JP2511667B2 - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2511667B2 JP2511667B2 JP62043552A JP4355287A JP2511667B2 JP 2511667 B2 JP2511667 B2 JP 2511667B2 JP 62043552 A JP62043552 A JP 62043552A JP 4355287 A JP4355287 A JP 4355287A JP 2511667 B2 JP2511667 B2 JP 2511667B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- lithium
- positive electrode
- charge
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 29
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 57
- 239000007774 positive electrode material Substances 0.000 claims description 20
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 claims description 8
- 230000006866 deterioration Effects 0.000 description 17
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 10
- 239000011149 active material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910018871 CoO 2 Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム二次電池に係わり、さらに詳しくは
その正極活物質の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lithium secondary battery, and more particularly to improvement of a positive electrode active material thereof.
従来、リチウム二次電池用の正極活物質としては、二
硫化チタン、二硫化モリブデンなどの硫化物が提案され
ており、すでに一部実用化されている。Conventionally, sulfides such as titanium disulfide and molybdenum disulfide have been proposed as positive electrode active materials for lithium secondary batteries, and some have already been put into practical use.
しかし、これらの硫化物系活物質は、電池電圧が3V以
下で、エネルギー密度の高い電池を得る観点からは、電
池電圧が低いという問題がある。However, these sulfide-based active materials have a battery voltage of 3 V or less, and have a problem of low battery voltage from the viewpoint of obtaining a battery with high energy density.
そこで、よりエネルギー密度が高い電池を得るため、
LiCoO2を正極活物質として用いることが検討されている
(例えば、米国特許4,567,031号明細書)。Therefore, to obtain a battery with higher energy density,
The use of LiCoO 2 as a positive electrode active material has been studied (eg, US Pat. No. 4,567,031).
しかしながら、このLiCoO2を二次電池に用いた場合の
充放電サイクルと容量の劣化の関係は、いまだまったく
報告されていない。However, the relationship between the charge / discharge cycle and the deterioration of capacity when this LiCoO 2 is used in a secondary battery has not been reported at all.
そこで、本発明者らは、このLiCoO2を正極活物質とし
て用いたリチウム二次電池の充放電サイクル特性を調べ
たところ、充放電サイクルに伴う容量劣化が大きいとい
う欠点があった。Then, the present inventors examined the charge / discharge cycle characteristics of the lithium secondary battery using this LiCoO 2 as the positive electrode active material, and found that the capacity deterioration associated with the charge / discharge cycle was large.
本発明は、LiCoO2系活物質を用いた電池が充放電サイ
クルに伴って容量劣化を引き起こすという問題点を解決
し、充放電サイクル特性の良好なリチウム二次電池を提
供することを目的とする。An object of the present invention is to solve the problem that a battery using a LiCoO 2 based active material causes capacity deterioration with charge / discharge cycles, and to provide a lithium secondary battery with good charge / discharge cycle characteristics. .
本発明は、LiCoO2に少量のNiを固溶化させることによ
り、充放電サイクルに伴う容量劣化を抑制したものであ
る。According to the present invention, a small amount of Ni is dissolved in LiCoO 2 so as to suppress capacity deterioration due to charge / discharge cycles.
