above-mentioned aluminum pieces arranged by a coefficient W which is a standard of centrifugal force. The centrifugal force F is defined as the radius of the cup 3 is R (m) and the rotation speed is C (rotation).
/ sec), and the mass of the coated particles is m, F = 4π 2 RC 2 m
It is given by (N), but since RC 2 in this equation is a measure of centrifugal force for convenience, this is taken as the coefficient W. From the results shown in FIG. 2, it was confirmed that the aluminum pieces in the coated particles were extremely coarse up to the coefficient W of 1300 regardless of the outer diameter D of the cup 3 and sharply became finer when the coefficient W was exceeded. This is because when the centrifugal force is increased, the aluminum of the metallic paint is broken when the paint is atomized by the cup 3, and therefore it is desirable to make the centrifugal force as small as possible. By the way, if the conventional general-purpose rotary atomizing electrostatic coating device (Fig. 8) is used for coating under general coating conditions, the above coefficient W will be 10,000 or more. It is estimated that the average particle size of the aluminum pieces is extremely small.

また上記同様にベル状カップ3の直径Dを77mmと100m
mの2つの寸法に変化させ、吹出口6から吐出するシェ
ーピングエアの吐出圧力を種々に変化させて、被塗物上
面での垂直方向の風速を測定し、かつ各条件における塗
装面の明度を測定した。その測定結果を第3図に示す。
なお明度の測定は、第4図に示すように、変角測色計A
にて塗装面の方線に対し30゜で入射し、−60゜で受光し
たL値,L[30゜,−60゜]と60゜で受光したL値,L[30
゜,60゜]との比で表わした。また各条件で上記係数W
が1200になるようにカップ3回転数を調整した。第3図
に示す結果より、明度はカップ3の直径Dに関係なく、
垂直方向の風速値15m/sec以上で飽和し、エア霧化静電
塗装装置で塗装した場合と同程度の明度3.4になること
が確認できた。因みに、従来の回転霧化静電塗装装置
(第8図)を用いた塗装によれば、垂直方向の風速は4
〜5m/sec程度であり、この場合は明度が2.5以下となる
ことが推定され、エア霧化静電塗装装置のレベルまで明
度を高めることが到底不可能となる。
In addition, the diameter D of the bell-shaped cup 3 is 77 mm and 100 m as in the above.
The air pressure in the vertical direction on the upper surface of the object to be coated is measured by changing the discharge pressure of the shaping air discharged from the air outlet 6 to various values of m, and the brightness of the coated surface under each condition is measured. It was measured. The measurement result is shown in FIG.
In addition, as shown in FIG. 4, the lightness is measured by a gonio-colorimeter A.
At 30 ° to the direction of the painted surface, the L value received at -60 °, L [30 °, -60 °] and the L value received at 60 °, L [30
[°, 60 °]. The coefficient W
The number of rotations of the cup 3 was adjusted so that the value would be 1200. From the results shown in FIG. 3, the brightness is irrespective of the diameter D of the cup 3,
It was confirmed that the saturation was achieved at a vertical wind speed value of 15 m / sec or more, and the brightness was 3.4, which was the same level as when painted with an air atomizing electrostatic coating device. By the way, according to the coating using the conventional rotary atomizing electrostatic coating device (Fig. 8), the wind speed in the vertical direction is 4
It is about 5 m / sec, and in this case it is estimated that the lightness will be 2.5 or less, and it will be impossible to raise the lightness to the level of the air atomization electrostatic coating device.

上記2つの試験結果より、ベル状カップ3の回転数C
(回転/sec)とその半径R(m)との関係をR×C2≦50
00に設定すると共に、被塗物表面での垂直方向の風速が
10m/sec以上となるように回転霧化静電塗装装置のシェ
ーピングエアを制御することにより、エア霧化静電塗装
塗装装置を用いた場合とほゞ同等の明度を得ることがで
きることが明らかとなった。
From the above two test results, the rotational speed C of the bell-shaped cup 3
The relation between (rotation / sec) and its radius R (m) is R × C 2 ≦ 50
When set to 00, the vertical wind speed on the surface of the coated object
By controlling the shaping air of the rotary atomizing electrostatic coating device so that it is 10 m / sec or more, it is clear that it is possible to obtain a brightness that is almost the same as when using the air atomizing electrostatic coating device. became.

次に、上記本発明の回転霧化静電塗装装置を用いて行
なった塗装の具体例について述べる。
Next, a specific example of coating performed using the rotary atomizing electrostatic coating device of the present invention will be described.

