JP2539482B2 - Epoxy resin composition for semiconductor encapsulation - Google Patents
Epoxy resin composition for semiconductor encapsulationInfo
- Publication number
- JP2539482B2 JP2539482B2 JP63069683A JP6968388A JP2539482B2 JP 2539482 B2 JP2539482 B2 JP 2539482B2 JP 63069683 A JP63069683 A JP 63069683A JP 6968388 A JP6968388 A JP 6968388A JP 2539482 B2 JP2539482 B2 JP 2539482B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- epoxy resin
- silane coupling
- resin composition
- coupling agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003822 epoxy resin Substances 0.000 title claims description 21
- 229920000647 polyepoxide Polymers 0.000 title claims description 21
- 239000000203 mixture Substances 0.000 title claims description 15
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000005538 encapsulation Methods 0.000 title claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 80
- 239000000377 silicon dioxide Substances 0.000 claims description 36
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 125000003700 epoxy group Chemical group 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- 239000011256 inorganic filler Substances 0.000 claims description 2
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 14
- 238000010298 pulverizing process Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 239000005350 fused silica glass Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229920003986 novolac Polymers 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical group [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐湿性に優れ、尚かつ成形性(バリ特性)に優
れた半導体封止用エポキシ樹脂組成物に関するものであ
る。TECHNICAL FIELD The present invention relates to an epoxy resin composition for semiconductor encapsulation which has excellent moisture resistance and excellent moldability (burr characteristics).
近年半導体関連技術の進歩は、目覚ましく超LSIの集積
度は著しく向上しそれに伴い配線の微細化が進んできて
いる。この様な情勢の中で半導体封止用エポキシ樹脂に
も更に信頼性の高い製品が要求されている。In recent years, semiconductor-related technology has been remarkably improved, and the degree of integration of VLSI has been remarkably improved, and the wiring has been miniaturized accordingly. Under such circumstances, even more reliable products are required for epoxy resins for semiconductor encapsulation.
従来から半導体封止用エポキシ樹脂には耐湿性を向上
させるという目的でシランカップリングを用いている。
ところが従来からの乾式法:粉砕済みシリカ粉末をヘン
シェル,スーパーミキサー等で攪拌している中へシラン
カップリング剤を噴霧あるいは点滴により添加する方法
や、湿式法:粉砕済みシリカ粉末を水中あるいは溶解中
へ分散させ高速攪拌し、スラリー状態になった中へシラ
ンカップリング剤を添加し、その後乾燥して得る方法な
どでは、シランカップリング剤のシリカ表面への反応性
に限界があり、添加量が、ある量を越えると成形時に成
形品からのバリが増大し成形品の品質が低下する問題が
あった。従って耐湿性及び材料強度等の特性にも限界が
生じ、不充分であり、そのために、更に多くのシランカ
ップリング剤をシリカ表面に完全に反応させる方法がい
ろいろと検討されてきた。Conventionally, silane coupling has been used for epoxy resin for semiconductor encapsulation for the purpose of improving moisture resistance.
However, the conventional dry method: a method in which the silane coupling agent is added by spraying or drip while stirring the pulverized silica powder with a Henschel, a super mixer, etc., or a wet method: the pulverized silica powder is dissolved in water or dissolved In the method of obtaining a silane coupling agent by dispersing it into a slurry state at high speed, adding the silane coupling agent into a slurry state, and then drying, there is a limit to the reactivity of the silane coupling agent on the silica surface, and the addition amount is However, if the amount exceeds a certain amount, there is a problem that burrs from the molded product increase during molding and the quality of the molded product deteriorates. Therefore, properties such as moisture resistance and material strength are limited and insufficient, and therefore various methods for completely reacting more silane coupling agents on the silica surface have been studied.