すなわち、本発明は、正極活物質として、式(I) Li(Co1-yNiy)O2 (I) (式中、yは0.1≦y≦0.4)で示される状態に合成され
たリチウム(コバルト−ニッケル)酸化物から充電によ
りリチウムの一部を抜いた式(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.1≦y≦0.4である)
で示されるリチウム(コバルト−ニッケル)酸化物を用
いることにより、充放電サイクルに伴う容量劣化を抑制
して、充放電サイクル特性の良好なリチウム二次電池を
提供したものである。また、上記式(II)で示されるリ
チウム(コバルト−ニッケル)酸化物を正極活物質とし
て用いた電池では、電池電圧が約3.5〜4.6V(Liが0〜
1の範囲で変動するので、それに伴って電池電圧も変動
する)と硫化物系活物質を用いた電池より高く、高エネ
ルギー密度が期待できる。That is, according to the present invention, as the positive electrode active material, lithium synthesized in a state represented by the formula (I) Li (Co 1-y N y ) O 2 (I) (where y is 0.1 ≦ y ≦ 0.4). Formula (II) Li x (Co 1-y N y ) O 2 (II) obtained by removing a part of lithium from (cobalt-nickel) oxide by charging (where x is 0 <x <1 and y Is 0.1 ≦ y ≦ 0.4)
By using the lithium (cobalt-nickel) oxide represented by the above, it is possible to suppress the capacity deterioration due to the charge / discharge cycle and provide a lithium secondary battery having good charge / discharge cycle characteristics. Further, in the battery using the lithium (cobalt-nickel) oxide represented by the above formula (II) as the positive electrode active material, the battery voltage is about 3.5 to 4.6 V (Li is 0 to 0).
Since the voltage fluctuates in the range of 1, the battery voltage also fluctuates accordingly, and a higher energy density can be expected compared to a battery using a sulfide-based active material.
本発明では、上記のようにLiCoO2に少量のNiを固溶化
させることにより充放電サイクルに伴う容量劣化を抑制
するが、このように少量のNiを固溶化させたLix(Co1-y
Niy)O2が充放電サイクルに伴う容量の劣化を抑制する
のは、次の理由によるものと考えられる。In the present invention, as described above, a small amount of Ni is dissolved in LiCoO 2 to suppress the capacity deterioration due to the charge / discharge cycle, but Li x (Co 1-y
The reason why Ni y ) O 2 suppresses the deterioration of the capacity due to the charge / discharge cycle is considered to be as follows.
まず、二次電池において、充放電サイクルに伴って容
量が劣化する主な原因を考えると、次の3点が挙げられ
る。First, considering the main causes of the capacity deterioration of the secondary battery with charge / discharge cycles, the following three points can be mentioned.
活物質粒子の微粉化などの物理的変化。 Physical changes such as pulverization of active material particles.
活物質の結晶構造、結合状態、組成などの変化。 Changes in the crystal structure, bonding state, composition, etc. of the active material.
活物質と電解液の反応(例えば、LixCoO2では、酸
素が解離し、放出されて電解液を酸化またはポリマー化
する反応)。A reaction between an active material and an electrolytic solution (for example, in Li x CoO 2 , oxygen is dissociated and released to oxidize or polymerize the electrolytic solution).
ところが、Niを添加したLix(Co1-yNiy)O2では、LiC
oO2に比べて開路電圧が低下し、この電圧低下が酸化力
を小さくし、その結果、電解液との反応性が低下して、
充放電サイクルに伴う容量の劣化が抑制されるものと考
えられる。つまり、Lix(Co1-yNiy)O2が充放電サイク
ルに伴う容量劣化を抑制するのは、前記の容量劣化原
因の生起を抑制することによるものと考えられる。However, in Li x (Co 1-y Ni y ) O 2 containing Ni, LiC
The open circuit voltage is lower than that of oO 2 , and this lowering of the voltage reduces the oxidizing power, and as a result, the reactivity with the electrolytic solution decreases,
It is considered that the capacity deterioration due to the charge / discharge cycle is suppressed. That is, it is considered that Li x (Co 1 -y Ni y ) O 2 suppresses the capacity deterioration due to the charge / discharge cycle by suppressing the occurrence of the capacity deterioration cause.
ただし、Niの添加量が多くなると、かえって充放電サ
イクル特性が低下する。この原因は、現在のところ必ず
しも明確ではないが、Niの多い領域では前記の変化に
よる劣化が大きくなるものと考えられる。However, if the addition amount of Ni is increased, the charge / discharge cycle characteristics are rather deteriorated. The cause of this is not clear at present, but it is considered that the deterioration due to the above-mentioned change becomes large in the Ni-rich region.
