[go: up one dir, main page]

JP2024122863A - Carbon fiber sheet manufacturing apparatus and manufacturing method - Google Patents

Carbon fiber sheet manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP2024122863A
JP2024122863A JP2023216556A JP2023216556A JP2024122863A JP 2024122863 A JP2024122863 A JP 2024122863A JP 2023216556 A JP2023216556 A JP 2023216556A JP 2023216556 A JP2023216556 A JP 2023216556A JP 2024122863 A JP2024122863 A JP 2024122863A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber sheet
temperature furnace
carbon
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023216556A
Other languages
Japanese (ja)
Inventor
一生 土肥
Kazuo Doi
大雄 伊藤
Daiyu Ito
崇史 千田
Takashi Senda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2024122863A publication Critical patent/JP2024122863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)
  • Inorganic Fibers (AREA)

Abstract

To provide a manufacturing apparatus for long-life carbon fiber sheets by curbing denaturation and wear of a component of a carbon material due to pyrolysis gas generated during heat processing of a carbon fiber sheet precursor.SOLUTION: A manufacturing apparatus for carbon fiber sheets includes a high-temperature furnace that thermally processes carbon fibers or a carbon fiber sheet precursor including organic fibers which can be made carbon fibers, so as to make them a carbon fiber sheet, in which the high-temperature furnace contains therein a member of a carbon material with a surface coated with an organic material having a melting point of 2,000°C or higher.SELECTED DRAWING: Figure 1

Description

本発明は、固体高分子型燃料電池、メタノール型燃料電池、リン酸型燃料電池、および水電解装置のガス拡散体として、特に固体高分子型燃料電池のガス拡散体として好ましく用いられる炭素繊維シートの製造装置および製造方法に関する。 The present invention relates to an apparatus and method for manufacturing carbon fiber sheets that are preferably used as gas diffusers in polymer electrolyte fuel cells, methanol fuel cells, phosphoric acid fuel cells, and water electrolysis devices, and in particular as gas diffusers in polymer electrolyte fuel cells.

固体高分子型燃料電池、メタノール型燃料電池、リン酸型燃料電池等の燃料電池において発電反応が起こる膜電極接合体を構成するガス拡散体として、また水電解装置のガス拡散体として、炭素短繊維を樹脂炭化物で結着したカーボンペーパーや炭素繊維を交絡させた炭素繊維不織布等の炭素繊維シートが好ましく用いられている。 Carbon fiber sheets such as carbon paper in which short carbon fibers are bound with a resin carbide and carbon fiber nonwoven fabric in which carbon fibers are entangled are preferably used as gas diffusers that constitute the membrane electrode assemblies in which the power generation reaction occurs in fuel cells such as solid polymer fuel cells, methanol fuel cells, and phosphoric acid fuel cells, and as gas diffusers in water electrolysis devices.

このような炭素繊維シートを製造する製造方法では、炭素繊維シート前駆体を高温炉で熱処理する工程を有することが一般的である。ここで、高温炉の製造コストや運転コストは炭素繊維シートの製造コストに直結するため、安価で運転コストの低い高温炉を炭素繊維シートの製造装置として使用することが望まれる。 The manufacturing method for producing such carbon fiber sheets generally includes a step of heat treating the carbon fiber sheet precursor in a high-temperature furnace. Here, since the manufacturing and operating costs of the high-temperature furnace are directly linked to the manufacturing cost of the carbon fiber sheet, it is desirable to use an inexpensive high-temperature furnace with low operating costs as the manufacturing device for the carbon fiber sheet.

ただし、炭素繊維シート前駆体の熱処理を繰り返すことで高温炉を構成する部材は損耗するため、定期的な交換が必要である。炭素繊維シートの製造コストを抑えるためにも、これら部材の長寿命化が求められている。 However, repeated heat treatment of the carbon fiber sheet precursor causes wear on the components that make up the high-temperature furnace, and they need to be replaced periodically. To reduce the manufacturing costs of carbon fiber sheets, there is a need to extend the lifespan of these components.

特許文献1では、炭素繊維シートの製造過程において、炭素繊維および樹脂を含む炭素繊維シート前駆体を高温炉で熱処理する方法が開示されており、高温炉に用いるヒーター等の部材は高温環境に耐えられ、かつ安価である黒鉛等の炭素材料で構成されることが好ましい旨の記載がある。 Patent Document 1 discloses a method for heat treating a carbon fiber sheet precursor containing carbon fibers and a resin in a high-temperature furnace during the manufacturing process of a carbon fiber sheet, and describes that it is preferable that components such as heaters used in the high-temperature furnace are made of a carbon material such as graphite, which can withstand high-temperature environments and is inexpensive.

特許文献2では、ヒーターの長寿命化の手段として嵩密度および外表面積を特定範囲にした黒鉛材料を用いる方法が開示されている。 Patent document 2 discloses a method of using graphite material with a specific range of bulk density and outer surface area as a means of extending the life of heaters.

特開2020-133006号公報JP 2020-133006 A 特開昭63-153388号公報Japanese Unexamined Patent Publication No. 153388/1988

しかし、特許文献1、2のように高温炉の部材に黒鉛等の炭素材料を用いた場合でも当該炭素材料の部材の変質、損耗が発生し、定期的な交換を実施するまでの期間が短くなってしまう場合がある。これは、炭素繊維シート前駆体を熱処理した時に発生する熱分解ガスによるものであることを見出した。 However, even when carbon materials such as graphite are used for the components of a high-temperature furnace as in Patent Documents 1 and 2, deterioration and wear of the carbon material components can occur, shortening the time until periodic replacement. It was found that this is due to pyrolysis gases generated when the carbon fiber sheet precursor is heat-treated.

本発明は、炭素繊維シート前駆体の熱処理時に発生する熱分解ガスによる当該炭素材料の部材の変質、損耗を抑制することにより、長寿命な炭素繊維シートの製造装置を提供することを課題とする。 The objective of the present invention is to provide a long-life carbon fiber sheet manufacturing device by suppressing deterioration and wear of the carbon material components caused by pyrolysis gases generated during the heat treatment of the carbon fiber sheet precursor.