実施例1 直径D=100mmのベル状カップ3を用い、吹出口6の
直径0.4mm,吹出口6数120個とし、カップ3の回転数800
0〜9000rpm(係数Wは1300以下),吹出口6からのシェ
ーピングエアの吐出量550〜650N/min(被塗装物の表
面での風速は15〜16m/sec)の条件下で、アルミニウム
片を含むメタリック塗料の塗装をし、明度、塗粒の帯電
量及び塗着効率を測定した。なお、明度の測定は前出第
4図に示した方法により求め、また帯電量は比電荷(μ
c/g)として求めた。
Example 1 A bell-shaped cup 3 having a diameter D = 100 mm was used, and the outlet 6 had a diameter of 0.4 mm and the number of outlets was 120, and the number of rotations of the cup 3 was 800.
Under the conditions of 0 to 9000 rpm (coefficient W is 1300 or less) and the amount of shaping air discharged from the outlet 6 to 550 to 650 N / min (the wind speed on the surface of the coated object is 15 to 16 m / sec), A metallic paint containing it was applied, and the lightness, the charge amount of the coating particles and the coating efficiency were measured. The brightness was determined by the method shown in FIG. 4, and the charge amount was determined by the specific charge (μ
c / g).

実施例2 直径D=130mmのベル状カップ3を用い、吹出口6の
直径0.4mm,吹出口6の数150個とし、カップ3の回転数7
000〜8000rpm(係数Wは1300以下),吹出口6からのシ
ェーピングエアの吐出量700〜800N/min(被塗装物の
表面での風速は15〜16m/sec)の条件下で、実施例1と
同様にアルミニウム片を含むメタリック塗料の塗装を
し、明度、塗粒の帯電量及び塗着効率を測定した。
Example 2 The bell-shaped cup 3 having a diameter D = 130 mm was used, the diameter of the outlet 6 was 0.4 mm, the number of outlets 6 was 150, and the number of rotations of the cup 3 was 7
Example 1 under the conditions of 000 to 8000 rpm (coefficient W is 1300 or less) and the amount of shaping air discharged from the air outlet 6 to 700 to 800 N / min (the wind speed on the surface of the object to be coated is 15 to 16 m / sec). Similarly to the above, a metallic paint containing aluminum pieces was applied, and the brightness, the charge amount of the coated particles, and the coating efficiency were measured.

比較例1 第8図に示した従来の回転霧化静電塗装装置を用い、
ベル状カップ3の直径D=77mm,吹出口6の直径0.4mm,
吹出口6の数90個とし、カップ3の回転数40000〜45000
rpm(係数Wは17000〜22000),吹出口からのシェーピ
ングエアの吐出量150〜200N/min(被塗装物の表面で
の風速は4〜5m/sec)の条件下で、実施例1と同様にア
ルミニウム片を含むメタリック塗料の塗装をし、明度、
塗粒の帯電量及び塗着効率を測定した。
Comparative Example 1 Using the conventional rotary atomizing electrostatic coating device shown in FIG.
Bell cup 3 diameter D = 77mm, outlet 6 diameter 0.4mm,
The number of outlets 6 is 90, and the number of rotations of the cup 3 is 40,000 to 45,000.
Same as Example 1 under the conditions of rpm (coefficient W is 17000 to 22000) and the amount of shaping air discharged from the outlet is 150 to 200 N / min (wind velocity on the surface of the object to be coated is 4 to 5 m / sec). Apply metallic paint containing aluminum pieces to the
The charge amount of the coating particles and the coating efficiency were measured.

比較例2 第1図に示した本発明の回転霧化静電塗装装置と基本
構造を同じくするものを用い、ベル状カップ3の直径D
=37mm,吹出口6の直径0.4mm,吹出口6の数33個とし、
カップ3の回転数10000〜15000rpm(係数Wは1300以
下),吹出口6からのシェーピングエアの吐出量300〜4
00N/min(被塗装物の表面での風速は7〜8m/sec)
で、実施例1と同様にアルミニウム片を含むメタリック
塗料の塗装をし、明度、塗粒の帯電量及び塗着効率を測
定した。
Comparative Example 2 The diameter D of the bell-shaped cup 3 is the same as that of the rotary atomizing electrostatic coating device of the present invention shown in FIG.
= 37 mm, the diameter of the outlet 6 is 0.4 mm, the number of outlets 6 is 33,
Rotational speed of the cup 3 is 10,000 to 15,000 rpm (coefficient W is 1300 or less), and the amount of shaping air discharged from the outlet 6 is 300 to 4
00N / min (Wind speed on the surface of the coated object is 7-8m / sec)
Then, a metallic paint containing aluminum pieces was applied in the same manner as in Example 1, and the brightness, the charge amount of the coating particles and the coating efficiency were measured.

