JP2503504B2 - Power supply circuit - Google Patents
Power supply circuitInfo
- Publication number
- JP2503504B2 JP2503504B2 JP62098821A JP9882187A JP2503504B2 JP 2503504 B2 JP2503504 B2 JP 2503504B2 JP 62098821 A JP62098821 A JP 62098821A JP 9882187 A JP9882187 A JP 9882187A JP 2503504 B2 JP2503504 B2 JP 2503504B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- power supply
- node
- reference potential
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Control Of Electrical Variables (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電源回路に関し、特にMOSトランジスタを構
成素子とする集積回路内に設ける電源回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply circuit, and more particularly to a power supply circuit provided in an integrated circuit having MOS transistors as constituent elements.
近年の半導体集積回路の加工精度の向上は、集積度の
向上と共に構成素子の微細化に伴なって電源電圧に対す
る耐圧の低下をひきおこした。このため高い集積度を実
現している半導体集積回路においては内部に電源回路を
有し、その電源回路を同一半導体集積回路上の他の回路
部分の電位供給手段として用いることにより、半導体集
積回路内の特定部分に対し設定された電位以上の電位が
加わらないように構成された回路形式をもつものが多く
見られるようになってきている。The recent improvement in the processing accuracy of semiconductor integrated circuits has caused a reduction in the breakdown voltage against the power supply voltage as the integration degree has improved and the constituent elements have become finer. For this reason, a semiconductor integrated circuit that has achieved a high degree of integration has a power supply circuit inside, and by using that power supply circuit as a potential supply means for other circuit parts on the same semiconductor integrated circuit, It is becoming more common to have a circuit form configured so that a potential higher than the set potential is not applied to a specific portion of the.
第3図は従来もちいられている電源回路の例を示す回
路図であり、第4図は第3図に示す電源回路の電源電位
の変動に対する出力電位の変動を示す特性図である。FIG. 3 is a circuit diagram showing an example of a power supply circuit conventionally used, and FIG. 4 is a characteristic diagram showing a change in output potential with respect to a change in power supply potential of the power supply circuit shown in FIG.
第3図においてトランジスタQ1,Q2,Q3,Q4は、各々ゲ
ートとドレインを共通接続したNチャンネルMOSエンハ
ンスメントトランジスタであり、かつ各トランジスタの
ソース及びドレインを節点N1と接地電位の間で直列接続
している。トランジスタQ1,Q2,Q3,Q4は、各トランジス
タのしきい値の合計を基準電位とする基準電位生成手段
を構成している。In FIG. 3, transistors Q 1 , Q 2 , Q 3 , and Q 4 are N-channel MOS enhancement transistors with their gates and drains connected in common, and the source and drain of each transistor are between node N 1 and ground potential. Are connected in series. Transistors Q 1, Q 2, Q 3 , Q 4 constitute a reference potential generating means for a reference potential on the total of the threshold of each transistor.
トランジスタQ5はPチャンネルMOSエンハンスメント
トランジスタであり、ゲートを接地電位に、ソースを電
源電位に、ドレインを節点N1にそれぞれ接続している。
トランジスタQ6はNチャンネルMOSエンハンスメントト
ランジスタであり、ゲートを節点N1に、ドレインを電源
電位に、ソースを電源回路の出力節点にそれぞれ接続し
ている。Transistor Q 5 is a P-channel MOS enhancement transistor, with its gate connected to ground potential, its source connected to the power supply potential, and its drain connected to node N 1 .
The transistor Q 6 is an N-channel MOS enhancement transistor, and has its gate connected to the node N 1 , its drain connected to the power supply potential, and its source connected to the output node of the power supply circuit.
電源電位がトランジスタQ5のしきい値の絶対値より高
くなると、節点N1はトランジスタQ5がオン状態となるた
めに電源電位となる。電源電位が上昇すると、節点N1の
電位もトランジスタQ5が電源電位と節点N1を導通状態を
保つため上昇する。節点N1の電位がトランジスタQ1,Q2,
Q3,Q4の各トランジスタのしきい値の合計をこえると、
トランジスタQ1,Q2,Q3,Q4はオン状態となり、節点N1の
電位はトランジスタQ1,Q2,Q3,Q4,Q5の各トランジスタの
電流駆動能力で定まる値となる。トランジスタQ5の電流
駆動能力はトランジスタQ1,Q2,Q3,Q4の各トランジスタ
の直列接続による節点N1から接地電位への電流駆動能力
よりきわめて小さく設定されているので、トランジスタ
Q1,Q2,Q3,Q4の各トランジスタのしきい値の合計にほぼ
等しい値を保つ。When the power supply potential becomes higher than the absolute value of the threshold value of the transistor Q 5 , the node N 1 becomes the power supply potential because the transistor Q 5 is turned on. When the power supply potential rises, the potential of the node N 1 also rises because the transistor Q 5 keeps the power supply potential and the node N 1 conductive. The potential of the node N 1 is the transistor Q 1 , Q 2 ,
If the total of the thresholds of the transistors of Q 3 and Q 4 is exceeded,
Transistors Q 1, Q 2, Q 3 , Q 4 are turned on, the potential of the node N 1 becomes a value determined by the transistors Q 1, Q 2, Q 3 , Q 4 , the current driving capability of the transistors of Q 5 . Since the current drive capacity of the transistor Q 5 is set to be much smaller than the current drive capacity from the node N 1 to the ground potential due to the series connection of the transistors Q 1 , Q 2 , Q 3 , and Q 4 ,
The value is kept almost equal to the sum of the threshold values of the transistors Q 1 , Q 2 , Q 3 , and Q 4 .
従って節点N1の電位は電源電位が低い場合には電源電
位によらずトランジスタQ1,Q2,Q3,Q4の各トランジスタ
のしきい値の合計にほぼ等しい値を保つ。Therefore, when the power supply potential is low, the potential of the node N 1 remains substantially equal to the sum of the threshold values of the transistors Q 1 , Q 2 , Q 3 , Q 4 regardless of the power supply potential.
第3図に示す電源回路の出力電位はゲートを節点N1,
ドレインを電源電位とするトランジスタQ6のソース電位
であるので、節点N1の電位よりトランジスタQ6のしきい
値だけ低い電位を出力電位として発生する。従って電源
電位が低い場合には電源電位の変動に応じて変動する出
力電位を出力し、電源電位が1つの基準電圧生成手段に
よりあらかじめ設定された基準電位より高い場合には電
源電位によらずその基準電位に応じた出力電位を出力す
る。すなわち上記のような電源回路は負荷として接続さ
れる回路部分に対し一定電位以上の電位が印加されない
よう保護し、また電源電圧の変動に伴なう特性の変化を
低減させる機能を有している。Node N 1 and the gate is the output potential of the power supply circuit shown in FIG. 3,
Since it is the source potential of the transistor Q 6 whose drain is the power source potential, a potential lower than the potential of the node N 1 by the threshold value of the transistor Q 6 is generated as the output potential. Therefore, when the power supply potential is low, an output potential that fluctuates according to the fluctuation of the power supply potential is output, and when the power supply potential is higher than the reference potential preset by one reference voltage generating means, that output potential is output regardless of the power supply potential. The output potential according to the reference potential is output. That is, the power supply circuit as described above has a function of protecting the circuit portion connected as a load from being applied with a potential higher than a certain potential, and reducing the change in the characteristics due to the fluctuation of the power supply voltage. .
第4図は上記の特性を図示しており、10は節点N1の電
位、20は出力電位をそれぞれ示している。FIG. 4 shows the above characteristics, where 10 is the potential of the node N 1 and 20 is the output potential.
一般にMOSトランジスタを構成素子とする半導体集積
回路においては、MOSトランジスタの絶縁膜中に製造工
程において含有されるイオン等により、使用時に特性変
動もしくは、初期不良が発生する。従って一般にMOSト
ランジスタを構成素子とする半導体集積回路の製造工程
においては、バーンインテストと呼ばれる「高温下で半
導体集積回路に高電位を印加し、特性変動や初期不良の
発生を加速させる」試験が行なわれ、信頼性を確保して
いる。しかしながら上記の電源回路においては、その電
源回路の負荷回路に対し高電位を印加することが困難で
あるので、その負荷回路の不良発生に対する信頼性の確
保がむずかしいという欠点がある。Generally, in a semiconductor integrated circuit including a MOS transistor as a constituent element, characteristics change or initial failure occurs during use due to ions contained in the insulating film of the MOS transistor in the manufacturing process. Therefore, generally, in the manufacturing process of a semiconductor integrated circuit having MOS transistors as constituent elements, a test called “burn-in test,“ applying a high potential to the semiconductor integrated circuit at high temperature to accelerate characteristic fluctuations and initial defects ”” is performed. And ensures reliability. However, in the above-mentioned power supply circuit, it is difficult to apply a high potential to the load circuit of the power supply circuit, so that there is a drawback that it is difficult to secure reliability against the occurrence of defects in the load circuit.
本発明の目的は高電位の印加に耐えるような手段を設
けることによって上記の欠点を改善した電源回路を提供
することにある。It is an object of the present invention to provide a power supply circuit in which the above-mentioned drawbacks have been ameliorated by providing means for withstanding the application of high potential.
上述した従来の電源回路に対し、本発明は出力電位の
安定化による負荷回路の電源電位上昇に対する保護、も
しくは電源電位変動に伴なう特性変動の低減と同時に電
源電位以外の制御手段をもちいることなく、高電位印加
によるバーンインテストを可能とする独創的内容を有す
る。In contrast to the conventional power supply circuit described above, the present invention uses a control means other than the power supply potential at the same time as protection against a rise in the power supply potential of the load circuit due to the stabilization of the output potential, or a reduction in the characteristic variation due to the power supply potential variation. It has an original content that enables a burn-in test by applying a high electric potential without a need.
本発明による電源回路は、それぞれゲートとドレイン
を接続した複数個のNチャンネルMOSトランジスタを連
結して成る第一および第二の基準電位生成手段と、前記
第一および第二の基準電位生成手段を連結する節点にド
レインを,電源電位にソースを,接地電位にゲートをそ
れぞれ接続したPチャンネルMOSトランジスタと、前記
接点にゲートを,電源電位にドレインを,出力端子にソ
ースをそれぞれ接続したNチャンネルMOSトランジスタ
とを有し、前記第一の基準電位生成手段が設定する基準
電位より電源電位が低い場合には電源電位の変動に応じ
て変動する電位を出力し、前記第一の基準電位生成手段
が設定する基準電位より電源電位が高くかつ前記第二の
基準電位生成手段が設定する基準電位より低い場合には
ほぼ一定の電位を出力し、前記第二の基準電位生成手段
が設定する基準電位より電源電位が高い場合には電源電
位の変動に応じて変動する電位を出力するようにして構
成される。A power supply circuit according to the present invention comprises first and second reference potential generating means formed by connecting a plurality of N-channel MOS transistors each having a gate and a drain connected, and the first and second reference potential generating means. A P-channel MOS transistor in which the drain is connected to the connecting node, a source is connected to the power supply potential, and a gate is connected to the ground potential, and an N-channel MOS transistor is connected to the contact, the gate is connected to the power supply potential, and the output terminal is connected to the source. A first reference potential generating means, the first reference potential generating means outputs a potential that fluctuates according to the fluctuation of the power source potential when the power source potential is lower than the reference potential set by the first reference potential generating means. When the power supply potential is higher than the reference potential to be set and lower than the reference potential set by the second reference potential generating means, a substantially constant potential is output, Serial constructed so as to output a potential which varies as a function of fluctuations in the power source potential when the power supply potential higher than the reference potential is a second reference potential generating means sets.
以下、本発明について図面を参照ながら説明する。 Hereinafter, the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す回路図であり、第2
図は第1図に示す回路の電源電位変動に対する出力電位
の変動を示す特性図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.
The figure is a characteristic diagram showing the variation of the output potential with respect to the variation of the power source potential of the circuit shown in FIG.
第1図に示す電源回路は従来の電源回路(第3図参
照)に対し電源電位と節点N1の間に第2の基準電圧発生
手段1がつけ加えられている。同図において節点N1の電
位は第3図に示す従来の電源回路と同様に、電源電位が
低い場合には電源電位と等しく、電源電位がトランジス
タQ1,Q2,Q3,Q4のしきい値の合計より高くなるとトラン
ジスタQ1,Q2,Q3,Q4,Q5の電流駆動能力の差によって上記
の値の合計よりやや高い値を保つ。The power supply circuit shown in FIG. 1 has a second reference voltage generating means 1 added between the power supply potential and the node N 1 in the conventional power supply circuit (see FIG. 3). In the same figure, the potential of the node N 1 is equal to the power supply potential when the power supply potential is low, and the power supply potential of the transistors Q 1 , Q 2 , Q 3 , Q 4 is the same as in the conventional power supply circuit shown in FIG. When the threshold voltage is higher than the sum of the threshold values, the value is kept slightly higher than the sum of the above values due to the difference in the current driving capability of the transistors Q 1 , Q 2 , Q 3 , Q 4 and Q 5 .
ここで電源電位がさらに上昇し、電源電位とトランジ
スタQ1,Q2,Q3,Q4の各トランジスタのしきい値の合計と
の差電位がトランジスタQ7,Q8,Q9,Q10の各トランジスタ
のしきい値の合計より大きくなると、トランジスタQ1,Q
2,Q3,Q4,Q5,Q7,Q8,Q9,Q10はすべてオン状態となる。節
点N1の電位は電源電位と節点N1の間に直列接続されたト
ランジスタQ7,Q8,Q9,Q10による電流駆動能力と接地電位
と節点N1との間に直列接続されたトランジスタQ1,Q2,
Q3,Q4による電流駆動能力との比率で定まる値となる
が、上記の比率は電源電位の上昇に応じて節点N1の電位
が上昇することが可能な比率に設定する。Here, the power supply potential further rises, and the potential difference between the power supply potential and the sum of the threshold values of the transistors Q 1 , Q 2 , Q 3 , and Q 4 becomes the transistors Q 7 , Q 8 , Q 9 , and Q 10. larger the than the sum of the threshold value of each transistor, the transistor Q 1, Q
2 , Q 3 , Q 4 , Q 5 , Q 7 , Q 8 , Q 9 , and Q 10 are all turned on. The potential of the node N 1 is connected in series between the power supply potential and the transistor Q 7 connected in series between the node N 1, Q 8, Q 9 , Q 10 according to the current driving capability and a ground potential and the node N 1 Transistor Q 1 , Q 2 ,
Although the value is determined by the ratio with the current driving capability of Q 3 and Q 4 , the above ratio is set to a ratio at which the potential of the node N 1 can rise in accordance with the rise of the power supply potential.
従って節点N1の電位は、電源電位トランジスタQ1,Q2,
Q3,Q4の各トランジスタのしきい値の合計より低い場合
には電源電位となり、電源電位がそのしきい値の合計よ
り高い場合にはそのしきい値電圧よりやや高い値を保
ち、さらに電源電位とそのしきい値の合計との差電位が
トランジスタQ7,Q8,Q9,Q10の各トランジスタのしきい値
の合計より高い場合には電源電位の上昇に応じてその電
位が上昇する。第1図に示す電源回路の出力電位はゲー
トを節点N1,ドレイン電源電位となるトランジスタQ6に
より、節点N1の電位より常にトランジスタQ6のしきい値
分だけ低い電位となる。Therefore, the potential of the node N 1 is the power supply potential transistors Q 1 , Q 2 ,
If it is lower than the sum of the thresholds of the transistors of Q 3 and Q 4 , it becomes the power supply potential. If the power supply potential is higher than the sum of the thresholds, it keeps a value slightly higher than the threshold voltage. its potential in response to an increase in the power supply potential is higher than the sum of the threshold of each transistor of the power supply potential and the potential difference is the transistor Q 7 and the sum of the threshold, Q 8, Q 9, Q 10 is To rise. The output potential node N 1 and the gate of the power supply circuit shown in FIG. 1, the transistor Q 6 serving as a drain supply potential, always a threshold amount corresponding lower potential of the transistor Q 6 than the potential of the node N 1.
第2図は上記の特性を図示したものであり、10は節点
N1の電位、20は出力電位をそれぞれ示している。Figure 2 shows the above characteristics, where 10 is a node.
The potential of N 1 and 20 indicate the output potential, respectively.
以上説明したように本発明による電源回路は2つの基
準電位生成手段により定まる2つの基準電位を適当な値
に設定することにより、接続される負荷回路に対し通常
の動作電源電圧範囲においては一定の電位を供給するこ
とにより負荷回路の過電位に対する保護及び特性の安定
化を実現し、製造工程においては負荷回路に高電位印加
によるバーンインテストを可能とする効果がある。As described above, in the power supply circuit according to the present invention, the two reference potentials determined by the two reference potential generating means are set to appropriate values, so that the load circuit to be connected has a constant value in the normal operating power supply voltage range. By supplying the potential, protection against the overpotential of the load circuit and stabilization of the characteristics are realized, and there is an effect that a burn-in test can be performed by applying a high potential to the load circuit in the manufacturing process.
上述の説明においては基準電位生成手段としてNチャ
ンネルMOSトランジスタを用いたが、PチャンネルMOSト
ランジスタまたはPN順方向接合の接合電位を用いても同
様の効果が得られる。Although the N-channel MOS transistor is used as the reference potential generating means in the above description, the same effect can be obtained by using the P-channel MOS transistor or the junction potential of the PN forward junction.
第1図は本発明による電源回路の回路図、第2図はその
特性図、第3図は従来の電源回路の回路図、第4図はそ
の特性図である。 1……第二の基準電圧生成手段、Q1,Q2,Q3,Q4,Q6,Q7,
Q8,Q9,Q10……NチャンネルMOSエンハンスメントトラン
ジスタ、Q5……PチャンネルMOSエンハンスメントトラ
ンジスタ。FIG. 1 is a circuit diagram of a power supply circuit according to the present invention, FIG. 2 is a characteristic diagram thereof, FIG. 3 is a circuit diagram of a conventional power supply circuit, and FIG. 4 is a characteristic diagram thereof. 1 ...... the second reference voltage generating means, Q 1, Q 2, Q 3, Q 4, Q 6, Q 7,
Q 8, Q 9, Q 10 ...... N -channel MOS enhancement transistor, Q 5 ...... P-channel MOS enhancement transistor.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 27/04
Claims (2)
個のNチャンネルMOSトランジスタを連結して成る第一
および第二の基準電位生成手段と、前記第一および第二
の基準電位生成手段を連結する節点にドレインを,電源
電位にソースを,接地電位にゲートをそれぞれ接続した
PチャンネルMOSトランジスタと、前記接点にゲート
を,電源電位にドレインを,出力端子にソースをそれぞ
れ接続したNチャンネルMOSトランジスタとを有し、 前記第一の基準電位生成手段が設定する基準電位より電
源電位が低い場合には電源電位の変動に応じて変動する
電位を出力し、前記第一の基準電位生成手段が設定する
基準電位より電源電位が高くかつ前記第二の基準電位生
成手段が設定する基準電位より低い場合にはほぼ一定の
電位を出力し、前記第二の基準電位生成手段が設定する
基準電位より電源電位が高い場合には電源電位の変動に
応じて変動する電位を出力することを特徴とする電源回
路。1. A first and second reference potential generating means, which is formed by connecting a plurality of N-channel MOS transistors each having a gate and a drain connected to each other, and the first and second reference potential generating means are connected to each other. A P-channel MOS transistor in which a drain is connected to the node, a source is connected to the power supply potential, and a gate is connected to the ground potential; and an N-channel MOS transistor is connected to the contact, the drain is connected to the power supply potential, and the source is connected to the output terminal. When the power supply potential is lower than the reference potential set by the first reference potential generation means, a potential that fluctuates according to the fluctuation of the power supply potential is output, and the first reference potential generation means sets When the power source potential is higher than the reference potential and lower than the reference potential set by the second reference potential generating means, a substantially constant potential is output and the second base potential is output. A power supply circuit, which outputs a potential that fluctuates according to fluctuations in the power supply potential when the power supply potential is higher than the reference potential set by the quasi-potential generation means.
におけるビット線に電位を供給する特許請求の範囲第一
項記載の電源回路。2. A power supply circuit according to claim 1, wherein a potential is supplied to a bit line in a MOS dynamic random access memory.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62098821A JP2503504B2 (en) | 1987-04-21 | 1987-04-21 | Power supply circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62098821A JP2503504B2 (en) | 1987-04-21 | 1987-04-21 | Power supply circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63262866A JPS63262866A (en) | 1988-10-31 |
JP2503504B2 true JP2503504B2 (en) | 1996-06-05 |
Family
ID=14229973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62098821A Expired - Lifetime JP2503504B2 (en) | 1987-04-21 | 1987-04-21 | Power supply circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2503504B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2721151B2 (en) * | 1986-04-01 | 1998-03-04 | 株式会社東芝 | Semiconductor integrated circuit device |
-
1987
- 1987-04-21 JP JP62098821A patent/JP2503504B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63262866A (en) | 1988-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4972100A (en) | Data output buffer circuit for byte-wide memory | |
EP0461788A2 (en) | Semiconductor integrated circuit device | |
EP0399240A2 (en) | Semiconductor memory device | |
JPS60124124A (en) | Input circuit | |
JPS63174115A (en) | Intermediate potential generation circuit | |
KR100318298B1 (en) | Semiconductor device | |
US4578694A (en) | Inverter circuit provided with gate protection | |
KR960009158A (en) | Reference voltage generator | |
KR940004445B1 (en) | Standard voltage generating device | |
TW396604B (en) | Internal power supply voltage generating circuit and the method for controlling thereof | |
JP3810220B2 (en) | Integrated circuit semiconductor memory device having internal power supply generator | |
JP3389295B2 (en) | CMOS buffer circuit | |
KR960003219B1 (en) | Medium voltage generating circuit of semiconductor integrated circuit | |
KR900003834B1 (en) | Semiconductor integrated circuit | |
US6271692B1 (en) | Semiconductor integrated circuit | |
JP2503504B2 (en) | Power supply circuit | |
US5641986A (en) | Semiconductor device | |
JPH0510758B2 (en) | ||
JPS6155195B2 (en) | ||
JP2598147B2 (en) | Semiconductor integrated circuit | |
US6008688A (en) | Apparatus, and associated method, for preventing occurrence of latch-up in an electronic circuit | |
JPH01253264A (en) | Semiconductor integrated circuit | |
JP2730071B2 (en) | Semiconductor circuit | |
KR100268948B1 (en) | Transmission gate circuit | |
JP2871329B2 (en) | Semiconductor integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080402 Year of fee payment: 12 |