本発明においては、Lix(Co1-yNiy)O2で示されるリ
チウム(コバルト−ニッケル)酸化物の式中のxの値を
0<x<1にするが、これは充放電により、Liを上記範
囲で自由に可変でき、いずれの値のものでも使用するこ
とができるからである。そして、yの値に関しては、前
述のような関係もあって、yの値を0.1≦y≦0.4にする
が、これはyの値が0.1より小さい場合は、固溶化するN
i量が少なすぎて、充放電サイクルに伴う容量劣化を抑
制する効果が充分に発揮されず、一方、yの値が0.4よ
り大きくなると、Ni量の増加により、前述のように劣化
原因が大きくなって、かえって充放電サイクル特性が
低下することになるからである。In the present invention, the value of x in the formula of the lithium (cobalt-nickel) oxide represented by Li x (Co 1-y Ni y ) O 2 is set to 0 <x <1 by the charging and discharging. , Li can be freely changed within the above range, and any value can be used. With respect to the value of y, the value of y is set to 0.1 ≦ y ≦ 0.4 due to the above-mentioned relationship. However, when the value of y is smaller than 0.1, N is solidified.
Since the amount of i is too small, the effect of suppressing capacity deterioration due to charge / discharge cycles is not sufficiently exerted. On the other hand, when the value of y is larger than 0.4, the cause of deterioration is large as described above due to the increase in the amount of Ni. This is because the charge / discharge cycle characteristics are rather deteriorated.
つぎに実施例をあげて本発明をさらに詳細に説明す
る。Next, the present invention will be described in more detail with reference to examples.
実施例1 Li(Co1-yNiy)O2を合成した、yは0.3である。これ
を式(I)にしたがって表示するとLi(Co0.7Ni0.3)O2
である。Example 1 Li (Co 1-y Ni y ) O 2 was synthesized, and y was 0.3. When this is displayed according to formula (I), Li (Co 0.7 Ni 0.3 ) O 2
Is.
合成は以下に示すように行われた。まず、CoとNiをCo
イオンおよびNiイオンを含む水溶液中から炭酸塩(通常
の条件下では、塩基性炭酸塩になる)として共沈させて
均一な混合物とし、このようにして得られた沈澱物を水
洗後、アルゴン中140℃で乾燥したのち、Li2CO3と混合
し、空気中(N2/O2=80/20)、920℃で3時間加熱して
反応させ、エア・クエンチ(加熱した試料を25℃の大気
中に取り出して急冷する方法)することによってLi(Co
0.7Ni0.3)O2の合成を行った。試料の加熱にあたって試
料を収容するのに使用したボートはAl2O3を主成分とす
るものである。The synthesis was performed as shown below. First, Co and Ni
Co-precipitate as a carbonate (under normal conditions it becomes a basic carbonate) from an aqueous solution containing Ni and Ni ions to form a uniform mixture, wash the precipitate thus obtained with water and then in argon. After drying at 140 ℃, it is mixed with Li 2 CO 3 and heated in air (N 2 / O 2 = 80/20) at 920 ℃ for 3 hours to react, air quench (heated sample at 25 ℃ Of the Li (Co)
0.7 Ni 0.3 ) O 2 was synthesized. The boat used to store the sample for heating the sample is mainly composed of Al 2 O 3 .
上記CoとNiの水溶液中での共沈は以下のように行っ
た。The coprecipitation of Co and Ni in the aqueous solution was performed as follows.
ニッケルとコバルトとをモル比で30:70〔Ni/Co=30/7
0(モル比)〕の割合でNiCl・6H2OとCoCl2・6H2Oを炭酸
ガスを飽和した純水に溶解し、この溶液にNaHCO3水溶液
を加え、放置して共沈させた。The molar ratio of nickel and cobalt is 30:70 [Ni / Co = 30/7
0 was dissolved NiCl · 6H 2 O and CoCl 2 · 6H 2 O (mole ratio)] in pure water saturated with carbon dioxide gas, the solution NaHCO 3 aqueous solution was added, the coprecipitated standing.
上記のようにして合成されたLi(Co0.7Ni0.3)O2を用
い、これに電子伝導助剤としてりん片状黒鉛を10重量%
の割合で加え、混合したのち、3t/cm2で加圧成形して、
直径9mm、厚さ約0.3mmの成形体を作製した。得られた成
形体を正極として用い第1図に示す電池(モデルセル)
を作製した。Using Li (Co 0.7 Ni 0.3 ) O 2 synthesized as described above, 10% by weight of flake graphite was added as an electron conduction aid.
After adding and mixing at the ratio of, the mixture is pressure-molded at 3 t / cm 2 ,
A molded body having a diameter of 9 mm and a thickness of about 0.3 mm was produced. Using the obtained molded body as a positive electrode, the battery shown in FIG. 1 (model cell)
Was produced.
第1図において、A部は上記電池の要部拡大図であ
り、図中、1は負極で、この負極1はLi0.1V2O5粉末に1
0重量%のりん片状黒鉛と5重量%のポリテトラフルオ
ロエチレンとを加え、混合したのち加圧成形した直径16
mm、厚さ約2mmの成形体よりなるものである。そして、
負極活物質として使用されたLi0.1V2O5はヘキサン中でV
2O5にη−ブチルリチウム(η−C4H9Li)を反応させて
合成したものである。2は正極で、この正極2は前記の
ようにして合成されたLi(Co0.7Ni0.3)O2から充電によ
りリチウムの一部を抜いたLix(Co0.7Ni0.3)O2(ただ
し、式中のxは0<x<1である)を正極活物質とする
加圧成形体よりなるものである。In FIG. 1, part A is an enlarged view of a main part of the battery, in which 1 is a negative electrode, and this negative electrode 1 is 1% Li 0.1 V 2 O 5 powder.
0% by weight of scaly graphite and 5% by weight of polytetrafluoroethylene were added, mixed and pressure-molded. Diameter 16
mm, and a thickness of about 2 mm. And
Li 0.1 V 2 O 5 used as the negative electrode active material
It was synthesized by reacting 2 O 5 with η-butyllithium (η-C 4 H 9 Li). 2 is a positive electrode, and this positive electrode 2 is Li x (Co 0.7 Ni 0.3 ) O 2 (where the formula is Li (Co 0.7 Ni 0.3 ) O 2 synthesized as described above, in which a part of lithium is extracted by charging. And x is 0 <x <1) as a positive electrode active material.
3はプロピレンカーボネートと1,2−ジメトキシエタ
ンとの容量比2:1の混合溶媒にLiBF4を1mol/溶解して
なる溶解液で、4はポリプロピレン不織布からなるセパ
レータである。5はLi0.1V2O5を活物質とする加圧成形
体よりなるリファレンス極であり、6はポリプロピレン
製の容器で、7は白金のリード線をスポット溶接した白
金エキスパンド網よりなる集電体である。3 is a solution obtained by dissolving 1 mol / LiBF 4 of a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 2: 1, and 4 is a separator made of polypropylene nonwoven fabric. Reference numeral 5 is a reference electrode made of a pressure-molded body using Li 0.1 V 2 O 5 as an active material, 6 is a polypropylene container, and 7 is a collector made of a platinum expanded mesh spot-welded with a platinum lead wire. Is.
そして、この電池の正極の理論電気量は充放電領域を
Lix(Co1-yNiy)O2(0<x<1)として15mAh、負極の
理論電気量は充放電領域をLixV2O5(0≦x≦1)とし
て70mAhであり、負極の電気量の方が正極の電気量より
過剰となるように設定されている。And the theoretical quantity of electricity of the positive electrode of this battery is in the charge / discharge region.