比較例3 従来汎用のエア霧化静電塗装装置を用い、被塗装物の
表面での風速が15〜16m/secとなるようにエアの吐出量
を調整し、実施例1と同様にアルミニウム片を含むメタ
リック塗料の塗装をし、明度、塗粒の帯電量及び塗着効
率を測定した。
Comparative Example 3 Using a conventional general-purpose air atomization electrostatic coating device, the amount of air discharged was adjusted so that the wind speed on the surface of the object to be coated was 15 to 16 m / sec, and the aluminum piece was processed in the same manner as in Example 1. Was coated with a metallic paint, and the brightness, the charge amount of the coating particles, and the coating efficiency were measured.

明度測定の結果を第5図に示す。これより、本発明の
実施例1及び2は、何れもエア霧化静電塗装装置による
塗装(比較例3)と同等の明度3.4を得ることができ
た。これに対して、従来の回転霧化静電塗装装置による
比較例1の明度は2.0程度と著しく低いことが確認でき
た。この比較例1の明度の低さは、遠心力に関係する係
数Wが大きく、かつシェーピングエアによる垂直方向の
風速値が小さいことに起因すると推定される。また比較
例2の場合は、比較例1よりも高い明度が得られるもの
の、本発明の実施例1及び2に比して明度がわずか低い
ことが確認できた。これは垂直方向の風速値が小さいこ
とに起因すると推定される。
The result of the lightness measurement is shown in FIG. As a result, in each of Examples 1 and 2 of the present invention, it was possible to obtain the same lightness of 3.4 as the coating by the air atomization electrostatic coating device (Comparative Example 3). On the other hand, it was confirmed that the brightness of Comparative Example 1 using the conventional rotary atomizing electrostatic coating device was as low as about 2.0. It is presumed that the low brightness of Comparative Example 1 is due to the large coefficient W related to the centrifugal force and the small vertical wind speed value due to the shaping air. Further, in the case of Comparative Example 2, although it was possible to obtain higher brightness than that of Comparative Example 1, it was confirmed that the brightness was slightly lower than those of Examples 1 and 2 of the present invention. It is estimated that this is due to the small wind speed value in the vertical direction.

次に塗粒の帯電量の推定結果を第6図に示す。これよ
り本発明の実施例1及び2は、従来の回転霧化静電塗装
装置による比較例1に比して帯電量が同等かわずか大き
いが、小径のベル状カップを用いた回転霧化静電塗装装
置による比較例2及びエア霧化静電塗装装置による比較
例3に比して著しく帯電量が大きいことが確認できた。
これは、本実施例1及び2の場合、何れもベル状カップ
3の直径Dが大きく、それだけ塗料の拡散範囲が拡大
し、高圧印加部での塗料の帯電時間が長くなったためと
推量され、その結果が比較例2との差に明瞭に現われて
いる。
Next, FIG. 6 shows the estimation result of the charge amount of the coated particles. As a result, in Examples 1 and 2 of the present invention, the amount of electrification was equal to or slightly larger than that of Comparative Example 1 using the conventional rotary atomizing electrostatic coating device, but the rotary atomizing static using a bell-shaped cup having a small diameter was used. It was confirmed that the charge amount was remarkably large as compared with Comparative Example 2 using the electrocoating apparatus and Comparative Example 3 using the air atomizing electrostatic coating apparatus.
This is presumed to be because in the case of Examples 1 and 2, the diameter D of the bell-shaped cup 3 was large, the diffusion range of the paint was expanded accordingly, and the charging time of the paint in the high-voltage applying section was lengthened. The result clearly appears in the difference from Comparative Example 2.

さらに塗着効率の測定結果を第7図に示す。これより
本実施例1及び2の塗着効率は70%前後の高値となり、
メタリック塗装にも十分に適用できることが確認でき
た。なお全体の中では、従来の回転霧化静電塗装装置に
よる比較例1が最も大きく、エア霧化静電塗装装置によ
る比較例3が最も小さくなっている。
Furthermore, the measurement results of the coating efficiency are shown in FIG. From this, the coating efficiency of Examples 1 and 2 was as high as around 70%,
It was confirmed that the method can be applied to metallic painting. In the whole, Comparative Example 1 using the conventional rotary atomizing electrostatic coating device is the largest, and Comparative Example 3 using the air atomizing electrostatic coating device is the smallest.