上記課題を達成するための本発明は、以下の通りである。
[1]炭素繊維または炭素繊維化可能な有機繊維を含む炭素繊維シート前駆体を熱処理して炭素繊維シートとする高温炉を含む炭素繊維シートの製造装置であって、前記炭素繊維シート前駆体を熱処理する高温炉は融点2,000℃以上の無機材料で表面をコーティングした炭素材料の部材を炉の内部に含むことを特徴とする炭素繊維シートの製造装置。
[2]前記無機材料の融点が2,700℃以上である[1]に記載の炭素繊維シートの製造装置。
[3]前記無機材料が炭化タンタル、炭化ニオブおよび炭化ケイ素からなる群から選ばれる少なくとも1つの無機材料である[1]または[2]に記載の炭素繊維シートの製造装置。
[4]前記部材がヒーターおよび/またはマッフル板である[1]~[3]のいずれかに記載の炭素繊維シートの製造装置。
[5]前記炭素繊維シート前駆体が炭素化可能な有機物を含む[1]~[4]のいずれかに記載の炭素繊維シートの製造装置。
[6][1]~[5]のいずれかに記載の炭素繊維シートの製造装置を用いて炭素繊維シートを製造する炭素繊維シートの製造方法。
[7]炭素繊維シート前駆体を複数枚重ねて同時に熱処理する[6]に記載の炭素繊維シートの製造方法。
[8]前記炭素繊維シートを連続的に製造する[6]または[7]に記載の炭素繊維シートの製造方法。
[9]熱処理の際に、炉幅50cmあたり、10g/min以上のガスが炭素繊維シート前駆体から発生する[8]に記載の炭素繊維シートの製造方法。
[10]前記炭素繊維シートをバッチ的に製造する[6]または[7]に記載の炭素繊維シートの製造方法。
The present invention for achieving the above object is as follows.
[1] An apparatus for producing a carbon fiber sheet, comprising a high-temperature furnace for heat-treating a carbon fiber sheet precursor containing carbon fibers or organic fibers that can be converted into carbon fiber to produce a carbon fiber sheet, wherein the high-temperature furnace for heat-treating the carbon fiber sheet precursor comprises a carbon material member inside the furnace, the carbon material member having a surface coated with an inorganic material having a melting point of 2,000°C or higher.
[2] The carbon fiber sheet manufacturing apparatus according to [1], wherein the inorganic material has a melting point of 2,700°C or higher.
[3] The apparatus for producing a carbon fiber sheet according to [1] or [2], wherein the inorganic material is at least one inorganic material selected from the group consisting of tantalum carbide, niobium carbide, and silicon carbide.
[4] The carbon fiber sheet manufacturing apparatus according to any one of [1] to [3], wherein the member is a heater and/or a muffle plate.
[5] The carbon fiber sheet manufacturing apparatus according to any one of [1] to [4], wherein the carbon fiber sheet precursor contains a carbonizable organic substance.
[6] A method for producing a carbon fiber sheet, using the carbon fiber sheet production apparatus according to any one of [1] to [5].
[7] The method for producing a carbon fiber sheet according to [6], in which a plurality of carbon fiber sheet precursors are stacked and simultaneously heat-treated.
[8] The method for producing a carbon fiber sheet according to [6] or [7], wherein the carbon fiber sheet is produced continuously.
[9] The method for producing a carbon fiber sheet according to [8], wherein during the heat treatment, 10 g/min or more of gas is generated from the carbon fiber sheet precursor per 50 cm of furnace width.
[10] The method for producing a carbon fiber sheet according to [6] or [7], wherein the carbon fiber sheet is produced batchwise.

本発明によれば、部材として安価な炭素材料を使用しつつ、高温炉内で発生する熱分解ガスに起因する炭素材料の部材の変質、損耗を抑制し、長寿命な炭素繊維シートの製造装置を提供できる。 The present invention provides a carbon fiber sheet manufacturing device that uses inexpensive carbon materials as components, while suppressing deterioration and wear of the carbon material components caused by pyrolysis gases generated in a high-temperature furnace, and has a long life.

本発明の炭素繊維シートの製造装置である連続式の高温炉の一例の断面模式図である。FIG. 1 is a schematic cross-sectional view of an example of a continuous high-temperature furnace that is a manufacturing apparatus for a carbon fiber sheet of the present invention. 本発明の炭素繊維シートの製造装置であるバッチ式の高温炉の一例の断面模式図である。FIG. 1 is a cross-sectional schematic diagram of an example of a batch-type high-temperature furnace that is a manufacturing apparatus for a carbon fiber sheet of the present invention. 本発明の炭素繊維シートの製造装置の構成部材であるヒーターの一例の模式図である。FIG. 2 is a schematic diagram of an example of a heater that is a component of the carbon fiber sheet manufacturing apparatus of the present invention.

以下、本発明の好ましい実施形態を、図面を用いて具体的に説明する。 A preferred embodiment of the present invention will be described in detail below with reference to the drawings.

<炭素繊維シートの製造装置>
炭素繊維シートの製造装置としては長尺の炭素繊維シートを連続的に製造する、連続式の高温炉を含む製造装置と、枚葉の炭素繊維シートをバッチ的に製造する、バッチ式の高温炉を含む製造装置に大別される。製造コストの観点からは、連続的に製造できる連続式の高温炉を含む製造装置が好ましいが、本発明は連続式、バッチ式共に長寿命な高温炉を含む製造装置を提供することが可能である。
<Carbon fiber sheet manufacturing equipment>
Carbon fiber sheet manufacturing equipment is roughly divided into manufacturing equipment including a continuous high-temperature furnace that continuously produces a long carbon fiber sheet, and manufacturing equipment including a batch-type high-temperature furnace that batch-wise produces a single carbon fiber sheet. From the viewpoint of manufacturing cost, a manufacturing equipment including a continuous high-temperature furnace that can produce continuously is preferable, but the present invention can provide both a continuous type and a batch-type manufacturing equipment including a long-life high-temperature furnace.

本発明の製造装置の一例である、連続式の高温炉100について図1を用いて説明する。 A continuous high-temperature furnace 100, which is an example of the manufacturing apparatus of the present invention, is described below with reference to FIG. 1.

高温炉100には、炭素繊維シート前駆体10が通過可能な炉内空間101が貫通して設けられている。炉内空間101は2つの開口部を有し、一方が高温炉の入口(以下、炉入口という)105、他方が高温炉の出口(以下、炉出口という)106である。炉内空間101の上下には、炉内空間101を昇温させるためのヒーター107が配置されている。ヒーター107と炉内空間101とは、マッフルで隔てられている。すなわち、マッフル上壁102およびマッフル下壁103で隔てられており、マッフル下壁103の上にはさらに炭素繊維シート前駆体10が走行する炉床104が設けられている。また、炉内空間101は、不活性雰囲気にすることが可能であり、炭素繊維シート前駆体10の熱処理を行う間、炭素繊維シート20と高温炉100自体の酸化を防止するため、窒素やアルゴン等で満たされた不活性ガス雰囲気下に保たれている。そして、炭素繊維シート前駆体10は、炉内空間101を連続的に走行する間に熱処理を受け、炭素繊維シート20となる。 The high-temperature furnace 100 is provided with an in-furnace space 101 through which the carbon fiber sheet precursor 10 can pass. The in-furnace space 101 has two openings, one of which is an inlet (hereinafter referred to as the inlet) 105 of the high-temperature furnace, and the other is an outlet (hereinafter referred to as the outlet) 106 of the high-temperature furnace. Above and below the in-furnace space 101, heaters 107 are arranged to heat the in-furnace space 101. The heater 107 and the in-furnace space 101 are separated by a muffle. That is, they are separated by a muffle upper wall 102 and a muffle lower wall 103, and a hearth 104 on which the carbon fiber sheet precursor 10 runs is further provided on the muffle lower wall 103. The in-furnace space 101 can be made into an inert atmosphere, and is kept under an inert gas atmosphere filled with nitrogen, argon, or the like to prevent oxidation of the carbon fiber sheet 20 and the high-temperature furnace 100 itself during the heat treatment of the carbon fiber sheet precursor 10. The carbon fiber sheet precursor 10 is then subjected to heat treatment while traveling continuously through the furnace space 101, becoming a carbon fiber sheet 20.

本発明の製造装置の一例である、バッチ式の高温炉200について図2を用いて説明する。バッチ式の高温炉200には、炭素繊維シート前駆体10が配置可能な炉内空間201が設けられている。高温炉200は炉入口扉205を有し、炉入口扉205を開けることで炉内空間201に炭素繊維シート前駆体10を配置可能である。炉内空間201の上下には、炉内空間201を昇温させるためのヒーター207が配置されている。ヒーター207と炉内空間201とは、マッフルで隔てられている。すなわち、マッフル上壁202およびマッフル下壁203で隔てられており、マッフル下壁203の上にはさらに炭素繊維シート前駆体10を設置する炉床204が設けられている。また、炉内空間201は、不活性雰囲気にすることが可能であり、炭素繊維シート前駆体10の熱処理を行う間、炭素繊維シート20と高温炉100自体の酸化を防止するため、窒素やアルゴン等で満たされた不活性ガス雰囲気下に保たれている。そして、炭素繊維シート前駆体10は熱処理を受け、炭素繊維シート20となる。 A batch-type high-temperature furnace 200, which is an example of the manufacturing apparatus of the present invention, will be described with reference to FIG. 2. The batch-type high-temperature furnace 200 is provided with an in-furnace space 201 in which the carbon fiber sheet precursor 10 can be placed. The high-temperature furnace 200 has a furnace entrance door 205, and the carbon fiber sheet precursor 10 can be placed in the furnace space 201 by opening the furnace entrance door 205. Heaters 207 for heating the furnace space 201 are arranged above and below the furnace space 201. The heater 207 and the furnace space 201 are separated by a muffle. That is, they are separated by a muffle upper wall 202 and a muffle lower wall 203, and a hearth 204 for placing the carbon fiber sheet precursor 10 is further provided on the muffle lower wall 203. The furnace space 201 can be made into an inert atmosphere, and is kept under an inert gas atmosphere filled with nitrogen, argon, or the like in order to prevent oxidation of the carbon fiber sheet 20 and the high-temperature furnace 100 itself during the heat treatment of the carbon fiber sheet precursor 10. The carbon fiber sheet precursor 10 is then subjected to heat treatment to become the carbon fiber sheet 20.

炭素繊維シートの電気伝導性を好適なものとするために、熱処理温度(高温炉内の最高温度)は1,500~2,700℃であることが好ましい。熱処理温度が1,500℃より低くなると、炭素繊維シート20の黒鉛化度が低くなり、電気伝導性や熱伝導性が低くなる場合がある。高温炉の熱処理温度を2,700℃より高くすると、加熱のために大きなエネルギーが必要になるとともに、炉に用いる部材が消耗しやすい。熱処理温度は、1,800~2,600℃がより好ましく、1,900~2,500℃がさらに好ましい。 To obtain suitable electrical conductivity of the carbon fiber sheet, the heat treatment temperature (maximum temperature in the high-temperature furnace) is preferably 1,500 to 2,700°C. If the heat treatment temperature is lower than 1,500°C, the degree of graphitization of the carbon fiber sheet 20 will be low, and the electrical conductivity and thermal conductivity may be reduced. If the heat treatment temperature of the high-temperature furnace is higher than 2,700°C, a large amount of energy will be required for heating and the members used in the furnace will be easily worn out. The heat treatment temperature is more preferably 1,800 to 2,600°C, and even more preferably 1,900 to 2,500°C.

高温炉を構成する部材には黒鉛等の炭素材料、金属、セラミックスを用いることが可能であるが、安価であることから黒鉛等の炭素材料が好ましい。特に1,000℃以上となる部分は化学的安定性から黒鉛等の炭素材料を使用することが好ましい。 The components that make up a high-temperature furnace can be made of carbon materials such as graphite, metals, or ceramics, but carbon materials such as graphite are preferred because they are inexpensive. In particular, for parts that will reach 1,000°C or higher, it is preferable to use carbon materials such as graphite because of their chemical stability.

本発明においては、高温炉を構成する部材として、融点2,000℃以上の無機材料で表面をコーティングした炭素材料の部材を炉の内部に含む。融点2,000℃以上の無機材料で炭素材料の表面をコーティングすることにより、炭素繊維シート前駆体の熱処理時に発生する熱分解ガスによる炭素材料の部材の変質、損耗を抑制できる。上記コーティングの手法としては、炭素材料の表面にコーティング層を形成できる方式であれば特に制限されず、PDV、CDV等の乾式法やメッキ、塗布法等の湿式法を挙げることができる。 In the present invention, the high-temperature furnace includes, inside the furnace, a carbon material member whose surface is coated with an inorganic material having a melting point of 2,000°C or higher. By coating the surface of the carbon material with an inorganic material having a melting point of 2,000°C or higher, deterioration and wear of the carbon material member caused by pyrolysis gas generated during heat treatment of the carbon fiber sheet precursor can be suppressed. The coating method is not particularly limited as long as it is a method that can form a coating layer on the surface of the carbon material, and examples of the coating method include dry methods such as PDV and CDV, and wet methods such as plating and coating.

本発明においてコーティングに用いる無機材料は融点2,000℃以上であればよいが、融点2,700℃以上の無機材料を用いることが好ましく、3,000℃以上の無機材料を用いることがより好ましい。無機材料は、金属、金属炭化物、炭化ケイ素、炭化ホウ素が耐熱、耐久性が高いため好ましく、金属炭化物、炭化ケイ素、炭化ホウ素がコーティングと被コーティング材(炭素材料の部材)の経時的反応が起こりにくいため好ましい。中でも、炭化タンタル、炭化ニオブ、炭化ケイ素は耐久性が高く、より好ましい。 In the present invention, the inorganic material used for the coating may have a melting point of 2,000°C or higher, but it is preferable to use an inorganic material with a melting point of 2,700°C or higher, and more preferably to use an inorganic material with a melting point of 3,000°C or higher. As inorganic materials, metals, metal carbides, silicon carbide, and boron carbide are preferred because they have high heat resistance and durability, and metal carbides, silicon carbide, and boron carbide are preferred because they are less likely to react with the coating and the material to be coated (carbon material member) over time. Among these, tantalum carbide, niobium carbide, and silicon carbide are more preferred because they are highly durable.

高温炉に含む部材の中でも、ヒーターやマッフルを融点2,000℃以上の無機材料で表面をコーティングした炭素材料の部材とすることが好ましい。ここでマッフルとは、炉内空間にヒーターが露出しないようにヒーターを覆う炉材のことであり、図1および図2におけるマッフル上壁、マッフル下壁、マッフル横壁等を指す。ヒーターやマッフルは炭素繊維シート前駆体の熱処理時に発生する熱分解ガスに接触しやすく、変質、損耗しやすい。炉内空間で発生する熱分解ガスは、まずマッフルに接触するため、高温炉における部材においてマッフルは最も変質、損耗しやすい。マッフルが損耗することにより、他の炉材にも熱分解ガスが接触しやすくなるため、高温炉を長寿命化するためにはマッフルを融点2,000℃以上の無機材料で表面をコーティングした炭素材料とすることは好ましい。また、ヒーターは損耗により断面積が小さくなる。断面積が減った箇所では電気抵抗が上がるため発熱が集中し、損耗が加速する。上記コーティングによりヒーターの損耗を抑えることで、高温炉を長寿命化できる。 Among the components included in the high-temperature furnace, it is preferable that the heater and the muffle are made of a carbon material whose surface is coated with an inorganic material having a melting point of 2,000°C or higher. Here, the muffle refers to a furnace material that covers the heater so that the heater is not exposed in the furnace space, and refers to the upper wall, lower wall, side wall, etc. of the muffle in Figures 1 and 2. The heater and the muffle are easily contacted with the pyrolysis gas generated during the heat treatment of the carbon fiber sheet precursor, and are easily altered and worn out. Since the pyrolysis gas generated in the furnace space first comes into contact with the muffle, the muffle is the most easily altered and worn out of the components in the high-temperature furnace. As the muffle wears out, the pyrolysis gas is more likely to come into contact with other furnace materials, so in order to extend the life of the high-temperature furnace, it is preferable to make the muffle a carbon material whose surface is coated with an inorganic material having a melting point of 2,000°C or higher. In addition, the cross-sectional area of the heater decreases due to wear. In the area where the cross-sectional area is reduced, the electrical resistance increases, so heat is concentrated and wear is accelerated. The above coating reduces wear on the heater, thereby extending the life of the high-temperature furnace.

<炭素繊維シート前駆体>
本発明の炭素繊維シートの製造装置に適用可能な炭素繊維シート前駆体について説明する。炭素繊維シート前駆体は、炭素繊維または炭素繊維化可能な有機繊維を含む。炭素繊維シート前駆体は、炭素短繊維または炭素化可能な有機繊維の短繊維を抄紙し、炭素化可能な有機物を含浸・硬化させた構成であることが好ましい。この場合、短繊維の長さは3~12mmの範囲内にあることが好ましい。短繊維の長さが6~9mmの範囲内にあると、短繊維の抄紙の際に良好な分散性を得られるとともに、引張強度が高く、破れにくい多孔質炭素繊維シートを得ることができるためにより好ましい。あるいは、炭素繊維シート前駆体は、PAN耐炎糸を乾式工程で不織布化し、加熱ロールでカレンダー処理することによって作製されたものであってもよい。
<Carbon fiber sheet precursor>
A carbon fiber sheet precursor applicable to the carbon fiber sheet manufacturing apparatus of the present invention will be described. The carbon fiber sheet precursor includes carbon fiber or organic fiber that can be carbonized. The carbon fiber sheet precursor is preferably configured by making short carbon fibers or short organic fibers that can be carbonized, and impregnating and curing the short fibers with a carbonizable organic material. In this case, the length of the short fibers is preferably within a range of 3 to 12 mm. If the length of the short fibers is within a range of 6 to 9 mm, good dispersibility can be obtained during papermaking of the short fibers, and a porous carbon fiber sheet that has high tensile strength and is not easily broken can be obtained, which is more preferable. Alternatively, the carbon fiber sheet precursor may be produced by making a nonwoven fabric from PAN flame-resistant yarn in a dry process and calendering the nonwoven fabric with a heated roll.

炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維のいずれでも用いることができる。この中でも、得られた炭素繊維シートの曲げ強度や引張強度を高くできるPAN系炭素繊維またはピッチ系炭素繊維を用いることが好ましく、PAN系炭素繊維を用いることが特に好ましい。 As the carbon fiber, any of polyacrylonitrile (PAN)-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and phenol-based carbon fiber can be used. Among these, it is preferable to use PAN-based carbon fiber or pitch-based carbon fiber, which can increase the bending strength and tensile strength of the obtained carbon fiber sheet, and it is particularly preferable to use PAN-based carbon fiber.

炭素繊維化可能な有機繊維とは、炭素繊維シート前駆体を熱処理する高温炉において、炭素繊維シート前駆体を熱処理する過程で熱処理により炭素繊維となる有機繊維であれば特に制限されないが、上記炭素繊維の原料であるポリアクリロニトリルや石炭ピッチ、レーヨン、フェノール樹脂系繊維等を用いることができる。得られた炭素繊維シートの曲げ強度や引張強度を高くできるポリアクリルニトリル繊維またはピッチ繊維を用いることが好ましく、ポリアクリルニトリル繊維を用いることが特に好ましい。 The organic fiber that can be made into carbon fiber is not particularly limited as long as it is an organic fiber that can be turned into carbon fiber by heat treatment during the heat treatment of the carbon fiber sheet precursor in a high-temperature furnace in which the carbon fiber sheet precursor is heat treated, but the raw materials for the carbon fiber mentioned above, such as polyacrylonitrile, coal pitch, rayon, and phenol resin fibers, can be used. It is preferable to use polyacrylonitrile fiber or pitch fiber, which can increase the bending strength and tensile strength of the obtained carbon fiber sheet, and it is particularly preferable to use polyacrylonitrile fiber.

本発明の製造方法に用いる炭素繊維シート前駆体は炭素化可能な有機物を含むことが好ましい。炭素化可能な有機物とは、炭素繊維シート前駆体を熱処理する高温炉において、炭素繊維シート前駆体を熱処理する過程で熱処理により炭素化する有機物であれば特に制限されない。例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等の熱可塑性樹脂を用いることができるが、炭化収率が高い熱硬化性樹脂を用いることが好ましく、中でもフェノール樹脂を用いることがより好ましい。 The carbon fiber sheet precursor used in the manufacturing method of the present invention preferably contains a carbonizable organic material. The carbonizable organic material is not particularly limited as long as it is an organic material that is carbonized by heat treatment during the heat treatment of the carbon fiber sheet precursor in a high-temperature furnace in which the carbon fiber sheet precursor is heat treated. For example, thermosetting resins such as epoxy resins, unsaturated polyester resins, phenolic resins, polyimide resins, and melamine resins, and thermoplastic resins such as acrylic resins, polyvinylidene chloride resins, and polytetrafluoroethylene resins can be used, but it is preferable to use a thermosetting resin with a high carbonization yield, and it is more preferable to use a phenolic resin.

炭素繊維シートを燃料電池の電極に用いられるガス拡散体として用いる場合には、導電性向上のため、炭素繊維シート前駆体は炭素粉末を含むことが好ましい。この場合、炭素粉末は炭素繊維シート前駆体を100質量%としたとき、1~50質量%含むことが好ましい。 When the carbon fiber sheet is used as a gas diffuser for an electrode of a fuel cell, the carbon fiber sheet precursor preferably contains carbon powder to improve electrical conductivity. In this case, the carbon powder is preferably contained in an amount of 1 to 50 mass % when the carbon fiber sheet precursor is taken as 100 mass %.

炭素繊維シート前駆体は本発明の製造装置により熱処理を受け、炭素繊維化可能な有機繊維を含む場合は当該繊維が炭素繊維となって、炭素化可能な有機物を含む場合には当該有機物が炭化されて炭素繊維シートとなる。 The carbon fiber sheet precursor is subjected to a heat treatment by the manufacturing apparatus of the present invention, and if it contains organic fibers that can be converted into carbon fibers, the fibers become carbon fibers, and if it contains organic matter that can be carbonized, the organic matter is carbonized to become a carbon fiber sheet.

<炭素繊維シートの製造方法>
本発明の炭素繊維シートの製造装置を用いて炭素繊維シートを製造する方法について説明する。
<Method of manufacturing carbon fiber sheet>
A method for producing a carbon fiber sheet using the carbon fiber sheet production apparatus of the present invention will be described.

炭素繊維シートを連続的に製造する場合、例えば図1に記載の連続式の高温炉100が使用できる。高温炉100においては、炭素繊維シート前駆体10は炉入口105より挿入され、炉出口106に向かって、高温に保たれた炉内空間101内、炉床104上を連続的に移動する。図1の炉床104は板状であるが、板状で、また隙間なく敷くことは必須ではなく、格子状、棒状(横棒のみまたは横棒と縦棒を並設した形状)、波板状とすることで摩擦を減らしたり、粉塵を除去したりすることができる。炉床を複数に分割し隙間を開けることも好ましい態様である。この過程で、炭素繊維シート前駆体10は、炉内空間101内において熱処理を受け、炭素繊維シート20となり、炉出口106より高温炉100外に送り出される。この際、炭素繊維シート前駆体10は、1枚のみを熱処理しても、複数枚重ねて同時に熱処理してもよい。炭素繊維シートを安価に製造するためには、炭素繊維シート前駆体を複数枚重ねて同時に熱処理することが好ましい。 When continuously producing carbon fiber sheets, for example, a continuous high-temperature furnace 100 as shown in FIG. 1 can be used. In the high-temperature furnace 100, the carbon fiber sheet precursor 10 is inserted from the furnace inlet 105 and moves continuously on the hearth 104 in the furnace space 101 maintained at high temperature toward the furnace outlet 106. The hearth 104 in FIG. 1 is plate-shaped, but it is not essential that it is plate-shaped or laid without gaps. It is possible to reduce friction and remove dust by making it lattice-shaped, rod-shaped (horizontal bars only or horizontal bars and vertical bars arranged side by side), or corrugated. It is also a preferred embodiment to divide the hearth into multiple parts and leave gaps. In this process, the carbon fiber sheet precursor 10 is heat-treated in the furnace space 101 to become a carbon fiber sheet 20, which is sent out of the high-temperature furnace 100 from the furnace outlet 106. At this time, the carbon fiber sheet precursor 10 may be heat-treated only one sheet, or multiple sheets may be stacked and heat-treated at the same time. To produce carbon fiber sheets inexpensively, it is preferable to stack multiple carbon fiber sheet precursors and heat treat them simultaneously.

生産性を上げるためには、炭素繊維シート前駆体を複数枚重ね、高温で短い時間に熱処理することが好ましいが、炉内空間101内で発生する熱分解ガスの量も多くなる。そのような場合でこそ、融点2,000℃以上の無機材料で表面をコーティングした炭素材料の部材を使用し、高温炉を長寿命化する意義は大きい。特に、炉幅50cmあたりの熱分解ガスの発生量が10g/min以上となる条件においては、炭素材料の部材の変質、損耗が特に早まるため、高温炉を長寿命化する意義は大きい。熱分解ガスの発生量は、高温炉内通過前の炭素繊維シート前駆体10と通過後の炭素繊維シート20の質量差により測定できる。 To increase productivity, it is preferable to stack multiple carbon fiber sheet precursors and heat treat them at high temperature for a short time, but this also increases the amount of pyrolysis gas generated in the furnace space 101. In such cases, it is very important to use carbon material components whose surfaces are coated with an inorganic material having a melting point of 2,000°C or higher to extend the life of the high-temperature furnace. In particular, under conditions where the amount of pyrolysis gas generated per 50 cm of furnace width is 10 g/min or more, the deterioration and wear of the carbon material components is particularly rapid, so it is very important to extend the life of the high-temperature furnace. The amount of pyrolysis gas generated can be measured by the mass difference between the carbon fiber sheet precursor 10 before passing through the high-temperature furnace and the carbon fiber sheet 20 after passing through it.

炭素繊維シートをバッチ的に製造する場合、例えば図2に記載のバッチ式の高温炉200を使用できる。高温炉200においては、炭素繊維シート前駆体10は炉入口扉205を開けて炉内空間201に設置される。炉入口扉205を閉めた後に炉内を高温に昇温することで、炭素繊維シート前駆体10は、炉内空間201内において熱処理を受けて炭素繊維シートとなる。熱処理完了後、炉内を降温し、炉入口扉205を開けて炭素繊維シートを取り出す。炭素繊維シート前駆体10は1枚ずつ熱処理しても、複数枚重ねて同時に熱処理してもよい。連続式の高温炉100を使用する場合と同様に、製造コストの観点から、複数枚重ねて熱処理することが好ましい。 When producing carbon fiber sheets in a batchwise manner, for example, a batch-type high-temperature furnace 200 as shown in FIG. 2 can be used. In the high-temperature furnace 200, the carbon fiber sheet precursor 10 is placed in the furnace space 201 with the furnace entrance door 205 open. After the furnace entrance door 205 is closed, the furnace is heated to a high temperature, and the carbon fiber sheet precursor 10 is heat-treated in the furnace space 201 to become a carbon fiber sheet. After the heat treatment is completed, the furnace is cooled, the furnace entrance door 205 is opened, and the carbon fiber sheet is removed. The carbon fiber sheet precursor 10 may be heat-treated one by one, or multiple sheets may be stacked and heat-treated at the same time. As in the case of using a continuous high-temperature furnace 100, it is preferable to heat-treat multiple sheets in a stack from the viewpoint of production costs.

なお、以上のような連続式またはバッチ式の高温炉に供する前に、炭素繊維シート前駆体10に対し、当該高温炉より低温の低温炉、例えば最高温度600~1,000℃の低温炉により予備熱処理を行ってもよい。予備熱処理により、高温炉内で炭素繊維シート前駆体から発生する分解ガスの量を抑えることができる。 Before being subjected to the above-mentioned continuous or batch-type high-temperature furnace, the carbon fiber sheet precursor 10 may be subjected to a preliminary heat treatment in a low-temperature furnace having a lower temperature than the high-temperature furnace, for example, a low-temperature furnace having a maximum temperature of 600 to 1,000°C. The preliminary heat treatment can reduce the amount of decomposition gas generated from the carbon fiber sheet precursor in the high-temperature furnace.

以下、本発明の実施例について説明する。 The following describes an embodiment of the present invention.

<ガス発生量の測定方法>
高温炉を通過する前の炭素繊維シート前駆体および高温炉通過後の炭素繊維シートから10cm角のサンプルを採取し、サンプルの質量差を測定した。当該質量差をガス発生量として、高温炉での処理時間で除した値を単位時間あたりの高温炉内でのガス発生量として定義した。
<Method for measuring gas generation rate>
A 10 cm square sample was taken from the carbon fiber sheet precursor before passing through the high-temperature furnace and the carbon fiber sheet after passing through the high-temperature furnace, and the mass difference between the samples was measured. The mass difference was taken as the amount of gas generated, and the value obtained by dividing the mass difference by the treatment time in the high-temperature furnace was defined as the amount of gas generated in the high-temperature furnace per unit time.

<炭素繊維シートの製造>
高温炉としては図1の連続式の高温炉を用いた。当該高温炉の部材であるヒーターおよびマッフルは炭素材料を素材としたものを使用した。
<Production of carbon fiber sheet>
The high-temperature furnace used was the continuous high-temperature furnace shown in Fig. 1. The heater and muffle, which are components of the high-temperature furnace, were made of carbon material.

東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ(登録商標)”T300-6K(平均繊維径:7μm、単繊維数:6,000本)を6mmの長さにカットし、水を抄造媒体、ポリビニルアルコールをバインダーとして連続的に抄造し、目付が30g/mの炭素短繊維抄紙体を得た。 Toray Industries, Inc.'s polyacrylonitrile carbon fiber "TORAYCA (registered trademark)" T300-6K (average fiber diameter: 7 μm, number of single fibers: 6,000) was cut to a length of 6 mm and continuously paper-formed using water as a paper-forming medium and polyvinyl alcohol as a binder to obtain a carbon short fiber paper body with a basis weight of 30 g/ m2 .

次に、平均粒径約5μmの鱗片状黒鉛、フェノール樹脂、メタノールを混合した分散液を上記炭素短繊維抄紙体に含浸し、140℃で乾燥させた。乾燥後、含浸後の炭素短繊維抄紙体の目付は含浸前と比較して50g/m増加していた。その後、0.5MPaの加圧下に200℃で加熱し、フェノール樹脂を硬化させて、炭素繊維シート前駆体を得た。 Next, the carbon short fiber paper body was impregnated with a dispersion liquid in which flake graphite having an average particle size of about 5 μm, phenol resin, and methanol were mixed, and dried at 140° C. After drying, the basis weight of the impregnated carbon short fiber paper body was increased by 50 g/m 2 compared to before impregnation. Thereafter, the carbon short fiber paper body was heated at 200° C. under a pressure of 0.5 MPa to cure the phenol resin, and a carbon fiber sheet precursor was obtained.

フェノール樹脂としては、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを1:1の質量比で混合した樹脂を用いた。 The phenolic resin used was a mixture of resol-type phenolic resin and novolac-type phenolic resin in a mass ratio of 1:1.

次に、上記炭素繊維シート前駆体を2枚重ねて最高温度800℃の低温炉で連続的に予備熱処理し、続けて最高温度2,300℃、炉幅50cmの高温炉内で連続的に熱処理することで炭素繊維シートを製造した。また、高温炉による熱処理時は炭素繊維シート製造時の発生ガス量が20g/minとなるように搬送速度を調整した。 Next, two of the carbon fiber sheet precursors were stacked and continuously pre-heat-treated in a low-temperature furnace with a maximum temperature of 800°C, and then continuously heat-treated in a high-temperature furnace with a maximum temperature of 2,300°C and a furnace width of 50 cm to produce a carbon fiber sheet. In addition, during the heat treatment in the high-temperature furnace, the conveying speed was adjusted so that the amount of gas generated during the production of the carbon fiber sheet was 20 g/min.

<ヒーター厚さの測定方法>
図3に本実施例で使用した高温炉に用いられるヒーターの模式図を示す。ヒーター最薄部302(ヒーター断面積における最薄部)の厚さを炭素繊維シートを製造する前に測定し、その時の厚さをt1とした。炭素繊維シートの製造後に再度ヒーター最薄部の厚さを測定し、その時の厚さをt2とし、t2とt1を比較してヒーターの厚さが減少した割合を算出した。
<Method of measuring heater thickness>
3 shows a schematic diagram of the heater used in the high-temperature furnace used in this embodiment. The thickness of the thinnest part 302 of the heater (the thinnest part in the cross-sectional area of the heater) was measured before the carbon fiber sheet was produced, and the thickness at that time was designated as t1. After the carbon fiber sheet was produced, the thickness of the thinnest part of the heater was measured again, and the thickness at that time was designated as t2. The rate at which the thickness of the heater was reduced was calculated by comparing t2 and t1.

(実施例1)
上記<炭素繊維シートの製造>において、高温炉の部材であるヒーターおよびマッフルの表面に厚さ100μmの炭化タンタル層(融点3,880℃)を形成させ炭素繊維シートを20万m製造した。製造後に高温炉を解体し、ヒーターの最薄部について厚さの減少率を測定した結果、製造開始前に比べて厚さは10%減少していたもののヒーターは割れる兆候がなく、高温炉の再組立時、ヒーターは交換せずに製造を続行することが可能であった。
(Example 1)
In the above <Manufacturing of Carbon Fiber Sheet>, a tantalum carbide layer (melting point 3,880°C) having a thickness of 100 μm was formed on the surface of the heater and muffle, which are components of the high-temperature furnace, to manufacture 200,000 m2 of carbon fiber sheet. After manufacture, the high-temperature furnace was dismantled, and the reduction rate of thickness was measured for the thinnest part of the heater. As a result, although the thickness had decreased by 10% compared to before manufacture began, there were no signs of the heater cracking, and it was possible to continue manufacture without replacing the heater when reassembling the high-temperature furnace.

(実施例2)
ヒーターおよびマッフルの表面に厚さ100μmの炭化ニオブ層(融点3,490℃)を形成させたこと以外は実施例1と同様に炭素繊維シートを20万m製造した。製造後に高温炉を解体し、ヒーターの最薄部について厚さの減少率を測定した結果、製造開始前に比べて厚さは13%減少していたもののヒーターは割れる兆候がなく、高温炉の再組立時、ヒーターは交換せずに製造を続行することが可能であった。
Example 2
200,000 m2 of carbon fiber sheet was manufactured in the same manner as in Example 1, except that a 100 μm thick niobium carbide layer (melting point 3,490° C.) was formed on the surface of the heater and the muffle. After manufacturing, the high-temperature furnace was disassembled, and the reduction rate of thickness was measured for the thinnest part of the heater. Although the thickness had decreased by 13% compared to before the start of manufacturing, there were no signs of the heater cracking, and it was possible to continue manufacturing without replacing the heater when reassembling the high-temperature furnace.

(実施例3)
ヒーターおよびマッフルの表面に厚さ100μmの炭化ケイ素層(融点2,730℃)を形成させたこと以外は実施例1と同様に炭素繊維シートを20万m製造した。製造後に高温炉を解体し、ヒーターの最薄部について厚さの減少率を測定した結果、製造開始前に比べて厚さは20%減少していたもののヒーターは割れる兆候がなく、高温炉の再組立時、ヒーターは交換せずに製造を続行することが可能であった。
Example 3
200,000 m2 of carbon fiber sheets were manufactured in the same manner as in Example 1, except that a 100 μm thick silicon carbide layer (melting point 2,730° C.) was formed on the surface of the heater and the muffle. After manufacturing, the high-temperature furnace was disassembled, and the thickness reduction rate was measured for the thinnest part of the heater. Although the thickness had decreased by 20% compared to before the start of manufacturing, there were no signs of the heater cracking, and it was possible to continue manufacturing without replacing the heater when reassembling the high-temperature furnace.

(比較例1)
ヒーターおよびマッフルの表面に無機材料のコーティングは実施しなかったこと以外は実施例1同様に20万mの炭素繊維シートを製造した。製造後に高温炉を解体し、ヒーターの最薄部について厚さの減少率を測定した結果、製造開始前に比べて厚さは40%減少しており、ヒーターが割れる直前であったため製造を継続できない状態であった。
(Comparative Example 1)
A carbon fiber sheet of 200,000 m2 was produced in the same manner as in Example 1, except that the surfaces of the heater and the muffle were not coated with an inorganic material. After production, the high-temperature furnace was dismantled, and the reduction rate of thickness was measured at the thinnest part of the heater. As a result, the thickness was reduced by 40% compared to before the start of production, and the heater was on the verge of cracking, so production could not be continued.

10 炭素繊維シート前駆体
20 炭素繊維シート
100 高温炉
101 炉内空間
102 マッフル上壁
103 マッフル下壁
104 炉床
105 高温炉の入口(炉入口)
106 高温炉の出口(炉出口)
107 ヒーター
200 高温炉
201 炉内空間
202 マッフル上壁
203 マッフル下壁
204 炉床
205 炉入口扉
206 マッフル横壁
207 ヒーター
300 ヒーター
301 発熱部
302 ヒーター最薄部
10 Carbon fiber sheet precursor 20 Carbon fiber sheet 100 High-temperature furnace 101 Furnace space 102 Muffle upper wall 103 Muffle lower wall 104 Hearth 105 Inlet of high-temperature furnace (furnace inlet)
106 High temperature furnace outlet (furnace outlet)
107 heater 200 high temperature furnace 201 furnace space 202 muffle upper wall 203 muffle lower wall 204 hearth 205 furnace inlet door 206 muffle side wall 207 heater 300 heater 301 heat generating part 302 heater thinnest part

Claims (10)

炭素繊維または炭素繊維化可能な有機繊維を含む炭素繊維シート前駆体を熱処理して炭素繊維シートとする高温炉を含む炭素繊維シートの製造装置であって、前記高温炉は融点2,000℃以上の無機材料で表面をコーティングした炭素材料の部材を炉の内部に含むことを特徴とする炭素繊維シートの製造装置。 A carbon fiber sheet manufacturing apparatus including a high-temperature furnace that heat-treats a carbon fiber sheet precursor that contains carbon fiber or organic fiber that can be converted into carbon fiber to form a carbon fiber sheet, the high-temperature furnace being characterized in that the high-temperature furnace contains a carbon material member inside the furnace whose surface is coated with an inorganic material having a melting point of 2,000°C or higher. 前記無機材料の融点が2,700℃以上である請求項1に記載の炭素繊維シートの製造装置。 The carbon fiber sheet manufacturing apparatus according to claim 1, wherein the melting point of the inorganic material is 2,700°C or higher. 前記無機材料が炭化タンタル、炭化ニオブおよび炭化ケイ素からなる群から選ばれる少なくとも1つの無機材料である請求項1に記載の炭素繊維シートの製造装置。 The carbon fiber sheet manufacturing apparatus according to claim 1, wherein the inorganic material is at least one inorganic material selected from the group consisting of tantalum carbide, niobium carbide, and silicon carbide. 前記部材がヒーターおよび/またはマッフルである請求項1に記載の炭素繊維シートの製造装置。 The carbon fiber sheet manufacturing apparatus according to claim 1, wherein the member is a heater and/or a muffle. 前記炭素繊維シート前駆体が炭素化可能な有機物を含む請求項1に記載の炭素繊維シートの製造装置。 The carbon fiber sheet manufacturing apparatus according to claim 1, wherein the carbon fiber sheet precursor contains a carbonizable organic material. 請求項1に記載の炭素繊維シートの製造装置を用いて炭素繊維シートを製造する炭素繊維シートの製造方法。 A method for producing a carbon fiber sheet using the carbon fiber sheet production apparatus described in claim 1. 炭素繊維シート前駆体を複数枚重ねて同時に熱処理する請求項6に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 6, in which multiple carbon fiber sheet precursors are stacked and heat-treated simultaneously. 炭素繊維シートを連続的に製造する請求項6に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 6, which produces the carbon fiber sheet continuously. 熱処理の際に、炉幅50cmあたり、10g/min以上の熱分解ガスが炭素繊維シート前駆体から発生する請求項8に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 8, wherein during the heat treatment, 10 g/min or more of pyrolysis gas is generated from the carbon fiber sheet precursor per 50 cm of furnace width. 炭素繊維シートをバッチ的に製造する請求項6に記載の炭素繊維シートの製造方法。 The method for producing a carbon fiber sheet according to claim 6, in which the carbon fiber sheet is produced in a batchwise manner.
JP2023216556A 2023-02-28 2023-12-22 Carbon fiber sheet manufacturing apparatus and manufacturing method Pending JP2024122863A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023029456 2023-02-28
JP2023029456 2023-02-28

Publications (1)

Publication Number Publication Date
JP2024122863A true JP2024122863A (en) 2024-09-09

Family

ID=92672639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023216556A Pending JP2024122863A (en) 2023-02-28 2023-12-22 Carbon fiber sheet manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP2024122863A (en)

Similar Documents

Publication Publication Date Title
US8641939B2 (en) Porous carbon sheet and process for production thereof
US8747796B2 (en) Method of preparing carbon substrate for gas diffusion layer of polymer electrolyte fuel cell, carbon substrate prepared by using the method, and system for manufacturing the same
CN101886332B (en) Preparation method of polyacrylonitrile base preoxidized fiber felt and graphite carbon felt
CN113774720B (en) Carbon fiber paper and preparation method thereof
WO2006101084A1 (en) Carbon fiber and processes for (continuous) production thereof, and catalyst structures, electrodes for solid polymer fuel cells, and solid polymer fuel cells, made by using the carbon fiber
JP4461695B2 (en) Porous carbon electrode substrate and method for producing the same
EP3558867A1 (en) Graphite material
JP2006143478A (en) Porous carbon base material, gas-diffusing material using the same, film-electrode jointed article and fuel cell
KR101324703B1 (en) Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
JP7290032B2 (en) Manufacturing method of carbon fiber sheet
JP2024122863A (en) Carbon fiber sheet manufacturing apparatus and manufacturing method
KR20220153522A (en) Carbon fiber substrate for gas diffusion layer of fuel cell comprising recycled carbon fiber, gas diffusion layer comprising the same and fuel cell comprising the same
JPS6332863A (en) Carbon-graphite reservoir layer and manufacture of the same
JP2019131940A (en) Method for producing oxidized fiber and oxidized fiber
JP2009234851A (en) Porous carbon sheet and its manufacturing process
RU2555468C2 (en) Heat treatment of fibrous carbon-bearing materials
JP4728528B2 (en) Thermosetting device and thermosetting method for porous carbon-based molded product precursor sheet
RU2705971C1 (en) Method of producing carbon graphitized fibrous materials
CN111621879B (en) Polybenzazole graphite fiber and preparation method thereof
JP2780987B2 (en) Manufacturing method of carbon plate
JP2006089331A (en) Manufacturing method of carbon fiber substrate
JP2007012440A (en) Porous carbon material for fuel cell, carbon fiber reinforced plastic heat conductive member, and production method thereof
JPH0497948A (en) Porous carbon plate and its production
JP2023122733A (en) Heat treatment furnace of carbon fiber sheet and manufacturing method of carbon fiber sheet using the same