Li x (Co 1-y N y ) O 2 (0 <x <1) is 15 mAh, and the theoretical amount of electricity of the negative electrode is 70 mAh when the charge / discharge region is Li x V 2 O 5 (0 ≦ x ≦ 1). The amount of electricity of the negative electrode is set to be more than the amount of electricity of the positive electrode.
実施例2 Li(Co1-yNiy)O2のyの値を0.1に合成し、このLi(C
o0.9Ni0.1)O2から充電によりリチウムの一部を抜いたL
ix(Co0.9Ni0.1)O2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。Example 2 The y value of Li (Co 1-y Ni y ) O 2 was synthesized to 0.1, and this Li (C
o 0.9 Ni 0.1 ) L with some lithium removed from O 2 by charging
A battery was prepared in the same manner as in Example 1 except that i x (Co 0.9 Ni 0.1 ) O 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
実施例3 Li(Co1-yNiy)O2のyの値を0.2に合成し、このLi(C
o0.8Ni0.2)O2から充電によりリチウムの一部を抜いたL
ix(Co0.8Ni0.2)O2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。Example 3 The y value of Li (Co 1-y Ni y ) O 2 was synthesized to be 0.2, and this Li (C
o 0.8 Ni 0.2 ) L with some lithium removed from O 2 by charging
A battery was prepared in the same manner as in Example 1 except that i x (Co 0.8 Ni 0.2 ) O 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
実施例4 Li(Co1-yNiy)O2のyの値を0.4に合成し、このLi(C
o0.6Ni0.4)O2から充電によりリチウムの一部を抜いたL
ix(Co0.6Ni0.4)O2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。Example 4 The y value of Li (Co 1-y Ni y ) O 2 was synthesized to 0.4, and this Li (C
o 0.6 Ni 0.4 ) L with the lithium partially removed from O 2
A battery was produced in the same manner as in Example 1 except that i x (Co 0.6 Ni 0.4 ) O 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
比較例1 Li(Co1-yNiy)O2のyの値を0、つまりLiCoO2を合成
し、このLiCoO2から充電によりリチウムの一部を抜いた
LixCoO2(ただし、式中のxは0<x<1である)を正
極活物質として用いたほかは実施例1と同様にして電池
を作製した。Comparative Example 1 The y value of Li (Co 1-y Ni y ) O 2 was 0, that is, LiCoO 2 was synthesized, and a part of lithium was extracted from this LiCoO 2 by charging.
A battery was produced in the same manner as in Example 1 except that Li x CoO 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
比較例2 Li(Co1-yNiy)O2のyの値を0.5に合成し、このLi(C
o0.5Ni0.5)O2から充電によりリチウムの一部を抜いたL
ix(Co0.5Ni0.5)O2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。Comparative Example 2 The y value of Li (Co 1-y Ni y ) O 2 was synthesized to 0.5, and this Li (C
o 0.5 Ni 0.5 ) L with some lithium removed from O 2 by charging
A battery was produced in the same manner as in Example 1 except that i x (Co 0.5 Ni 0.5 ) O 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
比較例3 Li(Co1-yNiy)O2のyの値を0.6に合成し、このLi(C
o0.4Ni0.6)O2から充電によりリチウムの一部を抜いたL
ix(Co0.4Ni0.6)O2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。Comparative Example 3 The y value of Li (Co 1-y Ni y ) O 2 was synthesized to be 0.6, and this Li (C
o 0.4 Ni 0.6 ) L with some lithium removed from O 2 by charging
A battery was made in the same manner as in Example 1 except that i x (Co 0.4 Ni 0.6 ) O 2 (where x in the formula is 0 <x <1) was used as the positive electrode active material.
つぎに、上記実施例1〜4お電池および比較例1〜3
の電池の充放電を行った。充放電は、充電電流、放電電
流とも0.318A(正極の単位断面積あたり0.5mA/cm2)で
1.0〜0Vの電圧間で行われた。Next, the batteries of Examples 1 to 4 and Comparative Examples 1 to 3 above.
The battery was charged and discharged. Charge and discharge are 0.318A (0.5mA / cm 2 per unit area of positive electrode) for both charging and discharging currents.
Done between 1.0 and 0V voltage.
第1表に上記実施例1〜4の電池および比較例1〜3
の電池の充放電サイクル試験における充放電可能なサイ
クル数を示す。ただし、第1表に示す充放電可能なサイ
クル数とは、比較的充放電初期の段階(具体的にはサイ
クル5回目)の充放電容量値の50%に容量が劣化した時
を終点として決めたものである。また、第1表において
は、Ni量の変化に伴うサイクル数の変化を明らかにする
ために、Ni量(つまり、yの値)の順に配列して表示し
ている。したがって、表示順序は前記した実施例や比較
例の記載順序とは異なる順序になっている。The batteries of Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1.
The number of cycles that can be charged / discharged in the charge / discharge cycle test of the battery is shown. However, the number of cycles that can be charged and discharged shown in Table 1 is determined as the end point when the capacity deteriorates to 50% of the charge and discharge capacity value at the relatively early stage of charging and discharging (specifically, the fifth cycle). It is a thing. In addition, in Table 1, in order to clarify the change in the number of cycles with the change in the Ni content, they are arranged and displayed in the order of the Ni content (that is, the value of y). Therefore, the display order is different from the order described in the examples and comparative examples described above.
第1表に示すように、実施例1〜4の電池は、Niを含
まないLiCoO2を正極活物質として用いた比較例1の電池
に比べて、充放電可能なサイクル数が大きく、Niを添加
して固溶化させた効果が認められる。しかし、Niが多く
なった比較例2や比較例3の電池では、かえってサイク
ル数が小さくなった。これは前述したように、Ni量が多
くなったために充放電によって活物質の結晶構造、結合
状態あるいは組成などの変化が大きくなったためである
と考えられる。 As shown in Table 1, the batteries of Examples 1 to 4 had a larger number of chargeable and dischargeable cycles than the battery of Comparative Example 1 in which LiCoO 2 containing no Ni was used as the positive electrode active material. The effect of addition and solid solution is recognized. However, in the batteries of Comparative Example 2 and Comparative Example 3 in which the amount of Ni was large, the number of cycles was rather small. It is considered that this is because, as described above, the change in the crystal structure, bonding state, composition, etc. of the active material became large due to charge / discharge due to the increase in the amount of Ni.
以上の結果より、Niの固溶量が10〜40mol%の組成領
域、つまりLix(Co1-yNiy)O2(0.1≦y≦0.4)でサイ
クル劣化が小さく、正極活物質として好ましいものであ
ることが明らかになった。From the above results, Ni is a solid solution amount in a composition region of 10 to 40 mol%, that is, Li x (Co 1-y N y ) O 2 (0.1 ≦ y ≦ 0.4), and cycle deterioration is small, which is preferable as a positive electrode active material. It became clear that it was a thing.
なお、上記実施例では、充放電サイクルに伴う容量劣
化を調べるのに、モデルセルによる試験を行ったが、こ
れは実装電池では負極などの正極活物質以外の電池構成
部材の影響が現れ、正極活物質の相違による充放電サイ
クルに伴う容量劣化の差異が正確に現れにくくなるから
である。In the above example, a model cell test was conducted to investigate the capacity deterioration due to charge / discharge cycles.This shows that in the mounted battery, the influence of battery constituent members other than the positive electrode active material such as the negative electrode appears, This is because it is difficult for the difference in capacity deterioration due to the charge / discharge cycle due to the difference in active material to appear accurately.
また、上記実施例等では、Li(Co1-yNiy)O2を炭酸塩
によるCoとNiの共沈により合成したが、Niを含む酸化物
(例えばNiO)とCoを含む酸化物(例えばCoO)とをボー
ルミルなどにより混合したのち、リチウムの炭酸塩また
はリチウムの酸化物と混合し、加熱することによって合
成してもよい。また、NiCoO2などのCoとNiの両者を含む
酸化物を用いて合成してもよい。In addition, in the above examples and the like, Li (Co 1-y Ni y ) O 2 was synthesized by coprecipitation of Co and Ni with a carbonate, but an oxide containing Ni (for example, NiO) and an oxide containing Co ( For example, CoO) may be mixed by a ball mill or the like, then mixed with lithium carbonate or lithium oxide, and heated to synthesize. Alternatively, it may be synthesized using an oxide containing both Co and Ni, such as NiCoO 2 .
そして、本発明では、正極活物質として用いるリチウ
ム(コバルト−ニッケル)酸化物をLix(Co1-yNiy)O2
と表現したが、遷移金属(CoNi)の部分が上記式におけ
る化学量論比より若干過剰(約5%以下の範囲で)にな
ることがある。また、酸化物では、酸化欠陥によりO2が
O2−δ(δ≦0.3)となることがあるが、これらも本
発明の範疇に含まれるものである。In the present invention, the lithium (cobalt-nickel) oxide used as the positive electrode active material is Li x (Co 1-y Ni y ) O 2
However, the transition metal (CoNi) portion may be slightly in excess of the stoichiometric ratio in the above formula (within a range of about 5% or less). Further, in oxides, O 2 may become O 2−δ (δ ≦ 0.3) due to oxidation defects, and these are also included in the scope of the present invention.
また、実施例では、電解液としてプロピレンカーボネ
ートと1,2−ジメトキシエタンとの混合溶媒にLiBF4を溶
解したものを用いたが、それに代えて、他の電解液、例
えばプロピレンカーボネートにLiBF4を溶解した電解液
を用いてもよい。Further, in the examples, as the electrolytic solution was used a solution of LiBF 4 dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, instead, other electrolytic solution, for example LiBF 4 in propylene carbonate. A dissolved electrolytic solution may be used.
以上は、CoにNiを固溶化させる場合を示したが、これ
にTi、V、Cr、Feなどの遷移金属を加えた2種類以上の
金属をCoに固溶化させる場合も同様の効果が期待でき
る。The above shows the case where Ni is dissolved in Co, but the same effect is expected when two or more kinds of metals obtained by adding transition metals such as Ti, V, Cr, and Fe to Co are dissolved in Co. it can.
以上説明したように、本発明では、LiCoO2に10〜40mo
l%のNiを固溶させた式(I) Li(Co1-yNiy)O2 (I) (式中、yは0.1≦y≦0.4)で示される状態に合成され
たリチウム(コバルト−ニッケル)酸化物から充電によ
りリチウムの一部を抜いた式(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.1≦y≦0.4である)
で示されるリチウム(コバルト−ニッケル)酸化物を正
極活物質として用いることにより、LiCoO2を正極活物質
として用いる場合に比べて、充放電サイクル特性を向上
させることができた。As described above, in the present invention, 10 to 40mo
Li (Co 1-y Ni y ) O 2 (I) in which 1% of Ni is solid-solved (wherein y is 0.1 ≦ y ≦ 0.4), lithium (cobalt is synthesized) -(Ni) oxide (II) Li x (Co 1-y Ni y ) O 2 (II) in which a part of lithium is removed by charging (where x is 0 <x <1 and y is 0.1 ≦ y ≦ 0.4)
By using the lithium (cobalt-nickel) oxide represented by as the positive electrode active material, the charge-discharge cycle characteristics could be improved as compared with the case where LiCoO 2 was used as the positive electrode active material.
第1図は本発明に係るリチウム二次電池の一例を示す断
面図である。 1……負極、2……正極FIG. 1 is a sectional view showing an example of a lithium secondary battery according to the present invention. 1 ... Negative electrode, 2 ... Positive electrode
Claims (1)
成されたリチウム(コバルト−ニッケル)酸化物から充
電によりリチウムの一部を抜いた式(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.1≦y≦0.4である)
で示されるリチウム(コバルト−ニッケル)酸化物を正
極活物質として用いたことを特徴とするリチウム二次電
池。1. A lithium secondary battery is synthesized into a state represented by the formula (I) Li (Co 1-y Ni y ) O 2 (I) (where y is 0.1 ≦ y ≦ 0.4). (II) Li x (Co 1-y Ni y ) O 2 (II) (where x is 0 <x <1) in which a part of lithium is removed from the lithium (cobalt-nickel) oxide by charging. , Y is 0.1 ≦ y ≦ 0.4)
A lithium secondary battery characterized by using a lithium (cobalt-nickel) oxide represented by as a positive electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043552A JP2511667B2 (en) | 1987-02-25 | 1987-02-25 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043552A JP2511667B2 (en) | 1987-02-25 | 1987-02-25 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63211565A JPS63211565A (en) | 1988-09-02 |
JP2511667B2 true JP2511667B2 (en) | 1996-07-03 |
Family
ID=12666915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62043552A Expired - Lifetime JP2511667B2 (en) | 1987-02-25 | 1987-02-25 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2511667B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63299056A (en) * | 1987-05-29 | 1988-12-06 | Sony Corp | Organic electrolyte secondary battery |
JP3067165B2 (en) * | 1990-06-20 | 2000-07-17 | ソニー株式会社 | Positive electrode active material LiCoO2 for lithium secondary battery, method for producing the same, and lithium secondary battery |
US5362650A (en) * | 1993-10-04 | 1994-11-08 | Hach Company | Ultra-low range chlorine determination |
US5503930A (en) * | 1994-03-07 | 1996-04-02 | Tdk Corporation | Layer structure oxide |
CN100417595C (en) * | 2002-11-19 | 2008-09-10 | 比亚迪股份有限公司 | Method for preparing lithium transition metal composite oxides from carbonate precursors |
JP5626382B2 (en) | 2013-01-30 | 2014-11-19 | 住友金属鉱山株式会社 | Nickel-cobalt composite hydroxide and method for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62256371A (en) * | 1986-04-30 | 1987-11-09 | Sony Corp | Organic electrolyte battery |
-
1987
- 1987-02-25 JP JP62043552A patent/JP2511667B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62256371A (en) * | 1986-04-30 | 1987-11-09 | Sony Corp | Organic electrolyte battery |
Also Published As
Publication number | Publication date |
---|---|
JPS63211565A (en) | 1988-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5626635A (en) | Processes for making positive active material for lithium secondary batteries and secondary batteries therefor | |
JP4183374B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4965068B2 (en) | Electrochemical active material for positive electrode of electrochemical lithium battery | |
JP5143852B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH10507031A (en) | Method for synthesizing alkali metal intercalated manganese oxide material and electrode for electrochemical cell using this material | |
JPH1167209A (en) | Lithium secondary battery | |
US20020022183A1 (en) | Positive electrode active material for rechargeable lithium-ion battery | |
JPH11513181A (en) | Rechargeable lithium battery electrode | |
EP0743692A1 (en) | A material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material | |
JP4055241B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH11507171A (en) | Positive electrode material for rechargeable electrochemical cell and method of making the same | |
JPH06342673A (en) | Lithium secondary battery | |
JP2699176B2 (en) | Lithium secondary battery | |
JP2511667B2 (en) | Lithium secondary battery | |
JPH1064516A (en) | Lithium battery | |
US6207325B1 (en) | Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells | |
JP2584123B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0878006A (en) | Lithium secondary battery | |
JP2595967B2 (en) | Hydrogen storage electrode | |
JPH10112316A (en) | Nonaqueous electrolyte secondary battery | |
JP3429328B2 (en) | Lithium secondary battery and method of manufacturing the same | |
JP3229531B2 (en) | Non-aqueous electrolyte secondary battery | |
US6465131B1 (en) | Lithium secondary cell with a stannous electrode material | |
JPH04282560A (en) | Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery | |
JPH1064542A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |