[go: up one dir, main page]

JP2595967B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2595967B2
JP2595967B2 JP62119411A JP11941187A JP2595967B2 JP 2595967 B2 JP2595967 B2 JP 2595967B2 JP 62119411 A JP62119411 A JP 62119411A JP 11941187 A JP11941187 A JP 11941187A JP 2595967 B2 JP2595967 B2 JP 2595967B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
phase
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62119411A
Other languages
Japanese (ja)
Other versions
JPS63284758A (en
Inventor
孝治 蒲生
良夫 森脇
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62119411A priority Critical patent/JP2595967B2/en
Priority to KR1019880005646A priority patent/KR920010422B1/en
Priority to DE3855987T priority patent/DE3855987T2/en
Priority to DE3855988T priority patent/DE3855988T2/en
Priority to EP92109664A priority patent/EP0504950B1/en
Priority to EP19920109661 priority patent/EP0503686A3/en
Priority to DE88107839T priority patent/DE3881762T2/en
Priority to EP92109663A priority patent/EP0504949B1/en
Priority to US07/194,568 priority patent/US4946646A/en
Priority to EP88107839A priority patent/EP0293660B1/en
Priority to DE3855001T priority patent/DE3855001T2/en
Priority to EP92109665A priority patent/EP0522297B1/en
Publication of JPS63284758A publication Critical patent/JPS63284758A/en
Application granted granted Critical
Publication of JP2595967B2 publication Critical patent/JP2595967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池とくに正極にニッケル極、
空気極、酸化銀極などを用いるアルカリ蓄電池などの負
極として用い、電気化学的に水素の吸蔵・脱蔵が可能な
水素吸蔵電極に関する。
The present invention relates to an alkaline storage battery, particularly a nickel electrode for a positive electrode,
The present invention relates to a hydrogen storage electrode that can be used as a negative electrode of an alkaline storage battery using an air electrode, a silver oxide electrode, or the like, and is capable of electrochemically storing and removing hydrogen.

従来の技術 汎用の蓄電池としては鉛蓄電池、ニッケルーカドミウ
ム蓄電池などがよく知られているが、これらの蓄電池は
重量または体積当りのエネルギー密度が比較的小さい。
そこで、昨今、新しく電気化学的に水素を多量に吸蔵・
脱蔵が可能な合金を負極とし、正極にはニッケル酸化物
を用いたエネルギー密度の大きいニッケルー水素蓄電池
が提案されている。このような蓄電池の負極としては、
比較的良好なものにTi−Ni系,La(またはMm)−Ni系,Ca
−Ni系など、およびこれらをベースにした置換体があ
る。
2. Description of the Related Art Lead-acid batteries, nickel-cadmium batteries and the like are well known as general-purpose batteries, but these batteries have a relatively low energy density per weight or volume.
Therefore, recently, a large amount of hydrogen has been newly stored electrochemically.
A nickel-hydrogen storage battery having a large energy density using a devolatilizable alloy as a negative electrode and a nickel oxide for a positive electrode has been proposed. As a negative electrode of such a storage battery,
Ti-Ni, La (or Mm) -Ni, Ca
-Ni-based and the like, and their substitutions.

発明が解決しようとする問題点 しかしながら、Ti−Ni系合金は、電気化学的な充電、
放電によって比較的高い放電容量を有しているものの、
充放電サイクルを繰返すうちにTiの安定相を形成し、電
池としての寿命性能に主たる問題を有し、またLa(また
はMm)−Ni系合金は電気化学的な水素吸蔵量が充分でな
いため比較的放電容量が小さく、また温度変化に対する
性能の変動が大きく、合金の価格が高いことなどに問題
がある。そしてCa−Ni系合金は、充放電サイクルの初期
には高い放電容量を有しているものの、Ti−Ni系と同様
に、充放電を繰返すことによって大幅な性能の低下をき
たすという欠点がある。本発明は、上述の問題点に鑑み
て為されたもので、特に高容量で長寿命な蓄電池を得る
ことが出来る水素吸蔵電極を提供することを目的とす
る。
Problems to be Solved by the Invention However, Ti-Ni alloys are electrochemically charged,
Although it has a relatively high discharge capacity due to discharge,
As the charge / discharge cycle is repeated, a stable phase of Ti is formed, and there is a major problem with the life performance of the battery. In addition, La (or Mm) -Ni alloys do not have sufficient electrochemical hydrogen storage capacity for comparison. However, there is a problem in that the typical discharge capacity is small, the performance varies greatly with temperature changes, and the price of the alloy is high. And although the Ca-Ni-based alloy has a high discharge capacity at the beginning of the charge-discharge cycle, it has the disadvantage that, like the Ti-Ni-based alloy, the performance is greatly reduced by repeating the charge and discharge. . The present invention has been made in view of the above problems, and has as its object to provide a hydrogen storage electrode capable of obtaining a high-capacity, long-life storage battery.

問題点を解決するための手段 本発明の水素吸蔵電極は、一般式AB2(ただし、AはT
iおよびZrからなる群より選ばれる少なくとも1種で、H
f、Ta、Y、Ca、Mg、La、Ce、Mm、Nb、Nd、およびMoか
らなる群より選ばれる少なくとも1種を含むことができ
る。BはNiで、V、Cr、Mn、Fe、Co、Cu、Zn、Al、Nb、
Mo、およびWからなる群より選ばれる少なくとも1種を
含むことができる。Mmは希土類元素の混合物を示す。ま
た、AとBとは異種元素である。)で表され、合金相が
実質的に金属間化合物のラーバス相に属し、その結晶構
造が立方対称のC15型で、かつ結晶格子定数aが6.92〜
7.70Åである合金からなる。
Means for Solving the Problems The hydrogen storage electrode of the present invention has a general formula AB 2 (where A is T
at least one selected from the group consisting of i and Zr,
f, Ta, Y, Ca, Mg, La, Ce, Mm, Nb, Nd, and at least one selected from the group consisting of Mo. B is Ni, V, Cr, Mn, Fe, Co, Cu, Zn, Al, Nb,
At least one selected from the group consisting of Mo and W can be included. Mm indicates a mixture of rare earth elements. A and B are different elements. ), Wherein the alloy phase substantially belongs to the Labus phase of the intermetallic compound, the crystal structure of which is C15 type with cubic symmetry, and the crystal lattice constant a is 6.92 to
Consists of an alloy that is 7.70Å.

また、本発明の水素吸蔵電極は、一般式AB2(ただ
し、AはTiおよびZrからなる群より選ばれる少なくとも
1種、BはMoで、V、Mn、Fe、Co、Cu、Zn、Al、Nb、お
よびWからなる群より選ばれる少なくとも1種を含むこ
とができる。A、B併せて3元素以上からなる。)で表
され、合金相が実質的に金属間化合物のラーバス相に属
し、その結晶構造が立方対称のC15型で、かつ結晶格子
定数aが6.92〜7.70Åである合金からなる。
Further, the hydrogen storage electrode of the present invention has a general formula AB 2 (where A is at least one selected from the group consisting of Ti and Zr, B is Mo, V, Mn, Fe, Co, Cu, Zn, Al , Nb, and W. At least one element selected from the group consisting of A and B. The alloy phase substantially belongs to the Labus phase of the intermetallic compound. And an alloy having a cubic symmetry C15 crystal structure and a crystal lattice constant a of 6.92 to 7.70 °.

作用 一般式AB2で表され、AおよびBは前記元素から選ば
れた少なくとも1種を含む合金で、結晶構造が立方対称
のC15型ラーバス相に属し、その結晶格子定数aが6.92
〜7.70Åである合金は、前記従来の水素吸蔵合金に比べ
て、単位格子間に占める水素原子の数が多いため水素の
吸蔵量および脱蔵量が大きく、水素吸蔵・脱蔵サイクル
を繰返しても安定な水素化物相や酸化物相を生成しない
ため、これを主たる材料として備えた水素吸蔵電極は高
容量を長期にわたって維持しうる。
Represented by acting general formula AB 2, alloys A and B containing at least one selected from the elements, the crystal structure belongs to the C15-type Rabasu phase of cubic symmetry, the crystal lattice constant a 6.92
Alloys of up to 7.70Å, compared to the conventional hydrogen storage alloy, the number of hydrogen atoms occupying between unit cells is large, so the amount of hydrogen storage and desorption is large, and the hydrogen storage / desorption cycle is repeated. Does not generate a stable hydride phase or oxide phase, so that a hydrogen storage electrode provided with such a main material can maintain a high capacity for a long time.

実施例 本発明者らは、立方対称の結晶構造を有するC15型ラ
ーバス相合金のアルカリ蓄電池用水素吸蔵電極としての
性能を種々検討した結果、その中の一部のもの、即ち結
晶格子定数aが6.92〜7.70Aのものが優れた特性を有す
ることを見出した。
Example The present inventors have conducted various studies on the performance of a C15-type Labus phase alloy having a cubic symmetric crystal structure as a hydrogen storage electrode for an alkaline storage battery, and found that some of them, that is, a crystal lattice constant a Those of 6.92-7.70A were found to have excellent properties.

ラーバス相に属するC15型合金は立方晶のMgCu2型の結
晶構造を有し、水素吸蔵材としての性能は本発明者らが
先に特公昭56−31341号公報で示したように、結晶格子
定数aを主たる因子とする。ところが、水素ガス相で優
れた合金をそのまま水素吸蔵電極として用いた場合、電
解液中での電気化学的安定性が問題となるばかりでな
く、充電電気量は充分大きいが放電電気量は小さいもの
があるため、水素吸蔵電極としては必ずしも適当である
とは言えなかった。
The C15 type alloy belonging to the Labus phase has a cubic MgCu 2 type crystal structure, and the performance as a hydrogen storage material is, as shown by the present inventors in Japanese Patent Publication No. 56-31341, a crystal lattice. Let the constant a be the main factor. However, when an excellent alloy in the hydrogen gas phase is used as it is as the hydrogen storage electrode, not only is the electrochemical stability in the electrolytic solution a problem, but the charge amount is sufficiently large but the discharge amount is small. Therefore, it was not necessarily suitable as a hydrogen storage electrode.

ところが、C15型の中で特別な範囲の前記合金だけは
水素吸蔵電極として実用的に優れたものであることがわ
かった。
However, it was found that only the alloys in the special range among the C15 type were practically excellent as hydrogen storage electrodes.

以下に具体的な実施例で説明する。 Hereinafter, specific examples will be described.

市販のTi,Zr,Cr,Mn,Ni,Mo,V,Cuなどを原材料とし、ア
ルゴンアーク溶解炉またはアルゴン高周波炉で溶解し、
次表に示すような組成の合金を得た。溶解した合金試料
の一部は、合金組成、結晶構造、結晶格子定数、均質性
などの合金分析用に使用し、残りは水素ガスでの水素吸
蔵量測定用(主としてP(圧力)−C(組成)−T(温
度)測定用)および電極性能評価用に用いた。
Using commercially available Ti, Zr, Cr, Mn, Ni, Mo, V, Cu, etc. as raw materials, melt in an argon arc melting furnace or argon high-frequency furnace,
An alloy having the composition shown in the following table was obtained. A part of the melted alloy sample is used for alloy analysis such as alloy composition, crystal structure, crystal lattice constant, homogeneity, etc., and the rest is used for hydrogen storage amount measurement with hydrogen gas (mainly P (pressure) -C ( (Composition) -T (temperature) measurement) and electrode performance evaluation.

分析の結果から、表中の合金はすべて、主たる合金相
がC15型ラーバス相であることを確認した。合金No.1〜
4はC15型ではあるが結晶格子定数が本発明に係る6.92
Åより小さいものの、また合金No.5〜7は逆に結晶格子
定数が7.70Åより大きいものの代表例である。また、合
金No.9、10、11は合金組成中にNiを含有するもの、合金
No.8は合金組成中にMoを含有するものである。前記表中
に示した合金について、アルカリ蓄電池用負極としての
性能を評価した。
From the results of the analysis, it was confirmed that the main alloy phase of all the alloys in the table was the C15 type Lavas phase. Alloy No. 1 ~
4 is C15 type, but the crystal lattice constant is 6.92 according to the present invention.
Alloy Nos. 5 to 7 are smaller than {} and, conversely, have a crystal lattice constant larger than 7.70 °. Alloy Nos. 9, 10, and 11 contain Ni in the alloy composition.
No. 8 contains Mo in the alloy composition. With respect to the alloys shown in the above table, the performance as a negative electrode for an alkaline storage battery was evaluated.

まず、溶解によって得られた合金を200メッシュ以下
の粒子に粉砕し、この合金粉末約5gを、結着剤としての
ポリエチレン粉末0.5gと、導電剤としてのカーボニルニ
ッケル粉末2gと共に充分混合撹拌し、これを、導電性芯
材としてのニッケルスクリーン(線径0.2mm,16メッシ
ュ)を中心にプレスにより加圧し板状に成形した。これ
を120℃、1時間真空中に置き、加熱してポリエチレン
を溶融し水素吸蔵電極とした。
First, the alloy obtained by melting is pulverized into particles of 200 mesh or less, about 5 g of this alloy powder, 0.5 g of polyethylene powder as a binder, and 2 g of carbonyl nickel powder as a conductive agent are thoroughly mixed and stirred, This was pressed into a plate shape by pressing around a nickel screen (0.2 mm wire diameter, 16 mesh) as a conductive core material. This was placed in a vacuum at 120 ° C. for 1 hour, heated to melt the polyethylene, and used as a hydrogen storage electrode.

蓄電池用負極としての評価のために、市販の焼結式ニ
ッケル極を正極に選び、ポリアミド不繊布をセパレータ
とし、比重1.30の苛性カリ水溶液に水酸化リチウムを20
g/1加えた溶液を電解液として、一定電流での充電と放
電を繰り返した。この時の充電電気量は、500mA×4時
間であり、放電は250mAで行い、0.8V以下をカットし
た。結果の一例である放電容量を前記の表および第1
図、第2図に示す。第1図は結晶格子定数aを横軸に最
大放電容量を100とした場合の相対量(%)を縦軸にと
ったもの、また第2図は横軸に充・放電サイクル数
(∞)を、縦軸に1g当りの放電容量を従来例(Ti2Ni,La
Ni5)と共に示したものである。尚、図中の番号は前記
表の合金No.と一致している。No.8はMoを含有し、No.11
はNiを含有している。
For evaluation as a negative electrode for a storage battery, a commercially available sintered nickel electrode was selected as a positive electrode, a nonwoven polyamide fabric was used as a separator, and lithium hydroxide was added to an aqueous solution of caustic potassium having a specific gravity of 1.30.
Using the solution added with g / 1 as an electrolyte, charging and discharging at a constant current were repeated. The amount of electricity charged at this time was 500 mA × 4 hours, and the discharge was performed at 250 mA, and the voltage was cut to 0.8 V or less. The discharge capacity as an example of the results is shown in the above table and the first.
FIG. 2 and FIG. FIG. 1 shows the crystal lattice constant a on the horizontal axis and the relative amount (%) when the maximum discharge capacity is 100 on the vertical axis, and FIG. 2 shows the number of charge / discharge cycles (∞) on the horizontal axis. And the vertical axis shows the discharge capacity per 1 g of the conventional example (Ti 2 Ni, La
Ni 5 ). The numbers in the figure correspond to the alloy numbers in the above table. No. 8 contains Mo and No. 11
Contains Ni.

一般式AB2で表される各種合金のなかで、AサイトにT
iまたはZrを含んでいないか、またはBサイトにNiまた
はMoを含んでいない合金は、前記充放電条件でサイクル
を繰り返すうちに電気化学的活性を失い、充放電サイク
ル寿命が短く、実用的特性上不十分であった。また、2
元素系合金では、開放系での負極単極の特性は良好であ
るが、ニッケル正極と組み合わせた密閉系電池の特性評
価では、充放電サイクルの繰り返しによる水素ガスの発
生のため電池内圧が20気圧以上に上昇し、性能が低下し
た。そのため、3元素以上の多元系合金とすることが好
ましい。
Among various alloys represented by the general formula AB 2, T to A site
Alloys that do not contain i or Zr or do not contain Ni or Mo at the B site lose electrochemical activity during repeated cycling under the above charge and discharge conditions, have a short charge and discharge cycle life, and have practical characteristics Was insufficient. Also, 2
In the case of elemental alloys, the characteristics of the negative electrode single electrode in the open system are good, but in the characteristics evaluation of the sealed battery combined with the nickel positive electrode, the internal pressure of the battery was 20 atm due to the generation of hydrogen gas due to repeated charge and discharge cycles. The performance increased and the performance decreased. Therefore, it is preferable to use a multi-element alloy of three or more elements.

表および第1図から明らかなように前記の本発明に係
る元素で構成され、C15型ラーバス相を有し結晶格子定
数aが6.92〜7.70Åである合金は放電容量が大きく、ア
ルカリ蓄電池用負極材として優れていることがわかる。
一方、aが6.92Åより小さい合金は放電容量が小さく、
またaが7.70Åより大きい合金も放電容量が小さい。こ
の理由は前者は充電過程での水素吸蔵量そのものが少な
いためであり、後者は水素吸蔵量は多いが、安定な水素
化物を形成するため容易には水素を出すことができず、
いわゆる放電効率が小さいからである。実用的観点から
放電容量を評価すれば、第1図に示したように250mAh/g
程度は必要で、この値は本発明合金電極の最大放電容量
の75%以上となる。
As is clear from the table and FIG. 1, an alloy composed of the above-described elements according to the present invention, having a C15-type Lavas phase and having a crystal lattice constant a of 6.92 to 7.70 ° has a large discharge capacity and a negative electrode for an alkaline storage battery. It turns out that it is excellent as a material.
On the other hand, alloys with a smaller than 6.92Å have a smaller discharge capacity,
Alloys with a larger than 7.70 ° also have a small discharge capacity. The reason is that the former has a small amount of hydrogen storage during the charging process, and the latter has a large amount of hydrogen storage, but cannot easily release hydrogen to form a stable hydride,
This is because the so-called discharge efficiency is small. When the discharge capacity is evaluated from a practical viewpoint, as shown in FIG. 1, 250 mAh / g
The degree is necessary, and this value is 75% or more of the maximum discharge capacity of the alloy electrode of the present invention.

また、第2図のサイクル寿命特性からわかるように、
従来からあるTi2Ni,LaNi5は劣化が著しいのに対し、本
発明の水素吸蔵電極、特に、Niを含有するもの、および
Moを含有するものは寿命特性が優れていることがわか
る。これは良好な電気化学的触媒性能や耐酸化性能に起
因している。
Also, as can be seen from the cycle life characteristics in FIG.
Conventional Ti 2 Ni, LaNi 5 is significantly degraded, whereas the hydrogen storage electrode of the present invention, in particular, those containing Ni, and
It can be seen that those containing Mo have excellent life characteristics. This is due to good electrochemical catalytic performance and oxidation resistance.

なお本発明は表中に示すもの以外に多くの合金組成が
可能である。この場合、当然主たる合金相がC15型ラー
バス相で格子定数aは6.92〜7.70Åの範囲にある。また
表ではAグループ元素対Bグループ元素の比、A/Bが2
のものを実施例に示したが、金属間化合物AB2を形成す
る組成範囲であれば2でなくてもよいのは当然である。
In the present invention, many alloy compositions other than those shown in the table are possible. In this case, the main alloy phase is naturally a C15-type Labus phase and the lattice constant a is in the range of 6.92 to 7.70 °. In the table, the ratio of group A element to group B element, A / B is 2
Although shown in an embodiment intended, the may not be 2 as long as the composition range forming the intermetallic compound AB 2 is natural.

以上のことから、本発明の合金を使用したアルカリ蓄
電池用水素吸蔵電極は、高容量化が可能であり、また長
寿命であることがわかる。さらに本発明の電極はアルカ
リ蓄電池の電極以外にも、燃料電池の水素極、電気分解
用の電極キャパシタなどに応用することもできる。
From the above, it can be seen that the hydrogen storage electrode for an alkaline storage battery using the alloy of the present invention can have a high capacity and has a long life. Further, the electrode of the present invention can be applied to a hydrogen electrode of a fuel cell, an electrode capacitor for electrolysis, and the like, in addition to an electrode of an alkaline storage battery.

発明の効果 本発明の水素吸蔵電極は、高容量化が可能であり、か
つ反応の可逆性に優れ長寿命化に大きな効果を有してい
る。また、原材料が比較的低価格であるから、産業的価
値が大きく、電極製造技術においても、従来技術で充分
対応できるものである。
Effect of the Invention The hydrogen storage electrode of the present invention can achieve a high capacity, has excellent reversibility of the reaction, and has a great effect on extending the life. In addition, since the raw materials are relatively inexpensive, the industrial value is large, and the conventional technology can sufficiently cope with the electrode manufacturing technology.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の放電容量特性図、第2図は
本発明の実施例の水素吸蔵電極および比較電極のサイク
ル寿命特性図である。
FIG. 1 is a discharge capacity characteristic diagram of one embodiment of the present invention, and FIG. 2 is a cycle life characteristic diagram of a hydrogen storage electrode and a reference electrode of the embodiment of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式AB2(ただし、AはTiおよびZrから
なる群より選ばれる少なくとも1種で、Hf、Ta、Y、C
a、Mg、La、Ce、Mm、Nb、Nd、およびMoからなる群より
選ばれる少なくとも1種を含むことができる。BはNi
で、V、Cr、Mn、Fe、Co、Cu、Zn、Al、Nb、Mo、および
Wからなる群より選ばれる少なくとも1種を含むことが
できる。Mmは希土類元素の混合物を示す。また、AとB
とは異種元素である。)で表され、合金相が実質的に金
属間化合物のラーバス相に属し、その結晶構造が立方対
称のC15型で、かつ結晶格子定数aが6.92〜7.70Åでな
る合金からなる水素吸蔵電極。
1. A compound of the general formula AB 2 wherein A is at least one member selected from the group consisting of Ti and Zr, wherein Hf, Ta, Y, C
It can contain at least one selected from the group consisting of a, Mg, La, Ce, Mm, Nb, Nd, and Mo. B is Ni
And at least one selected from the group consisting of V, Cr, Mn, Fe, Co, Cu, Zn, Al, Nb, Mo, and W. Mm indicates a mixture of rare earth elements. A and B
Is a dissimilar element. ) Wherein the alloy phase substantially belongs to the Labus phase of an intermetallic compound, has a cubic symmetry crystal structure, and has a crystal lattice constant a of 6.92 to 7.70 °.
【請求項2】一般式AB2(ただし、AはTiおよびZrから
なる群より選ばれる少なくとも1種である。BはMoで、
V、Mn、Fe、Co、Cu、Zn、Al、Nb、およびWからなる群
より選ばれる少なくとも1種を含むことができる。A、
B併せて3元素以上からなる。)で表され、合金相が実
質的に金属間化合物のラーバス相に属し、その結晶構造
が立方対称のC15型で、かつ結晶格子定数aが6.92〜7.7
0Åである合金からなる水素吸蔵電極。
2. A general formula AB 2 wherein A is at least one member selected from the group consisting of Ti and Zr.
At least one selected from the group consisting of V, Mn, Fe, Co, Cu, Zn, Al, Nb, and W can be included. A,
B is composed of three or more elements. ), The alloy phase substantially belongs to the Labus phase of the intermetallic compound, the crystal structure is C15 type with cubic symmetry, and the crystal lattice constant a is 6.92 to 7.7.
Hydrogen storage electrode made of 0 ° alloy.
JP62119411A 1987-05-15 1987-05-15 Hydrogen storage electrode Expired - Lifetime JP2595967B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP62119411A JP2595967B2 (en) 1987-05-15 1987-05-15 Hydrogen storage electrode
KR1019880005646A KR920010422B1 (en) 1987-05-15 1988-05-14 Hydrogen Absorption Storage Electrode and Manufacturing Method Thereof
EP88107839A EP0293660B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrodes
EP92109664A EP0504950B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP19920109661 EP0503686A3 (en) 1987-05-15 1988-05-16 Method for making a hydrogen storage electrode
DE88107839T DE3881762T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrodes.
DE3855987T DE3855987T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
US07/194,568 US4946646A (en) 1987-05-15 1988-05-16 Alloy for hydrogen storage electrodes
DE3855988T DE3855988T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
DE3855001T DE3855001T2 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP92109665A EP0522297B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode
EP92109663A EP0504949B1 (en) 1987-05-15 1988-05-16 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119411A JP2595967B2 (en) 1987-05-15 1987-05-15 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63284758A JPS63284758A (en) 1988-11-22
JP2595967B2 true JP2595967B2 (en) 1997-04-02

Family

ID=14760800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119411A Expired - Lifetime JP2595967B2 (en) 1987-05-15 1987-05-15 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2595967B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265060A (en) * 1988-08-30 1990-03-05 Matsushita Electric Ind Co Ltd Hydrogen storage electrode
JP2579072B2 (en) * 1991-03-29 1997-02-05 松下電器産業株式会社 Hydrogen storage alloy electrode
JP3054477B2 (en) * 1991-04-10 2000-06-19 三洋電機株式会社 Hydrogen storage alloy electrode
JP2972847B2 (en) * 1994-06-28 1999-11-08 工業技術院長 Alloy material for hydrogen storage consisting of Ca-Al alloy
JPH09199122A (en) * 1996-01-22 1997-07-31 Toshiba Corp Hydrogen storage alloy and secondary battery
EP0791971B1 (en) * 1996-02-20 2007-06-13 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery and alloy for configuring negative electrode of the same
CN114107740B (en) * 2021-11-16 2022-04-19 厦门钨业股份有限公司 Low-cost high-performance rare earth hydrogen storage alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445608A (en) * 1977-09-19 1979-04-11 Matsushita Electric Ind Co Ltd Hydrogen occlusion material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445608A (en) * 1977-09-19 1979-04-11 Matsushita Electric Ind Co Ltd Hydrogen occlusion material

Also Published As

Publication number Publication date
JPS63284758A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Hydrogen Absorption Storage Electrode and Manufacturing Method Thereof
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS60241652A (en) Electrochemical electrode employing metal hydride
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP3381264B2 (en) Hydrogen storage alloy electrode
JP3123049B2 (en) Hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP2680623B2 (en) Hydrogen storage alloy electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2715434B2 (en) Hydrogen storage alloy electrode
JP2926965B2 (en) Hydrogen storage alloy
JPH0650633B2 (en) Hydrogen storage electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JPH04187733A (en) Hydrogen storage alloy electrode
JPS61176067A (en) Hydrogen occlusion electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2529898B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11