また、塗装面の肌感(面粗度)について比較したとこ
ろ、本発明の実施例1及び2は、何れも比較例2及び比
較例3に比して優れた肌感を得ることができた。
Further, when the skin feel (surface roughness) of the coated surface was compared, both of Examples 1 and 2 of the present invention were able to obtain an excellent skin feel as compared with Comparative Examples 2 and 3. .

(発明の効果) 以上、詳細に説明したように、本発明にかゝる回転霧
化静電塗装方法および装置によれば、塗装効率を悪化さ
せることなく、従来のエア霧化静電塗装と同等のメタリ
ック塗装の明度を得ることができ、利用価値が著しく向
上する効果がある。
(Effects of the Invention) As described above in detail, according to the rotary atomizing electrostatic coating method and apparatus according to the present invention, the conventional air atomizing electrostatic coating can be performed without deteriorating the coating efficiency. The same brightness of metallic coating can be obtained, and the utility value is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかゝる回転霧化静電塗装装置の構造を
示す断面図、第2図は塗粒中のアルミニウム片と遠心力
に関係する係数との相関を示すグラフ、第3図は塗装面
の明度と被塗物上面での垂直方向の風速との相関を示す
グラフ、第4図は明度の測定要領を示す説明図、第5図
は明度の測定結果を示すグラフ、第6図は塗粒の帯電量
の測定結果を示すグラフ、第7図は塗着効率の測定結果
を示すグラフ、第8図は従来の回転霧化静電塗装装置の
構造を示す断面図である。 2……回転軸 3……ベル状カップ 6……シェービングエアの吹出口
FIG. 1 is a cross-sectional view showing the structure of a rotary atomizing electrostatic coating device according to the present invention, FIG. 2 is a graph showing the correlation between the aluminum pieces in the coating particles and the coefficient relating to centrifugal force, and FIG. FIG. 4 is a graph showing the correlation between the brightness of the coated surface and the wind speed in the vertical direction on the top surface of the object to be coated, FIG. 4 is an explanatory diagram showing the procedure for measuring the brightness, and FIG. 5 is a graph showing the results of measuring the brightness. FIG. 6 is a graph showing the measurement result of the charge amount of the coating particles, FIG. 7 is a graph showing the measurement result of the coating efficiency, and FIG. 8 is a sectional view showing the structure of a conventional rotary atomizing electrostatic coating device. . 2 ... Rotating shaft 3 ... Bell-shaped cup 6 ... Shaving air outlet

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転軸の一端に固定されたベル状カップに
メタリック塗料を供給すると共に、該カップの後方に配
列された吹出口からシェーピングエアを吐出させ、該カ
ップを回転させることで被塗物にメタリック塗装を施す
回転霧化静電塗装方法において、前記ベル状カップの回
転数C(回転/sec)とその半径R(m)との関係をR×
C2≦5000に設定したことを特徴とする回転霧化静電塗装
方法。
1. A bell-shaped cup fixed to one end of a rotary shaft is supplied with metallic paint, and shaping air is discharged from an outlet arranged rearward of the cup to rotate the cup to be coated. In the rotary atomization electrostatic coating method of applying metallic coating to an object, the relation between the number of rotations C (rotation / sec) of the bell-shaped cup and its radius R (m) is expressed as R ×
A rotary atomizing electrostatic coating method characterized by setting C 2 ≤5000.
【請求項2】前記シェーピングエアを、被塗物表面にお
ける垂直方向の風速が10m/sec以上となるように制御す
ることを特徴とする請求項1に記載の回転霧化静電塗装
方法。
2. The rotary atomizing electrostatic coating method according to claim 1, wherein the shaping air is controlled so that a vertical wind speed on the surface of the object to be coated is 10 m / sec or more.
【請求項3】回転軸の一端に固定されたベル状カップに
メタリック塗料を供給すると共に、該カップの後方に配
列された吹出口からシェーピングエアを吐出させ、該カ
ップを回転させることで被塗物にメタリック塗装を施す
回転霧化静電塗装装置において、前記ベル状カップの回
転数C(回転/sec)とその半径R(m)との関係をR×
C2≦5000に設定したことを特徴とする回転霧化静電塗装
装置。
3. A bell-shaped cup fixed to one end of a rotary shaft is supplied with metallic paint, and shaping air is discharged from an outlet arranged rearward of the cup to rotate the cup to be coated. In a rotary atomizing electrostatic coating device that applies a metallic coating to an object, the relationship between the number of rotations C (rotation / sec) of the bell-shaped cup and its radius R (m) is R ×
A rotary atomizing electrostatic coating device characterized by setting C 2 ≤ 5000.
【請求項4】前記シェーピングエアを、被塗物表面にお
ける垂直方向の風速が10m/sec以上となるように制御す
ることを特徴とする請求項1に記載の回転霧化静電塗装
方法。
4. The rotary atomizing electrostatic coating method according to claim 1, wherein the shaping air is controlled so that the vertical wind speed on the surface of the object to be coated is 10 m / sec or more.
JP63145061A 1988-06-13 1988-06-13 Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device Expired - Lifetime JP2560421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145061A JP2560421B2 (en) 1988-06-13 1988-06-13 Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145061A JP2560421B2 (en) 1988-06-13 1988-06-13 Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device

Publications (2)

Publication Number Publication Date
JPH01315361A JPH01315361A (en) 1989-12-20
JP2560421B2 true JP2560421B2 (en) 1996-12-04

Family

ID=15376476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145061A Expired - Lifetime JP2560421B2 (en) 1988-06-13 1988-06-13 Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device

Country Status (1)

Country Link
JP (1) JP2560421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295999B2 (en) 2010-09-09 2016-03-29 Toyota Jidosha Kabushiki Kaisha Rotary atomizing painting device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671580B2 (en) * 1990-08-15 1997-10-29 トヨタ自動車株式会社 Reciprocating painting method
JP2841786B2 (en) * 1990-08-15 1998-12-24 トヨタ自動車株式会社 How to apply metallic paint
US6889921B2 (en) 2002-09-30 2005-05-10 Illinois Tool Works Inc. Bell cup skirt
US7128277B2 (en) 2003-07-29 2006-10-31 Illinois Tool Works Inc. Powder bell with secondary charging electrode
USD545943S1 (en) 2006-03-14 2007-07-03 Illinois Tool Works Inc. Coating material dispensing device
US8371517B2 (en) 2007-06-29 2013-02-12 Illinois Tool Works Inc. Powder gun deflector
CA2991111A1 (en) * 2015-06-30 2017-01-05 Honda Motor Co., Ltd. Painting method and device for same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673573A (en) * 1979-11-20 1981-06-18 Nippon Ranzubaagu Kk Electrostatic coating method of metallic paint
JPS58143862A (en) * 1982-02-19 1983-08-26 Kadowaki Toshiyuki Electrostatic coater
JPS61171557U (en) * 1985-04-15 1986-10-24
JPS62160166A (en) * 1985-12-30 1987-07-16 Toyota Central Res & Dev Lab Inc Coating method for paint with direction dependence in color tone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9295999B2 (en) 2010-09-09 2016-03-29 Toyota Jidosha Kabushiki Kaisha Rotary atomizing painting device

Also Published As

Publication number Publication date
JPH01315361A (en) 1989-12-20

Similar Documents

Publication Publication Date Title
CA1236346A (en) Method and apparatus for spraying coating material
JP2560421B2 (en) Rotary atomizing electrostatic coating method and rotary atomizing electrostatic coating device
RU2637028C2 (en) Bell-type adapter for device for electrostatic application of coating by means of centrifugal spraying
JP3254828B2 (en) Rotary atomization electrostatic coating method and apparatus
AU747182B2 (en) Rotary atomizer with integrated shaping air
JP2600390B2 (en) Rotary atomizing coating equipment
JPS5867368A (en) Method and device for electrostatic painting
CA2202671C (en) Rotary atomizing electrostatic coating apparatus
GB2140328A (en) Rotary atomizer bell
JPS6014959A (en) Electrostatic sprayer
JP3365203B2 (en) Rotary atomizing coating equipment
JPH03127654A (en) Electrostatic coating device and rotary member therefor
JPS6054754A (en) Electrostatic sprayer
JP2567072B2 (en) Rotary atomizing coating device
JPS62160166A (en) Coating method for paint with direction dependence in color tone
JP2622615B2 (en) Bell type rotary atomizing head
JPH11300239A (en) Method for applying metallic coating
JP4121364B2 (en) Coating method of metallic paint in metallic coating of automobile
JPS58104656A (en) Rotary atomizing type electrostatic painting apparatus
JPH07213956A (en) Electrostatic coater
JPH0899053A (en) Rotary atomizing head-type coating apparatus
JPS6036359Y2 (en) Rotary atomization electrostatic coating equipment
JPS6314917Y2 (en)
JP2010137162A (en) Coating method
JPS6036358Y2 (en) Spray head of rotary atomizing electrostatic coating equipment