JP2514948B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP2514948B2 JP2514948B2 JP62040243A JP4024387A JP2514948B2 JP 2514948 B2 JP2514948 B2 JP 2514948B2 JP 62040243 A JP62040243 A JP 62040243A JP 4024387 A JP4024387 A JP 4024387A JP 2514948 B2 JP2514948 B2 JP 2514948B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- semiconductor device
- manufacturing
- cap layer
- heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims 2
- 239000012212 insulator Substances 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 15
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘテロ接合を用いた半導体装置の製造方法
に係り、特に寄生抵抗の小さい電界効果トランジスタに
好適な製造方法に関する。The present invention relates to a method for manufacturing a semiconductor device using a heterojunction, and particularly to a method suitable for a field effect transistor having a small parasitic resistance.
近年、AlGaAs/GaAs系超格子については、光応用シス
テム技術研究組合光技術共同研究所第13回研究懇談会資
料(1986年)第25頁から第33頁において論じられている
ように、Siイオン注入して熱処理するとヘテロ界面が壊
れ超格子が無秩序化することが知られている。これは、
Siの拡散によりGaとAlが相互拡散することにより生ずる
ものと考えられている。In recent years, regarding AlGaAs / GaAs superlattices, as discussed on pages 25 to 33 of the material of the 13th research conference of Optical Technology Joint Research Institute, Optical Application System Technology Research Association It is known that when injected and heat-treated, the hetero interface is broken and the superlattice is disordered. this is,
It is considered to be caused by mutual diffusion of Ga and Al due to the diffusion of Si.
上記従来技術は、Siイオン注入を用いるためHEMT(H
igh Electron Mobility Transistor)やMESFETに応
用する場合、所謂短チヤネル効果を生じ易いという問題
があった。Since the above-mentioned conventional technique uses Si ion implantation, HEMT ( H
When applying the igh E lectron M obility T ransistor) or MESFET, there is liable to occur a so-called short channel effect.
本発明の目的は、イオン注入を用いることなくヘテロ
界面を無秩序化することにより、寄生抵抗を低減化し、
尚かつ短チヤネル効果の少ないトランジスタを作製する
ことにある。The object of the present invention is to reduce the parasitic resistance by disordering the hetero interface without using ion implantation,
In addition, it is to manufacture a transistor with a short channel effect.
上記目的は、半導体基板上にヘテロ接合を含む複数層
の半導体層を積層する工程を有する半導体装置の製造方
法において、基板半導体材料とは熱膨張率の異なるキャ
ップ層パターンを、予め定められた前記ヘテロ接合を無
秩序化する半導体領域上に選択的に形成する工程と、前
記キャップ層パターンの下部に積層された半導体層に熱
歪みを与えて前記パターンに対応したヘテロ接合領域を
選択的に無秩序化する熱処理工程とを有して成る半導体
装置の製造方法により、達成される。The above-mentioned object is a method for manufacturing a semiconductor device having a step of laminating a plurality of semiconductor layers including a heterojunction on a semiconductor substrate, wherein a cap layer pattern having a different coefficient of thermal expansion from that of the substrate semiconductor material is predetermined. A step of selectively forming a heterojunction on a disordered semiconductor region, and thermally distorting the semiconductor layer stacked under the cap layer pattern to selectively disorder the heterojunction region corresponding to the pattern And a heat treatment step for producing the semiconductor device.
第1表に示すように、熱膨張係数がGaAs基 板と著しくキャップ層パターンを形成する材料には、絶
縁膜材料としてSiO2,Si3N4,半導体材料としては、Siが
ある。キャップ層パターンの形成は、これらの材料をGa
As基板上に積層したAlGaAs/GaAsヘロ接合層上部に成膜
し、これを周知のパターン形成方法、例えばドライエッ
チング等により選択的にエッチングすることにより容易
に形成することができる。その後、AsH3中で熱処理を施
すと、このキャップ層パターンが下部の積層結晶に熱歪
みを生じさせる結果、このパターン領域下のヘテロ界面
は無秩序化するが、基板上が露出している部分(キャッ
プ層パターンを除去した領域下)では、ヘテロ界面は保
持され、選択的な無秩序化が達成される。As shown in Table 1, the coefficient of thermal expansion is based on GaAs Materials that form a cap layer pattern remarkably with the plate include SiO 2 and Si 3 N 4 as insulating film materials and Si as semiconductor materials. To form the cap layer pattern, these materials are Ga
It can be easily formed by forming a film on the AlGaAs / GaAs hero junction layer laminated on the As substrate and selectively etching it by a known pattern forming method, for example, dry etching. After that, when heat treatment is performed in AsH 3 , the cap layer pattern causes thermal strain in the laminated crystal below, and as a result, the hetero interface under the pattern region is disordered, but the exposed portion on the substrate ( Under the region where the cap layer pattern is removed), the hetero interface is retained and selective disordering is achieved.
第1表に示したGaAs基板と著しく熱膨張率の異なる材
料をキャップ層パターンとして、ヘテロ接合を有する半
導体層の上に形成し、熱処理を施すと、基板側に熱歪を
生ずる。第2図には、AlGaAs/GaAsヘテロ接合層の上部
に選択的に、熱膨張係数の異なる材料(SiO2,SiN,Si)
をキャップ層として形成しAsH3中で熱処理した場合の2
次イオン質量分析によるGaおよびSiの深さ方向のプロフ
ァイルをそれぞれ特性曲線12および13に示す。第2図の
特性曲線10は、基板最上層のGaAs上にキャップ層パター
ンを形成しない場合のAlのプロフアイルでGaAsとの界面
は急峻である。第2図の特性曲線11はキャップ層として
SiO2の形成された領域であり、Alが拡散しヘテロ界面が
無秩序化している。このため、選択的な無秩序化がなさ
れており、しかも従来技術のようにイオンを注入してい
ないため、特性曲線13に示したようにSiの拡散はほとん
ど生じることがない。ここで無秩序化されたという意味
は、曲線11に見られるようにAlが隣接するGaAs層のGaと
相互拡散することにより、本来Alを含まないGaAs層にAl
が存在するようになり、結晶構造は変化しないが結晶層
の組成が変化したということである。この無秩序化に基
づいてエネルギー・ギャップが変化することにより寄生
抵抗の低減や短チャネル効果の少ない半導体装置が実現
するものである。When a material having a coefficient of thermal expansion significantly different from that of the GaAs substrate shown in Table 1 is formed as a cap layer pattern on a semiconductor layer having a heterojunction and heat treatment is performed, thermal strain occurs on the substrate side. In Fig. 2 , materials with different thermal expansion coefficients (SiO 2 , SiN, Si) are selectively formed on the AlGaAs / GaAs heterojunction layer.
2 when formed as a cap layer and heat treated in AsH 3
Characteristic curves 12 and 13 show profiles of Ga and Si in the depth direction by secondary ion mass spectrometry. The characteristic curve 10 in FIG. 2 is a profile of Al in the case where the cap layer pattern is not formed on the uppermost GaAs substrate, and the interface with GaAs is steep. Characteristic curve 11 in Fig. 2 shows the cap layer
This is a region where SiO 2 is formed, Al is diffused, and the hetero interface is disordered. Therefore, selective disordering is performed, and since ions are not implanted as in the prior art, almost no Si diffusion occurs as shown in the characteristic curve 13. Here, disordered means that Al inter-diffuses with Ga of the adjacent GaAs layer, as shown in curve 11, to cause Al in the GaAs layer that does not originally contain Al.
Is present, the crystal structure does not change, but the composition of the crystal layer has changed. By changing the energy gap based on this disorder, a semiconductor device with reduced parasitic resistance and less short channel effect is realized.
以下、本発明の実施例を第1図の断面工程図により説
明する。この実施例では、GaAs/AlGaAs系ヘテロ接合結
晶の場合について説明するが、他のInP,InGaAs,InAlAs,
InGaAsP等の化合物半導体材料においても実施可能であ
る。An embodiment of the present invention will be described below with reference to the sectional process drawing of FIG. In this embodiment, the case of a GaAs / AlGaAs heterojunction crystal is described, but other InP, InGaAs, InAlAs,
It can also be applied to compound semiconductor materials such as InGaAsP.
第1図(a)〜(c)に実施例の製造工程を示す。ま
ず、第1図(a)において半絶縁性GaAs基板1上に分子
線エピタキシー法又は、有機金属化学気相成長法により
アンドープGaAs層2(膜厚0.5μm),アンドープAlGaA
s3(60Å),n型AlGaAs層4(300Å),n型GaAs層5(200
Å)を積層する。1 (a) to 1 (c) show the manufacturing process of the embodiment. First, in FIG. 1A, an undoped GaAs layer 2 (film thickness 0.5 μm) and an undoped AlGaA are formed on a semi-insulating GaAs substrate 1 by molecular beam epitaxy or metal organic chemical vapor deposition.
s3 (60 Å), n-type AlGaAs layer 4 (300 Å), n-type GaAs layer 5 (200
Å) is laminated.
次に第1図(b)に移り、基板全面に熱分解化学気相
成長法又はスパツタリング法又はプラズマ誘起化学気相
成長法によりキャップ層としてSiO2膜又はSiN膜6を堆
積する。次にホトレジストをマスクとして上記キャップ
層6を反応性イオンエツチングにより選択的に除去し、
トランジスタのオーミツク領域のみに残し、図示のよう
なキャップ層パターン6を形成する。次にAsH3+H2混合
ガスの雰囲気中で900℃,30秒の熱処理を施す。この時、
キャップ層6下部のヘテロ接合部7のみが選択的に無秩
序化され、キャップ層6に被われていない部分5aのヘテ
ロ接合7aは保持される。Next, moving to FIG. 1B, a SiO 2 film or SiN film 6 is deposited as a cap layer on the entire surface of the substrate by a thermal decomposition chemical vapor deposition method, a sputtering method or a plasma induced chemical vapor deposition method. Next, using the photoresist as a mask, the cap layer 6 is selectively removed by reactive ion etching,
The cap layer pattern 6 as shown in the drawing is formed by leaving it only in the ohmic region of the transistor. Next, heat treatment is performed at 900 ° C. for 30 seconds in an AsH 3 + H 2 mixed gas atmosphere. This time,
Only the heterojunction portion 7 below the cap layer 6 is selectively disordered, and the heterojunction 7a of the portion 5a not covered by the cap layer 6 is retained.
次に第1図(c)に移り、無秩序化した領域7にAuGe
合金をリフトオフにより形成しソース・ドレイン電極8
とし、Alを同様にヘテロ接合が保持されている領域7aに
リフトオフ法により形成し、ゲート電極9とし、変調ド
ープの電界効果トランジスタが完成する。Next, moving to Fig. 1 (c), AuGe is formed in the disordered region 7.
Source / drain electrodes 8 formed by lift-off of alloy
Then, Al is similarly formed in the region 7a where the heterojunction is held by the lift-off method to form the gate electrode 9 to complete the modulation-doped field effect transistor.
このようにして完成した電界効果トランジスタと従来
の無秩序化しないトランジスタとの特性比較をしたとこ
ろ、従来のものは寄生抵抗がトランジスタ幅w=10μm
当たり60Ωであったものが、本実施例では20Ωと減少し
た。また、短チャンネル効果としては、従来のゲート長
がLg=1μmから0.5μmに縮小した場合、閾値電圧Vth
が0.4V程度負の値にシフトしたが、本実施例では0.05V
程度と著しく小さくなった。When the characteristics of the field-effect transistor completed in this way and the conventional non-disordered transistor are compared, the conventional one has a parasitic resistance of transistor width w = 10 μm.
Although it was 60 Ω per unit, it decreased to 20 Ω in this example. Also, as a short channel effect, when the conventional gate length is reduced from Lg = 1 μm to 0.5 μm, the threshold voltage Vth
Shifted to a negative value of about 0.4V, but in this embodiment it is 0.05V.
It became extremely small.
本発明によれば、イオン注入を行なうことなくヘテロ
界面を選択的に無秩序化することができるので、オーミ
ツク領域の寄生抵抗を低減化し、なおかつ、短チヤネル
効果のないトランジスタを作製することができる。According to the present invention, the hetero interface can be selectively disordered without performing ion implantation, so that the parasitic resistance in the ohmic region can be reduced and a transistor without a short channel effect can be manufactured.
第1図(a)(b)(c)は、本発明の一実施例の断面
図、第2図は、2次イオン質量分析による、Ga,Al,Siの
深さ方向プロフアイル図である。 1……半絶縁性GaAs基板、2……アンドープGaAs、3…
…アンドープAlGaAs、4……n型AlGaAs、5……n型Ga
As、6……絶縁膜、7……ヘテロ界面。1 (a), (b) and (c) are sectional views of an embodiment of the present invention, and FIG. 2 is a depth profile profile of Ga, Al and Si by secondary ion mass spectrometry. . 1 ... Semi-insulating GaAs substrate, 2 ... Undoped GaAs, 3 ...
… Undoped AlGaAs, 4 …… n-type AlGaAs, 5 …… n-type Ga
As, 6 ... Insulating film, 7 ... Hetero interface.
Claims (5)
半導体層を積層する工程を有する半導体装置の製造方法
において、基板半導体材料とは熱膨張率の異なるキャッ
プ層パターンを、予め定められた前記ヘテロ接合を無秩
序化する半導体領域上に選択的に形成する工程と、前記
キャップ層パターンの下部に積層された半導体層に熱歪
みを与えて前記パターンに対応したヘテロ接合領域を選
択的に無秩序化する熱処理工程とを有して成る半導体装
置の製造方法。1. A method of manufacturing a semiconductor device, comprising a step of laminating a plurality of semiconductor layers including a heterojunction on a semiconductor substrate, wherein a cap layer pattern having a coefficient of thermal expansion different from that of a substrate semiconductor material is predetermined. Selectively forming the heterojunction on a disordered semiconductor region, and thermally distorting the semiconductor layer stacked under the cap layer pattern to selectively disorder the heterojunction region corresponding to the pattern. A method for manufacturing a semiconductor device, comprising:
に、上記キャップ層パターンを絶縁体、金属および半導
体の少なくとも1種からなる薄膜パターンで構成して成
る特許請求の範囲第1項記載の半導体装置の製造方法。2. The semiconductor device according to claim 1, wherein the semiconductor is composed of a compound semiconductor, and the cap layer pattern is composed of a thin film pattern made of at least one of an insulator, a metal and a semiconductor. Manufacturing method.
よびSiの少なくとも1種からなる薄膜パターンで構成し
て成る特許請求の範囲第1項記載の半導体装置の製造方
法。3. The method for manufacturing a semiconductor device according to claim 1, wherein the cap layer pattern is a thin film pattern made of at least one of SiO 2 , Si 3 N 4 and Si.
ック領域のみを、選択的に無秩序化する工程を有して成
る特許請求の範囲第1項乃至第3項何れか記載の半導体
装置の製造方法。4. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of selectively disordering only the ohmic region of the active element having the heterojunction. .
して成る特許請求の範囲第1項乃至第4項何れか記載の
半導体装置の製造方法。5. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a field effect transistor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040243A JP2514948B2 (en) | 1987-02-25 | 1987-02-25 | Method for manufacturing semiconductor device |
US07/884,878 US5258631A (en) | 1987-01-30 | 1992-05-18 | Semiconductor device having a two-dimensional electron gas as an active layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040243A JP2514948B2 (en) | 1987-02-25 | 1987-02-25 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63208277A JPS63208277A (en) | 1988-08-29 |
JP2514948B2 true JP2514948B2 (en) | 1996-07-10 |
Family
ID=12575269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62040243A Expired - Lifetime JP2514948B2 (en) | 1987-01-30 | 1987-02-25 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2514948B2 (en) |
-
1987
- 1987-02-25 JP JP62040243A patent/JP2514948B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63208277A (en) | 1988-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5334865A (en) | MODFET structure for threshold control | |
JPH0684957A (en) | High electron mobility field effect semiconductor device | |
US5466955A (en) | Field effect transistor having an improved transistor characteristic | |
US5900641A (en) | Field effect semiconductor device having a reduced leakage current | |
JP2770340B2 (en) | Semiconductor device, insulated gate field effect transistor, and schottky gate field effect transistor | |
JP2514948B2 (en) | Method for manufacturing semiconductor device | |
US5311045A (en) | Field effect devices with ultra-short gates | |
JPS6353711B2 (en) | ||
US6570194B2 (en) | Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same | |
JP2708492B2 (en) | Method for manufacturing semiconductor device | |
JPH07105473B2 (en) | Method for manufacturing MES FET | |
JPH0685286A (en) | Field effect transistor and its manufacture | |
JP2616634B2 (en) | Field effect transistor | |
JP4120899B2 (en) | Compound semiconductor field effect transistor and method of manufacturing the same | |
JPH0523497B2 (en) | ||
JP3407926B2 (en) | Doping method, semiconductor device, resistance layer, method of manufacturing field effect transistor, method of manufacturing semiconductor circuit element, method of manufacturing electric conduction region, method of forming quantum wire, method of forming quantum box, quantum wire transistor, semiconductor integrated circuit Manufacturing method, electron wave interference device | |
KR960006112B1 (en) | Junction field effect transistor and the manufacturing method thereof | |
JP2503594B2 (en) | Semiconductor integrated device and manufacturing method thereof | |
JP2658513B2 (en) | Field effect transistor | |
JPH06310536A (en) | Field-effect transistor and its manufacture | |
JPH0322541A (en) | Epitaxial wafer | |
JPH02191344A (en) | Manufacture of field-effect transistor | |
JPH0614551B2 (en) | Thermionic emission type static induction transistor | |
JPH05102198A (en) | Pseudo-one-dimensional field-effect transistor and its manufacture | |
JPH0656857B2 (en) | Method for manufacturing field effect transistor |