本発明は従来からの乾式法や湿式法によるシランカッ
プリング剤のシリカ表面への反応処理で得られなかった
耐湿性に優れ尚かつ成形時のバリ特性に優れた半導体封
止用エポキシ樹脂組成物を得んとして研究した結果、シ
リカ粉砕時にシランカップリング剤を添加することによ
って得られたシリカ粉末を充填剤として用いることによ
り耐湿性に優れ、尚かつ成形時のバリ特性に優れたエポ
キシ樹脂組成物が得られることを見い出したものであ
る。The present invention is an epoxy resin composition for semiconductor encapsulation excellent in moisture resistance and excellent in burr characteristics at the time of molding which cannot be obtained by a reaction treatment of a silane coupling agent on a silica surface by a conventional dry method or wet method. As a result of researches, we obtained an epoxy resin composition with excellent moisture resistance by using silica powder obtained by adding a silane coupling agent at the time of silica crushing as a filler, and excellent burr characteristics during molding. They found that they could get things.
本発明は一分子中にエポキシ基を少なくとも2個以上
有するエポキシ樹脂、フェノール系樹脂硬化剤及び無機
充填剤とて粗粒シリカを平均粒径で5〜30μm、かつ比
表面積が1.0〜5.0m2/gとなる範囲まで粉砕する工程中で
シランカップリング剤(最小被覆面積:300〜500m2/g)
をシリカに対して0.1〜5.0重量%を添加しつつ粉砕して
なるシリカ粉末を必須成分とすることを特徴とする半導
体封止用エポキシ樹脂組成物に関するものである。The present invention uses an epoxy resin having at least two epoxy groups in one molecule, a phenolic resin curing agent, and an inorganic filler to contain coarse silica particles having an average particle diameter of 5 to 30 μm and a specific surface area of 1.0 to 5.0 m 2. Silane coupling agent (minimum coating area: 300 to 500 m 2 / g) in the process of pulverizing to a range of / g
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which comprises silica powder obtained by pulverizing while adding 0.1 to 5.0% by weight to silica as an essential component.
本発明でいうところのエポキシ樹脂組成物とは、エポ
キシ樹脂、硬化剤、及び本発明のシリカ粉砕時にシラン
カップリング剤を添加することによって得られたシリカ
粉末を充填剤として用いることを必須とし、必要に応じ
て難燃剤、顔料、離型剤その他添加剤を配合したもので
ある。With the epoxy resin composition of the present invention, it is essential to use an epoxy resin, a curing agent, and silica powder obtained by adding a silane coupling agent at the time of pulverizing silica of the present invention as a filler, If necessary, a flame retardant, a pigment, a release agent and other additives are added.
本発明で用いられるシリカとは、溶融シリカ、結晶シ
リカ等のシリカ全般を指す。シランカップリング剤は、
アミノシラン系、エポキシシラン系、メルカプトシラン
系等のカップリング剤全般をいう。The silica used in the present invention refers to all silica such as fused silica and crystalline silica. The silane coupling agent is
Aminosilane-based, epoxysilane-based, mercaptosilane-based coupling agents in general.
以上のシリカを粗粒の状態から粉砕する工程において
シランカップリング剤(最小被覆面積:300〜500m2/g)
を添加するが、その添加量についてはシリカ(粉砕後の
比表面積1.0〜5.0m2/g)に対して0.1〜0.5重量%が好ま
しいが更に好ましくは0.5〜3.0重量%が望ましい。Silane coupling agent (minimum coating area: 300 to 500 m 2 / g) in the process of crushing the above silica from coarse particles
The amount of addition is preferably 0.1 to 0.5% by weight, more preferably 0.5 to 3.0% by weight, based on silica (specific surface area after pulverization 1.0 to 5.0 m 2 / g).
添加量が0.1重量%未満のものについては、シランカ
ップリング剤が少量のため耐湿性に対して効果を発揮し
ない。また添加量が5.0重量%以上のものについてはこ
れ以上シランカップリング剤がシリカ表面に反応せず、
バリ特性が悪化する。またこれらの範囲外はシランカッ
プリング剤の最小被覆面積とシランの比表面積から計算
される最適添加量(シランカップリング剤1分子が粉砕
後のシリカの表面に対して1層形成される量であり、比
表面積/最小被覆面積×100で表わされている。)から
も外れてしまう。If the added amount is less than 0.1% by weight, the silane coupling agent is too small to exert an effect on the moisture resistance. Also, if the addition amount is 5.0% by weight or more, the silane coupling agent does not react with the silica surface any more,
Burr characteristics deteriorate. Outside of these ranges, the optimum addition amount calculated from the minimum coverage area of the silane coupling agent and the specific surface area of silane (the amount of one molecule of silane coupling agent formed on the surface of silica after pulverization is one layer) Yes, it is also expressed as (specific surface area / minimum coating area × 100).
本発明によるシリカ粉砕時にシランカップリング剤を
添加する方法は、従来の乾式法や湿式法に比べ、シリカ
表面に対するシランカップリング剤の反応性が強く発揮
される傾向が大である。The method of adding a silane coupling agent at the time of pulverizing silica according to the present invention has a tendency that the reactivity of the silane coupling agent with respect to the surface of silica is strongly exhibited, as compared with the conventional dry method or wet method.
更にこれらの処理シリカについて、シリカ表面上の炭
素、水素等を元素分析計で定量した結果、添加量が5.0
重量%までシランカップリング剤が100%反応したもの
として算出した理論値と一致することが確認された。又
シリカを平均粒径5〜10μmとなるように粉砕するの
は、5μm以下であれば成形材料として用いる場合の流
動性が悪くなってしまい、30μm以上であれば封止する
半導体素子を傷つけるおそれや、成形性に問題を生じて
しまう。Furthermore, for these treated silicas, the amount of carbon, hydrogen, etc. on the silica surface was quantified with an elemental analyzer, and the addition amount was 5.0.
It was confirmed that the silane coupling agent was in agreement with the theoretical value calculated as 100% reaction of the silane coupling agent up to the weight%. If silica is crushed to have an average particle size of 5 to 10 μm, the fluidity when used as a molding material is deteriorated if it is 5 μm or less, and the semiconductor element to be sealed may be damaged if it is 30 μm or more. Or, it causes a problem in moldability.
更に粉砕したシリカ粒子の比表面積は1.0〜5.0m2/gが
好ましく、1.0m2/g以下では、粒径30μm以上の場合と
同様に成形性が悪くなり、バリも発生し易くなり、5.0m
2/g以上であれば流動性が悪くなってしまう。Further the specific surface area of the milled silica particles is preferably 1.0~5.0m 2 / g, 1.0m 2 / g In the following, the case of more than the particle size 30μm similarly to moldability is deteriorated and also easily generated burrs, 5.0 m
If it is 2 / g or more, the fluidity will deteriorate.
又用いるシランカップリング剤の最小被覆面積が300
〜500m2/gであることが必要であり、最小被覆面積が300
m2/g以下であればシランカップリング剤の分子量が大き
くなりすぎ反応性が低下してしまうし、500m2/g以上で
あれば分子量が小さくなり耐湿性の劣化をきたしてしま
う。The minimum coating area of the silane coupling agent used is 300
~ 500 m 2 / g is required, minimum coverage area is 300
If it is m 2 / g or less, the molecular weight of the silane coupling agent will be too large and the reactivity will be lowered. If it is 500 m 2 / g or more, the molecular weight will be small and the moisture resistance will be deteriorated.
また組成物中のエポキシ樹脂とは、エポキシ基を有す
るもの全般のことをいい、例えばビスフェノール型エポ
キシ、フェノールノボラック型エポキシ樹脂、複素環型
エポキシ樹脂といった一般名を挙げることができる。The epoxy resin in the composition refers to all those having an epoxy group, and examples thereof include common names such as bisphenol type epoxy, phenol novolac type epoxy resin, and heterocyclic type epoxy resin.
またこれらを単独であるいは併用して用いても良い。 These may be used alone or in combination.
硬化剤とは、エポキシ樹脂と硬化反応するポリマー全
般のことをいい、例えばフェノールノボラック、クレゾ
ールノボラック樹脂、酸無水物といった一般名を挙げる
ことが出来る。The curing agent refers to all polymers that undergo a curing reaction with an epoxy resin, and examples thereof include common names such as phenol novolac, cresol novolac resin, and acid anhydride.
これ以外に硬化促進剤、滑剤、難燃剤、着色剤等を添
加しても何らさしつかえがない。In addition to this, it is possible to add a curing accelerator, a lubricant, a flame retardant, a coloring agent and the like.
硬化促進剤としては、エポキシ樹脂組成物の硬化を促
進させる触媒全般のことをいい、例えばイミダゾール類
・第3級アミン類・有機リン化合物・有機アルミニウム
化合物といった一般名を挙げることができる。The curing accelerator refers to all catalysts that accelerate the curing of the epoxy resin composition, and examples thereof include general names such as imidazoles, tertiary amines, organic phosphorus compounds, and organic aluminum compounds.
このように本発明に従うと耐湿性に優れ、尚かつ成形
時における成形品のバリ特性に優れた半導体封止用エポ
キシ樹脂組成物を得ることが出来る。As described above, according to the present invention, it is possible to obtain an epoxy resin composition for semiconductor encapsulation which is excellent in moisture resistance and excellent in burr characteristics of a molded product at the time of molding.
従って最近の超LSIの高集積度化における高耐湿性及
び成形作業性の要求特性に十分耐えうることから本発明
の産業的意味役割は大きい。Therefore, the present invention has a great industrial significance because it can sufficiently withstand the required characteristics of high humidity resistance and molding workability in the recent high integration degree of VLSI.
(実施例1) 平均粒径約1mmの粗粒溶融シリカを振動ボールミルで
粉砕する工程で、粉砕初期にγ−グリシドメトキシシラ
ン(最小被覆面積332m2/g)をシリカに対して0.5重量%
噴霧添加し、シリカが平均粒径15μmでありかつ比表面
積が2.0m2/gとなるまで粉砕し、シランカップリング処
理されたシリカを得た。(Example 1) In the step of pulverizing coarse-grain fused silica having an average particle size of about 1 mm with a vibrating ball mill, 0.5% by weight of γ-glycidmethoxysilane (minimum coating area 332 m 2 / g) with respect to silica was obtained at the initial stage of pulverization.
The particles were added by spraying and pulverized until the silica had an average particle size of 15 μm and a specific surface area of 2.0 m 2 / g to obtain silane-coupling-treated silica.
得られたシリカを用いて下記の組成物をヘンシェルミ
キサーで混合し、ニーダーで混練した後、冷却粉砕して
エポキシ樹脂組成物を得た。Using the obtained silica, the following compositions were mixed with a Henschel mixer, kneaded with a kneader, and then cooled and ground to obtain an epoxy resin composition.
o−クレーゾールノボラックエポキシ樹脂 24 重量部 フェノールノボラック樹脂 12 重量部 トリフェニルホスフィン 0.3重量部 カルナバワックス 0.6重量部 カーボンブラック 0.5重量部 上記シランカップリング処理したシリカ 100 重量部 得られたエポキシ樹脂組成物を用いてアルミ模擬素子
を組み込んだモニターICを成形温度175℃、注入時間15
秒、硬化時間90秒でトランスファー成形し、175℃,8時
間ポストキュアーし、樹脂封止型半導体装置を得た。こ
れらの得られた成形品のバリ評価、耐湿性の評価を行っ
た。評価結果を第1表に示す。o-Cresol novolac epoxy resin 24 parts by weight Phenol novolac resin 12 parts by weight Triphenylphosphine 0.3 parts by weight Carnauba wax 0.6 parts by weight Carbon black 0.5 parts by weight Silane coupling treated silica 100 parts by weight The obtained epoxy resin composition is used. A monitor IC incorporating an aluminum simulation element is used at a molding temperature of 175 ° C and an injection time of 15
Sec., A curing time of 90 seconds, and a post-curing at 175 ° C. for 8 hours to obtain a resin-sealed semiconductor device. The obtained molded products were evaluated for burrs and moisture resistance. The evaluation results are shown in Table 1.
(実施例2〜5,比較例1〜2) 実施例1において、粗粒溶融シリカ粉砕時に添加する
γ−ブリシドメトキシシラン(最小被覆面積332m2/g)
の添加量を第1表に示すように変えてシランカップリン
グ処理されたシリカを得た。(Examples 2 to 5, Comparative Examples 1 and 2) In Example 1, γ-briside methoxysilane (minimum coating area 332 m 2 / g) added when crushing coarse-grain fused silica.
The addition amount of was changed as shown in Table 1 to obtain silane-coupling-treated silica.
得られたシランカップリング処理したシリカを用いて
実施例1と同様の組成のエポキシ樹脂組成物を作り、更
に実施例1の条件で成形し樹脂封止型半導体装置を得
た。An epoxy resin composition having the same composition as in Example 1 was prepared using the obtained silane-coupling silica, and further molded under the conditions of Example 1 to obtain a resin-encapsulated semiconductor device.
これらの評価結果を第1表に示す。 The results of these evaluations are shown in Table 1.
(比較例3,4) 粉砕済の溶融シリカ粉末(平均粒径15μm、比表面積
2m2/g)をスパーミキサで攪拌し、その中にγ−グリシ
ドメトキシシラン(最小被覆面積332m2/g)をシリカに
対して0.5重量%および3.0重量%噴霧添加した後5分間
攪拌をして得られたシランカップリング処理されたシリ
カ2種類を用いて、実施例1と同様の方法により樹脂封
止型半導体装置を得た。(Comparative Examples 3 and 4) Pulverized fused silica powder (average particle size 15 μm, specific surface area)
2m 2 / g) was stirred with a spar mixer, and γ-glycidmethoxysilane (minimum coating area 332m 2 / g) was added to the silica by spraying at 0.5% by weight and 3.0% by weight, followed by stirring for 5 minutes. A resin-encapsulated semiconductor device was obtained in the same manner as in Example 1, using the two types of silane-coupling-treated silica obtained as described above.
これらの評価結果を第1表に示す。 The results of these evaluations are shown in Table 1.
(比較例5,6) 粉砕済の溶融シリカ粉末(平均粒径15μm、比表面積
2m2/g)を水中に分散させ、ミキサーで高速攪拌し、ス
ラリー状態とした後にγ−グリシドメトキシシランをシ
リカに対して0.5重量%および3.0重量%となるように添
加し、更に5分間攪拌し、次いで乾燥することによりシ
ランカップリング処理されたシリカ2種類を用いて、実
施例1と同様の方法により樹脂封止型半導体装置を得
た。(Comparative Examples 5 and 6) Pulverized fused silica powder (average particle size 15 μm, specific surface area)
2m 2 / g) in water, stirred at high speed with a mixer to form a slurry, and then γ-glycidmethoxysilane is added to 0.5% by weight and 3.0% by weight of silica, and further for 5 minutes. A resin-encapsulated semiconductor device was obtained in the same manner as in Example 1 by using two kinds of silica that had been subjected to silane coupling treatment by stirring and then drying.
これらの結果を第1表に示す。 The results are shown in Table 1.
尚、比較例3,4,5,6での乾式法及び湿式法におけるミ
キサーの攪拌時間はγグリシドメトキシシランのシリカ
表面への反応性は飽和状態に達していることを確認して
いる。It was confirmed that the reactivity of γ-glycidmethoxysilane on the silica surface reached the saturated state during the stirring time of the mixer in the dry method and the wet method in Comparative Examples 3, 4, 5, and 6.
Claims (1)
2個以上有するエポキシ樹脂 (B)フェノール系樹脂硬化剤 (C)無機充填剤として粗粒シリカを平均粒径が5〜30
μmであり、かつ比表面積が1.0〜5.0m2/gとなるように
粉砕処理する工程中で、最小被覆面積が300〜500m2/gの
シランカップリング剤をシリカに対して0.1〜0.5重量%
添加してなるシランカップリング処理したシリカ粉末 の(A),(B)および(C)成分を必須成分とする半
導体封止用エポキシ樹脂組成物。1. (A) Epoxy resin having at least two epoxy groups in one molecule (B) Phenolic resin curing agent (C) Coarse-grained silica having an average particle size of 5 to 30 as an inorganic filler.
μm and is, and in the step of the specific surface area is pulverized so that 1.0~5.0m 2 / g, 0.1~0.5 weight for the minimum area coverage 300~500m 2 / g silane coupling agent with silica %
An epoxy resin composition for semiconductor encapsulation, which comprises (A), (B) and (C) components of silica powder which has been added and has been subjected to silane coupling treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069683A JP2539482B2 (en) | 1988-03-25 | 1988-03-25 | Epoxy resin composition for semiconductor encapsulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069683A JP2539482B2 (en) | 1988-03-25 | 1988-03-25 | Epoxy resin composition for semiconductor encapsulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01242658A JPH01242658A (en) | 1989-09-27 |
JP2539482B2 true JP2539482B2 (en) | 1996-10-02 |
Family
ID=13409911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63069683A Expired - Fee Related JP2539482B2 (en) | 1988-03-25 | 1988-03-25 | Epoxy resin composition for semiconductor encapsulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2539482B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2837478B2 (en) * | 1989-12-28 | 1998-12-16 | 日東電工株式会社 | Optical semiconductor device |
CN1036348C (en) * | 1994-06-02 | 1997-11-05 | 中国科学院化学研究所 | Epoxy resin composite for plastic sealing semiconductor device and its preparing method |
-
1988
- 1988-03-25 JP JP63069683A patent/JP2539482B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01242658A (en) | 1989-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0372570A (en) | Resin composition | |
JP2002322243A (en) | Method of production for epoxy resin composition and semiconductor device | |
JPH0418445A (en) | Epoxy resin composition and cured product thereof | |
JP2539482B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP3111819B2 (en) | Method for producing epoxy resin composition and epoxy resin composition | |
JP4618056B2 (en) | Epoxy resin composition for semiconductor encapsulation and method for producing the same | |
JPH08245214A (en) | Silica fine powder, method for producing the same, and epoxy resin composition for semiconductor encapsulation | |
JP3408585B2 (en) | Spherical silica powder and epoxy resin composition | |
JP3919162B2 (en) | Epoxy resin composition and semiconductor device | |
JPH0645740B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP2595854B2 (en) | Epoxy resin composition and cured product thereof | |
JPH0249329B2 (en) | ||
JP2845702B2 (en) | Epoxy resin composition and method for producing the same | |
JP4538882B2 (en) | Epoxy resin composition and semiconductor device | |
JP2001019833A (en) | Epoxy resin composition and semiconductor device | |
JPH02245055A (en) | Sealing resin composition | |
JPH0811778B2 (en) | Epoxy resin molding material for semiconductor encapsulation | |
JP2000169675A (en) | Epoxy resin composition and semiconductor apparatus | |
JPH0528243B2 (en) | ||
JPS58173850A (en) | Semiconductor device | |
JPH093169A (en) | Sealing resin composition and device for sealing electronic part | |
JP3317473B2 (en) | Epoxy resin composition | |
JP2003213094A (en) | Epoxy resin composition and semiconductor device | |
JPS61101524A (en) | Sealing resin composition | |
JPH0739471B2 (en) | Sealing resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |