[go: up one dir, main page]

JP2024117667A - Sheet roofing material - Google Patents

Sheet roofing material Download PDF

Info

Publication number
JP2024117667A
JP2024117667A JP2023023885A JP2023023885A JP2024117667A JP 2024117667 A JP2024117667 A JP 2024117667A JP 2023023885 A JP2023023885 A JP 2023023885A JP 2023023885 A JP2023023885 A JP 2023023885A JP 2024117667 A JP2024117667 A JP 2024117667A
Authority
JP
Japan
Prior art keywords
roofing
roof
plate
shaped
roofing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023023885A
Other languages
Japanese (ja)
Inventor
和彦 小栗
Kazuhiko Oguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iraka Engineering Ltd
Original Assignee
Iraka Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iraka Engineering Ltd filed Critical Iraka Engineering Ltd
Priority to JP2023023885A priority Critical patent/JP2024117667A/en
Publication of JP2024117667A publication Critical patent/JP2024117667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

To solve the problem of discarding roofing materials even when they have not deteriorated, because conventional roofing materials are difficult to remove in a reusable state, and it is less costly to prepare new roofing materials than to take the time and effort to remove them in a reusable state.SOLUTION: The plate-shaped roofing material of the present invention has a roof structure in which the fastening material is fixed to the roof substrate using screws. The working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length is half the working width dimension, the working length dimension is the horizontal projection dimension of the working length multiplied by the gradient elongation rate for each gradient, the roofing materials are shifted by half the working width dimension for each step in the flow direction, the water stop part is in contact with the top surface of the roofing, the water drain part is separated from the top surface of the roofing, standardized shape roofing materials of a standardized shape are arranged on all roof edges, all the roof edges having second fastening holes, and the fastening material of the standardized shape roofing material is fixed to the roof substrate using screws.SELECTED DRAWING: Figure 1

Description

本発明は板状屋根材の屋根構造に関する技術分野であり、勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、前記板状屋根材の尻側には複数の第1緊結穴を設け、前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、前記水上止水部の両端には水抜き部を設け、前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、前記水上止水部は前記ルーフィングの上面と接地し、前記水抜き部は前記ルーフィングの前記上面より離隔し、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、前記規格化形状屋根材は第2緊結穴を有し、前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定することを特徴とした技術である。 The present invention relates to a technical field related to roof structures using sheet-shaped roofing materials, and in the sheet-shaped roofing material roof structure, a roofing sheet is laid on the roof base of a sloped building roof, a sheet-shaped roofing material is laid directly on the roofing sheet, and a fastening material is fixed to the roof base using screws. In the sheet-shaped roofing material roof structure, a plurality of first fastening holes are provided at the rear end of the sheet-shaped roofing material, and a water-stopping portion is provided on the underside of the sheet-shaped roofing material for each of the first fastening holes, the water-stopping portion is provided on both ends of the water-stopping portion, the working width dimension of the sheet-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the sheet-shaped roofing material is half the working width dimension, and the working length dimension is calculated by multiplying the horizontal projection dimension of the working length by the gradient elongation rate for each slope of the roof. The dimensions are set according to the roofing material, and when the plate-shaped roofing material is laid, the head side of the upper plate-shaped roofing material is placed on the tail side of the lower plate-shaped roofing material in the flow direction, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, and the plate-shaped roofing materials are placed with half the working width dimension for each stage in the flow direction, the water stopper part is in contact with the upper surface of the roofing, the water drainage part is separated from the upper surface of the roofing, and standardized roofing materials of a standardized shape are placed at all roof edges such as the ridge part, corner ridge part, eaves part, three-way part, hipped ridge difference part, and valley part, and the standardized roofing material has a second fastening hole, and the fastening material of the standardized roofing material is fixed to the roof base using the screws.

従来技術の特許文献1には、実公平8-6907号の屋根構造がある。この特許文献は、板状の屋根材の天然石からなる屋根板の配設構造に関するものである。
板状の屋根材の天然石からなる屋根板の配設構造として、屋根面に複数載置される屋根板と、断面L字状をなし上面に流水溝を有するジョイント板と、これら屋根板およびジョイント板を屋根面に固定する釘と、両面接着テープと、から構成し、前記屋根板は、水平方向において側端部同士を当接するように配置され、前記ジョイント板は各屋根板同士の前記当接部分の下面にL字状の立上り部分が屋根板の上端と係合するように配設され、前記釘は屋根板の上方両縁部に屋根板およびジョイント板を屋根面に固定するように打ち込まれ、前記両面接着テープは、前記各釘の上面を覆うように、釘に沿って水平に貼着するようにして屋根の水平方向における一列を構成し、この水平方向における一列を、屋根面の下方から上方にかけて、前列の両面接着テープ部分に、屋根板およびジョイント板の下方端が重合するように複数列設ける提案がされている。
The prior art, Patent Document 1, is a roof structure of Japanese Utility Model Publication No. 8-6907. This patent document relates to an arrangement structure of roof panels made of natural stone, which is a plate-shaped roofing material.
A proposal has been made for an arrangement structure for roof panels made of natural stone, a plate-shaped roofing material, which comprises multiple roof panels placed on a roof surface, a joint panel having an L-shaped cross section and a water flow groove on its upper surface, nails for fixing the roof panels and joint panels to the roof surface, and double-sided adhesive tape, in which the roof panels are arranged so that their side ends abut each other horizontally, the joint panels are arranged so that their L-shaped rising parts engage with the upper ends of the roof panels on the undersides of the abutting parts of the roof panels, the nails are driven into both upper edges of the roof panels to fix the roof panels and joint panels to the roof surface, and the double-sided adhesive tape is attached horizontally along the nails so as to cover the upper surfaces of the nails, forming a horizontal row on the roof, and multiple rows of this horizontal row are arranged from the bottom to the top of the roof surface so that the lower ends of the roof panels and joint panels overlap with the double-sided adhesive tape portion of the previous row.

実公平8-6907号公報Publication No. 8-6907

特許文献1では板状の屋根材の天然石からなる屋根板の配設構造に関するものであり、屋根面に複数載置される屋根板と、断面L字状をなし上面に流水溝を有するジョイント板と、これら屋根板およびジョイント板を屋根面に固定する釘と、両面接着テープと、から構成し、前記屋根板は、水平方向において側端部同士を当接するように配置され、前記ジョイント板は各屋根板同士の前記当接部分の下面にL字状の立上り部分が屋根板の上端と係合するように配設され、前記釘は屋根板の上方両縁部に屋根板およびジョイント板を屋根面に固定するように打ち込まれ、前記両面接着テープは、前記各釘の上面を覆うように、釘に沿って水平に貼着するようにして屋根の水平方向における一列を構成し、この水平方向における一列を、屋根面の下方から上方にかけて、前列の両面接着テープ部分に、屋根板およびジョイント板の下方端が重合するように複数列設けることを特徴とするものである。この構成により、各屋根板間の当接部から侵入する雨水が屋根面に到達することを防止するようにして、屋根板の三枚重ねを不用とすることにより屋根板枚数を減少させるとともに、従来の天然石からなる屋根板の三枚重ね部における厚み不均一を解消し、両面接着テープにより釘目をシールして防水性を向上させる一方、屋根板の亀裂等から生じる屋根板の落下を防止するという効果を発揮する。 Patent document 1 relates to a roof panel arrangement structure made of natural stone, a plate-shaped roofing material, which is composed of multiple roof panels placed on the roof surface, a joint panel with an L-shaped cross section and a water flow groove on its upper surface, nails for fixing the roof panels and joint panels to the roof surface, and double-sided adhesive tape, the roof panels are arranged so that their side ends abut each other horizontally, the joint panels are arranged on the underside of the abutting parts of the roof panels so that their L-shaped rising parts engage with the upper ends of the roof panels, the nails are driven into both upper edges of the roof panels to fix the roof panels and joint panels to the roof surface, the double-sided adhesive tape is attached horizontally along the nails so as to cover the upper surfaces of each nail, forming a horizontal row on the roof, and the horizontal row is arranged in multiple rows from the bottom to the top of the roof surface so that the lower ends of the roof panels and joint panels overlap with the double-sided adhesive tape part of the front row. This structure prevents rainwater from seeping in through the joints between the roof panels from reaching the roof surface, and by eliminating the need to stack three roof panels, it reduces the number of roof panels, eliminates the uneven thickness of the triple-layered sections of conventional roof panels made of natural stone, seals nail joints with double-sided adhesive tape to improve waterproofing, and prevents roof panels from falling off due to cracks in the roof panels, etc.

特許文献1の板状の屋根材の天然石からなる屋根板の配設構造では、屋根板を固定する釘は屋根板の上方両縁部に屋根板およびジョイント板を屋根面に固定するように打ち込まれ、前記両面接着テープは、前記各釘の上面を覆うように、釘に沿って水平に貼着するようにして屋根の水平方向における一列を構成し、この水平方向における一列を、屋根面の下方から上方にかけて、前列の両面接着テープ部分に、屋根板およびジョイント板の下方端が重合するように複数列設けることで、防水性能の向上と屋根材の固定性能の向上を発揮するとあるが、両面接着テープの経年劣化により屋根板上面からの防水性能は低下してくる。
屋根板の上面からの防水性能が低下し、屋根材の裏面側に雨水が吹き込んでしまった際に、吹き込んだ雨水が屋根面の上面に浸入し、屋根材の下面側を軒先側に流れ出し、屋根板を固定する釘の釘穴部から屋根面に打ち込まれている釘を伝って屋根下地内部に雨水が浸入してしまうという課題があった。
また、天然石からなる屋根材は本来耐久性の高い屋根材だが、屋根への取り付けの際に屋根板を釘で留め付け、更に各釘の上面を両面接着テープで上面を覆う配設構造となっているため、屋根材を再利用出来る状態で取り外すことが難しく、再利用できる状態で多くの工数をかけて取り外す手間よりも、新たな屋根材を用意した方がコスト的に安くなるため、屋根材の劣化が進んでいなくても屋根材を廃棄するという事が取られている。
この大量生産、大量消費、大量廃棄の考え方は、特許文献1が発明された時代では当たり前の考え方であったが、その結果、現在は気候変動問題、天然資源の枯渇、大規模な資源採取による生物多様性の破壊など様々な環境問題に発展している。
大量生産、大量消費、大量廃棄といった一方通行型の経済社会活動から、持続可能な形で資源を利用する「循環経済」への移行を実現するために、製品の価値の最大化、資源消費の最小化、廃棄物の発生抑止等を目指す屋根材が必要とされている。
In the arrangement structure of roof panels made of natural stone, which is a plate-shaped roofing material, in Patent Document 1, the nails that secure the roof panels are driven into both upper edges of the roof panels so as to secure the roof panels and joint panels to the roof surface, and the double-sided adhesive tape is attached horizontally along the nails so as to cover the upper surfaces of each nail, forming a row in the horizontal direction of the roof, and this horizontal row is provided in multiple rows from the bottom to the top of the roof surface so that the lower ends of the roof panels and joint panels overlap with the double-sided adhesive tape in the previous row, thereby improving waterproofing performance and improving the fixing performance of the roof material, but waterproofing performance from the top surface of the roof panels decreases due to deterioration of the double-sided adhesive tape over time.
When the waterproofing performance from the top surface of the roof panel deteriorates and rainwater blows into the underside of the roof material, the blown-in rainwater penetrates the top surface of the roof, flows down the underside of the roof material toward the eaves, and then penetrates into the roof underlayment through the nail holes for the nails that secure the roof panel and run down the nails driven into the roof surface.
In addition, while roofing materials made from natural stone are inherently highly durable, when they are attached to the roof, the roof panels are fastened with nails and the top of each nail is covered with double-sided adhesive tape, making it difficult to remove the roofing materials in a state where they can be reused. As it is less costly to prepare new roofing materials than to go through the laborious effort of removing them in a state where they can be reused, the practice is to discard the roofing materials even if they have not deteriorated.
This idea of mass production, mass consumption, and mass disposal was common sense at the time Patent Document 1 was invented, but as a result, it has now developed into various environmental problems such as climate change, the depletion of natural resources, and the destruction of biodiversity due to large-scale resource extraction.
In order to realize a transition from one-way economic and social activities such as mass production, mass consumption, and mass waste to a "circular economy" that uses resources sustainably, there is a need for roofing materials that aim to maximize product value, minimize resource consumption, and prevent waste generation.

本発明は、勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、前記板状屋根材の尻側には複数の第1緊結穴を設け、前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、前記水上止水部の両端には水抜き部を設け、前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、前記水上止水部は前記ルーフィングの上面と接地し、前記水抜き部は前記ルーフィングの前記上面より離隔し、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、前記規格化形状屋根材は第2緊結穴を有し、前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定することで、屋根材の下面側に雨水が吹き込んでしまった場合においても、屋根材下面の第1緊結穴から緊結材であるビスを伝って雨水が野地板内部に浸入しない板状屋根材を提供する。
従来は直接屋根下地に留め付ける屋根材の場合、緊結材をビスにするとルーフィングをビスのネジ部で大きく穴を開けてしまい、屋根材の裏に回った雨水をルーフィングでは防水しきれない技術的な問題があった。
そのため、直接屋根下地に留め付ける屋根材ではビスが使われずに釘が使われていた。
しかし、屋根材を釘で留め付けた場合、屋根材を再利用出来る状態で取り外すことが難しく、再利用できる状態で多くの工数をかけて取り外す手間よりも、新たな屋根材を用意した方がコスト的に安くなるため、屋根材の劣化が進んでいなくても屋根材を廃棄し、新たな需要に対しては新たに屋根材を生産し提供するという事が繰り返され、温室効果ガスの排出による地球温暖化、資源の枯渇、廃棄による環境破壊などの問題があった。
また、従来の屋根構造では、屋根端部に納める板状屋根材の加工形状は全ての端部毎に形状が異なり、屋根端部の屋根材を再利用するには屋根端部の全ての屋根材に屋根端部のどこで使われていたかを記録し、再利用の際にその位置に配置する必要があった。
この作業は非常に手間の掛かる作業であり、現実的には新たな瓦を使用し、葺き直した方がコスト的に安くなるという現状がある。
従来の屋根構造では、屋根端部の加工した屋根材の再利用は葺き直し手間が非常に多く掛かってしまい、新たな瓦を使うよりも再利用による作業手間のコストの方がより多く掛かってしまうという問題があった。
The present invention provides a roof structure using plate-shaped roofing materials, in which roofing is provided on a roof foundation of a sloped building roof, plate-shaped roofing materials are laid directly on the roofing, and fastening materials are fixed to the roof foundation using screws. The plate-shaped roofing materials are provided with a plurality of first fastening holes at the tail end thereof, and a water stopper is provided on the underside of each of the first fastening holes at the tail end thereof relative to the first fastening holes, and drainage portions are provided at both ends of the water stopper, the working width dimension of the plate-shaped roofing materials is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing materials is half the working width dimension, and the working length dimension is a dimension obtained by multiplying the horizontal projection dimension of the working length by the gradient elongation rate for each slope of the roof, and when the plate-shaped roofing materials are laid, The head sides of the upper tier of plate-shaped roofing materials are arranged overlapping each other and arranged so that the sides of adjacent plate-shaped roofing materials abut in the girder direction, with half the working width dimension shifted for each tier in the flow direction, the water-stopping portion contacts the upper surface of the roofing, the water drainage portion is spaced from the upper surface of the roofing, and standardized-shaped roofing materials of a standardized shape are arranged at all roof edges such as the ridge portion, corner ridge portion, eaves portion, three-way portion, hipped ridge difference portion and valley portion, the standardized-shaped roofing material has a second fastening hole, and the fastening material of the standardized-shaped roofing material is fixed to the roof base using the screw, thereby providing a plate-shaped roofing material in which, even if rainwater blows into the underside of the roofing material, rainwater will not penetrate into the inside of the sheathing board from the first fastening hole on the underside of the roofing material through the screw which is the fastening material.
Traditionally, when roofing materials were fastened directly to the roof underlayment, using screws as fastening materials would create large holes in the roofing at the threads of the screws, creating a technical problem where the roofing was unable to completely waterproof rainwater that got behind the roofing material.
For this reason, roofing materials that are attached directly to the roof underlayment are fixed using nails rather than screws.
However, when roofing materials are fastened with nails, it is difficult to remove them in a state where they can be reused, and it is less costly to prepare new roofing materials than to take the time and effort to remove them in a state where they can be reused. Therefore, even if the roofing materials have not deteriorated, they are discarded and new roofing materials are produced and provided to meet new demand, which leads to problems such as global warming due to greenhouse gas emissions, resource depletion, and environmental destruction due to disposal.
Furthermore, in conventional roof structures, the processed shape of the sheet-shaped roofing materials placed at the roof edges was different for each edge, and in order to reuse the roofing materials at the roof edges, it was necessary to record for each roofing material at the roof edge where it had been used and to place it in that position when it was reused.
This is an extremely time-consuming task, and in reality it would be less costly to use new tiles and re-roof the area.
In conventional roof structures, reusing processed roofing materials on the edges of a roof required a great deal of work to re-roof the roof, and the cost of the work required for reuse was greater than the cost of using new tiles.

請求項1記載の本発明の板状屋根材の屋根構造は、勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、前記板状屋根材の尻側には複数の第1緊結穴を設け、前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、前記水上止水部の両端には水抜き部を設け、前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、前記水上止水部は前記ルーフィングの上面と接地し、前記水抜き部は前記ルーフィングの前記上面より離隔し、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、前記規格化形状屋根材は第2緊結穴を有し、前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定することを特徴とする。 The roof structure of the plate-shaped roofing material of the present invention described in claim 1 is a roof structure of a building roof having a slope, in which a roofing is provided on a roof base of the roof of the building, a plate-shaped roofing material is directly laid on the roofing, and a fastening material is fixed to the roof base using screws. In the roof structure of the plate-shaped roofing material, a plurality of first fastening holes are provided on the tail side of the plate-shaped roofing material, a water stopper is provided on the underside of each of the first fastening holes on the tail side of the first fastening holes, and drainage parts are provided on both ends of the water stopper, the working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension, and the working length dimension is a gradient elongation ratio of the horizontal projection dimension of the working length for each slope of the roof. When the plate-shaped roofing material is laid, the head side of the upper plate-shaped roofing material is placed on the tail side of the lower plate-shaped roofing material in the flow direction, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, and the plate-shaped roofing materials are placed with a shift of half the working width dimension for each stage in the flow direction, the water stopper part is in contact with the upper surface of the roofing, the water drainage part is separated from the upper surface of the roofing, and standardized-shaped roofing materials of a standardized shape are placed on all roof edges such as the ridge part, corner ridge part, eaves part, three-way part, hipped ridge difference part, and valley part, and the standardized-shaped roofing material has a second fastening hole, and the fastening material of the standardized-shaped roofing material is fixed to the roof base using the screws.

請求項2記載の本発明は、請求項1に記載の板状屋根材の屋根構造において、前記板状屋根材及び前記規格化形状板状屋根材の材質が陶磁器であることを特徴とする。 The present invention described in claim 2 is characterized in that in the roof structure using the plate-shaped roofing material described in claim 1, the material of the plate-shaped roofing material and the standardized shape plate-shaped roofing material is ceramic.

請求項3記載の本発明は、請求項1に記載の板状屋根材の屋根構造において、前記水抜き部は前記第1緊結穴毎に前記下面の前記第1緊結穴の両側に前記第1緊結穴から離隔した位置で設けたことを特徴とする。 The present invention described in claim 3 is characterized in that, in the roof structure of the plate-shaped roof material described in claim 1, the water drainage portion is provided on both sides of the first fastening hole on the underside at a position spaced apart from the first fastening hole for each of the first fastening holes.

本発明によれば、勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、前記板状屋根材の尻側には複数の第1緊結穴を設け、前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、前記水上止水部の両端には水抜き部を設け、前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、前記水上止水部は前記ルーフィングの上面と接地し、前記水抜き部は前記ルーフィングの前記上面より離隔し、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、前記規格化形状屋根材は第2緊結穴を有し、前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定することで、風雨による雨水の吹込みに対する防水性能を向上させることが出来る。
本発明では、板状屋根材にて1次防水を行いルーフィングで2次防水を行っている。
暴風雨などでは1次防水だけでは雨水の浸入を防ぎきることが出来ないため、屋根材の奥のルーフィング上まで雨水が吹き込んだ場合、ルーフィング上の雨水を緊結材の穴から屋根下地内部に浸入させることなく軒先側に円滑に流し出すことが防水性能として必要になる。
本発明の板状屋根材は、尻側に第1緊結穴を複数設け、第1緊結穴毎に下面の尻側に水上止水部を設けている。
板状屋根材は、緊結材としてビスを使用することで、板状屋根材を屋根下地に固定する際に水上止水部がルーフィング上面と強く密着され、屋根材の裏面にあるルーフィング上まで吹き込んだ雨水は水上止水部で完全に止水されることになる。
水上止水部の水下側にある板状屋根材を固定するビスには雨水が浸入することが無くなり、その結果、ビス固定部から屋根下地内部に雨水が浸入することが無くなる。
第1緊結穴毎に水上止水部を設け、水上止水部の両側にルーフィング上面と離隔している水抜き部を設ける構成とすることで、ルーフィング上まで吹き込んだ雨水は水上止水部で滞留せずにルーフィング上面と離隔している水抜き部から雨水を軒先側に円滑に流し出すことが出来る。
本発明の板状屋根材は、敷設の際に流れ方向で下段の板状屋根材の尻側に上段の板状屋根材の頭側を重ねて配置する構成により、ルーフィング上面と板状屋根材の下面は、軒先側に行くにしたがって板状屋根材の厚み分だけ離隔する為、水抜き穴から流れた雨水を軒先まで円滑に流し出すことが出来る。
軒先側に行くにしたがって板状屋根材の厚み分だけ離隔する構成については複数の水抜き穴を有する構成と合わさることにより、水抜き穴が空気の通り道となり、ルーフィング上面の空気が桁方向だけでなく流れ方向の両方向に動く効果を発揮し、板状屋根材下の空間で屋根面全体の通気が促進される。
屋根面全体で通気が促進されることにより、ルーフィング上に浸入した雨水や冬場の放射冷却現象により発生する結露水などを乾燥させるので、屋根下地の腐食を防止し、屋根全体の耐久性を上げることが出来る。
また、本発明の板状屋根材は、前記の効果によりビスを使用した場合でも防水における課題が解決できるようになった為、板状屋根材を屋根下地の上に設けたルーフィングの上に直接敷設し、屋根下地にビスで固定する構成が実現し、その結果、屋根材を損傷なく容易に取り外すことが出来る。
この構成により、工数を掛けなくても屋根材を容易に取り外せるようになったため、安価に屋根材を再利用することが出来るようになり、従来は葺き替えが必要だった建て替えやルーフィング材の交換などでも屋根材を廃棄せず本発明の板状屋根材を繰り返し再利用することが出来るようになった。
さらに、本発明の板状屋根材は、板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置することにより、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置することが出来る。全ての屋根端部には規格化した形状の規格化形状屋根材が配置されるので、どこの屋根端部にどの屋根材を配置していいたのかを記録する必要が無くなる。
そして、屋根端部に敷設する規格化形状屋根材の緊結材をビスとすることで、屋根端部の板状屋根材の取り外しが容易となり、再利用を簡単に行うことが出来る。
その結果、葺き替えの際に本発明の板状屋根材を再利用した方が、現状の屋根材を廃棄し新たな屋根材を用いて施工するよりもコスト的に安くなり、再利用によるメリットが多くなる。
本発明を用いる際に、その屋根材の素材を耐久性が非常に高い陶磁器にした場合、200年、300年と繰り返し使うことが出来るので、温室効果ガスの排出抑制、資源消費の最小化、廃棄物の抑制による環境保護といった人類共通の課題により多くの貢献が出来、屋根材における「循環経済」への移行を実現することが出来る。
According to the present invention, in a roof structure using plate-shaped roofing materials, a roofing sheet is laid on a roof foundation of a building having a slope, and a plate-shaped roofing material is laid directly on the roofing sheet, and a fastening material is fixed to the roof foundation using screws. A plurality of first fastening holes are provided on the tail side of the plate-shaped roofing material, and a water stopper is provided on the underside of each of the first fastening holes on the tail side of the first fastening holes, and drainage portions are provided on both ends of the water stopper. The working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension, and the working length dimension is a dimension obtained by multiplying the horizontal projection dimension of the working length by the gradient elongation rate for each slope of the roof, and when the plate-shaped roofing material is laid, In the flow direction, the head side of the upper plate-shaped roofing material is placed on the tail side of the lower plate-shaped roofing material, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, with half the working width dimension shifted for each stage in the flow direction, the water-stopping portion is in contact with the upper surface of the roofing, the water drainage portion is spaced from the upper surface of the roofing, and standardized shaped roofing materials of a standardized shape are placed at all roof edges such as the ridge portion, corner ridge portion, eaves portion, three-way portion, hipped ridge difference portion and valley portion, and the standardized shaped roofing material has a second fastening hole, and the fastening material of the standardized shaped roofing material is fixed to the roof base using the screws, thereby improving waterproof performance against rainwater being blown in by wind and rain.
In the present invention, primary waterproofing is performed using a plate-shaped roofing material, and secondary waterproofing is performed using roofing.
During a storm, the first waterproofing alone is not enough to completely prevent rainwater from entering, so if rainwater blows into the roofing material deep inside the roofing material, it is necessary for the waterproofing performance to be able to smoothly drain the rainwater on the roofing material out to the eaves side without allowing it to seep into the roof underlayment through holes in the fastening material.
The plate-shaped roofing material of the present invention has a plurality of first fastening holes at the tail end, and a water-blocking portion above water is provided at the tail end of the underside of each of the first fastening holes.
By using screws as fastening materials, the water-stopping part of the plate-shaped roofing material is firmly adhered to the top surface of the roofing when the plate-shaped roofing material is fixed to the roof base, and rainwater that blows onto the roofing on the back side of the roofing material is completely stopped by the water-stopping part.
Rainwater will no longer penetrate the screws that secure the plate-shaped roofing material on the below-water side of the water-stopping section, and as a result, rainwater will no longer penetrate into the interior of the roof underlayment through the screw fixing section.
By providing a water-above water-stopping section for each first fastening hole and providing water-draining sections separated from the upper surface of the roofing on both sides of the water-above water-stopping section, rainwater that is blown onto the roofing does not stagnate in the water-above water-stopping section, but can be smoothly drained out toward the eaves from the water-draining sections separated from the upper surface of the roofing.
When the plate-shaped roofing material of the present invention is installed, the head side of the upper plate-shaped roofing material is overlapped on the tail side of the lower plate-shaped roofing material in the flow direction, so that the upper surface of the roofing and the lower surface of the plate-shaped roofing material are separated by the thickness of the plate-shaped roofing material as they approach the eaves, allowing rainwater flowing through the drainage holes to flow smoothly to the eaves.
When combined with a configuration having multiple drain holes that are spaced apart by the thickness of the plate roofing material as one moves toward the eaves, the drain holes become air passages, causing the air on the top surface of the roofing to move in both directions, not just the rafters but also the flow direction, promoting ventilation of the entire roof surface in the space under the plate roofing material.
By promoting ventilation across the entire roof surface, rainwater that has seeped onto the roofing and condensation caused by radiation cooling in winter are dried out, preventing corrosion of the roof base and increasing the durability of the entire roof.
Furthermore, due to the above-mentioned effect, the plate-shaped roofing material of the present invention is able to solve waterproofing issues even when screws are used, making it possible to lay the plate-shaped roofing material directly on top of roofing installed on a roof base and fix it to the roof base with screws, thereby enabling the roofing material to be easily removed without damage.
This configuration allows the roofing material to be easily removed without labor, making it possible to reuse the roofing material at low cost, and it has become possible to repeatedly reuse the sheet roofing material of the present invention without discarding it even in cases such as rebuilding or replacing roofing materials, which previously required re-roofing.
Furthermore, in the plate-shaped roofing material of the present invention, the working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension, and the working length dimension is the horizontal projection dimension of the working length multiplied by the gradient elongation rate for each slope of the roof, and when the plate-shaped roofing material is laid, the head side of the plate-shaped roofing material of the upper stage is placed on the tail side of the plate-shaped roofing material of the lower stage in the flow direction, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, and the working width dimension is shifted by half for each stage in the flow direction, so that standardized-shaped roofing materials of standardized shapes can be placed on all roof ends such as the land ridge, corner ridge, eaves, three-way, hipped ridge difference, and valley. Since standardized-shaped roofing materials of standardized shapes are placed on all roof ends, there is no need to record which roofing materials were placed on which roof ends.
Furthermore, by using screws as fastening materials for the standardized roofing material laid on the roof edge, the plate-shaped roofing material on the roof edge can be easily removed, allowing it to be reused easily.
As a result, reusing the sheet-shaped roofing material of the present invention when re-roofing is less costly than discarding the existing roofing material and installing a new roofing material, and there are many benefits to reusing the material.
When using this invention, if the roofing material is made of extremely durable ceramic, it can be used repeatedly for 200 or 300 years, which will contribute greatly to common human challenges such as reducing greenhouse gas emissions, minimizing resource consumption, and protecting the environment by reducing waste, and will help realize a transition to a "circular economy" for roofing materials.

本発明の実施例による板状屋根材の製品図面Product drawing of sheet roofing material according to an embodiment of the present invention 本発明の実施例による板状屋根材の製品図面の断面図FIG. 2 is a cross-sectional view of a product diagram of a sheet-shaped roofing material according to an embodiment of the present invention. 本発明の実施例による板状屋根材と規格化形状屋根材の屋根伏せ図Roof covering diagram of sheet-shaped roofing material and standardized shape roofing material according to the embodiment of the present invention 本発明の実施例による板状屋根材の施工断面図Cross-sectional view of a plate-shaped roofing material according to an embodiment of the present invention 本発明の実施例による板状屋根材の施工断面図の拡大図FIG. 1 is an enlarged cross-sectional view of a plate-shaped roofing material according to an embodiment of the present invention; 本発明の実施例による板状屋根材と規格化形状屋根材の屋根伏せ図Roof covering diagram of sheet-shaped roofing material and standardized shape roofing material according to the embodiment of the present invention 本発明の実施例による隅棟右規格化形状屋根材の製品図面Product drawing of a standardized corner roof material according to an embodiment of the present invention

本発明の第1の実施の形態における板状屋根材の屋根構造は、勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、前記板状屋根材の尻側には複数の第1緊結穴を設け、前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、前記水上止水部の両端には水抜き部を設け、前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、前記水上止水部は前記ルーフィングの上面と接地し、前記水抜き部は前記ルーフィングの前記上面より離隔し、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、前記規格化形状屋根材は第2緊結穴を有し、前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定するものである。
本実施の形態によれば、本発明の板状屋根材は、風雨による雨水の吹込みに対する防水性能を向上させることが出来る。
本発明では、板状屋根材にて1次防水を行いルーフィングで2次防水を行っている。
暴風雨などでは1次防水だけでは雨水の浸入を防ぎきることが出来ないため、屋根材の奥のルーフィング上まで雨水が吹き込んだ場合、ルーフィング上の雨水を緊結材の穴から屋根下地内部に浸入させることなく軒先側に円滑に流し出すことが防水性能として必要になる。
本発明の板状屋根材は、尻側に第1緊結穴を複数設け、第1緊結穴毎に下面の尻側に水上止水部を設けている。
板状屋根材は、緊結材としてビスを使用することで、板状屋根材を屋根下地に固定する際に水上止水部がルーフィング上面と強く密着され、屋根材の裏面にあるルーフィング上まで吹き込んだ雨水は水上止水部で完全に止水されることになる。
水上止水部の水下側にある板状屋根材を固定するビスには雨水が浸入することが無くなり、その結果、ビス固定部から屋根下地内部に雨水が浸入することが無くなる。
第1緊結穴毎に水上止水部を設け、水上止水部の両側にルーフィング上面と離隔する水抜き部を設ける構成とすることで、ルーフィング上まで吹き込んだ雨水は水上止水部で滞留せずにルーフィング上面と離隔している水抜き部から雨水を軒先側に円滑に流し出すことが出来る。
また、本発明の板状屋根材は、敷設の際に流れ方向で下段の板状屋根材の尻側に上段の板状屋根材の頭側を重ねて配置する構成により、ルーフィング上面と板状屋根材の下面は、軒先側に行くにしたがって板状屋根材の厚み分だけ離隔する為、水抜き穴から流れた雨水を軒先まで円滑に流し出すことが出来る。
軒先側に行くにしたがって板状屋根材の厚み分だけ離隔する構成については複数の水抜き穴を有する構成と合わさることにより、水抜き穴が空気の通り道となり、ルーフィング上面の空気が桁方向だけでなく流れ方向の両方向に動く効果を発揮し、板状屋根材下の空間で屋根面全体の通気が促進される。
屋根面全体で通気が促進されることにより、ルーフィング上に浸入した雨水や冬場の放射冷却現象により発生する結露水などを乾燥させるので、屋根下地の腐食を防止し、屋根全体の耐久性を上げることが出来る。
本発明の板状屋根材の屋根構造は、前記の効果によりビスを使用した場合でも防水における課題が解決できるようになった為、板状屋根材を屋根下地の上に設けたルーフィングの上に直接敷設し、屋根下地にビスで固定する構成が実現し、その結果、屋根材を損傷なく容易に取り外すことが出来る。
この構成により、工数を掛けなくても屋根材を容易に取り外せるようになったため、安価に屋根材を再利用することが出来るようになり、従来は葺き替えが必要だった建て替えやルーフィング材の交換などでも屋根材を廃棄せず本発明の板状屋根材を繰り返し再利用することが出来るようになった。
さらに、本発明の板状屋根材の屋根構造は、板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、前記板状屋根材を敷設した際には、流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置することにより、陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置することが出来る。
全ての屋根端部には規格化した形状の規格化形状屋根材が配置されるので、どこの屋根端部にどの屋根材を配置していいたのかを記録する必要が無くなる。
そして、屋根端部に敷設する規格化形状屋根材の緊結材をビスとすることで、屋根端部の板状屋根材の取り外しが容易となり、再利用を簡単に行うことが出来る。
その結果、葺き替えの際に本発明の板状屋根材の屋根構造を用いて板状屋根材と規格化形状屋根材を再利用した方が、現状の屋根材を廃棄し新たな屋根材を用いて施工するよりもコスト的に安くなり、本発明によるメリットが多くなる。
In the first embodiment of the present invention, a roof structure using plate-shaped roofing materials is provided with a roofing sheet on a roof foundation of a building roof having a slope, and a plate-shaped roofing material is directly laid on the roofing sheet, and a fastening material is fixed to the roof foundation using screws. In the roof structure using plate-shaped roofing materials, a plurality of first fastening holes are provided on the tail side of the plate-shaped roofing material, and a water-stopping portion is provided on the underside of the plate-shaped roofing material on the tail side of the first fastening holes for each of the first fastening holes, and drainage portions are provided on both ends of the water-stopping portion, the working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension, and the working length dimension is gradient to the horizontal projection dimension of the working length for each slope of the roof. The dimensions are multiplied by the elongation rate, and when the plate-shaped roofing material is laid, the head side of the upper plate-shaped roofing material is placed on the tail side of the lower plate-shaped roofing material in the flow direction, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, with each stage in the flow direction being shifted by half the working width dimension, the water-stopping portion is in contact with the upper surface of the roofing, the water drainage portion is separated from the upper surface of the roofing, and standardized-shaped roofing materials of a standardized shape are placed at all roof edges such as the ridge portion, corner ridge portion, eaves portion, three-pronged portion, hipped ridge difference portion and valley portion, and the standardized-shaped roofing material has a second fastening hole, and the fastening material of the standardized-shaped roofing material is fixed to the roof base using the screws.
According to this embodiment, the plate-shaped roofing material of the present invention can improve the waterproofing performance against rainwater blown in by wind and rain.
In the present invention, primary waterproofing is performed using a plate-shaped roofing material, and secondary waterproofing is performed using roofing.
During a storm, the first waterproofing alone is not enough to completely prevent rainwater from entering, so if rainwater blows into the roofing material deep inside the roofing material, it is necessary for the waterproofing performance to be able to smoothly drain the rainwater on the roofing material out to the eaves side without allowing it to seep into the roof underlayment through holes in the fastening material.
The plate-shaped roofing material of the present invention has a plurality of first fastening holes at the tail end, and a water-blocking portion above water is provided at the tail end of the underside of each of the first fastening holes.
By using screws as fastening materials, the water-stopping part of the plate-shaped roofing material is firmly adhered to the top surface of the roofing when the plate-shaped roofing material is fixed to the roof base, and rainwater that blows onto the roofing on the back side of the roofing material is completely stopped by the water-stopping part.
Rainwater will no longer penetrate the screws that secure the plate-shaped roofing material on the below-water side of the water-stopping section, and as a result, rainwater will no longer penetrate into the interior of the roof underlayment through the screw fixing section.
By providing a water-above water-stopping section for each first fastening hole and providing water-draining sections separated from the upper surface of the roofing on both sides of the water-above water-stopping section, rainwater that is blown onto the roofing does not stagnate in the water-above water-stopping section, but can be smoothly drained out toward the eaves from the water-draining sections separated from the upper surface of the roofing.
In addition, when laying the plate-shaped roofing material of the present invention, the head side of the upper plate-shaped roofing material is overlapped on the tail side of the lower plate-shaped roofing material in the flow direction, so that the upper surface of the roofing and the lower surface of the plate-shaped roofing material are separated by the thickness of the plate-shaped roofing material as they approach the eaves, allowing rainwater flowing through the drainage holes to flow smoothly down to the eaves.
When combined with a configuration having multiple drain holes that are spaced apart by the thickness of the plate roofing material as one moves toward the eaves, the drain holes become air passages, causing the air on the top surface of the roofing to move in both directions, not just the rafters but also the flow direction, promoting ventilation of the entire roof surface in the space under the plate roofing material.
By promoting ventilation across the entire roof surface, rainwater that has seeped onto the roofing and condensation caused by radiation cooling in winter are dried out, preventing corrosion of the roof base and increasing the durability of the entire roof.
Due to the above-mentioned effect, the roof structure using the plate-shaped roofing material of the present invention is able to solve the problem of waterproofing even when screws are used, making it possible to realize a configuration in which the plate-shaped roofing material is laid directly on top of the roofing installed on the roof base and fixed to the roof base with screws, thereby making it possible to easily remove the roofing material without damage.
This configuration allows the roofing material to be easily removed without labor, making it possible to reuse the roofing material at low cost, and it has become possible to repeatedly reuse the sheet roofing material of the present invention without discarding it even in cases such as rebuilding or replacing roofing materials, which previously required re-roofing.
Furthermore, in the roof structure of the plate-shaped roofing material of the present invention, the working width dimension of the plate-shaped roofing material is half the design unit dimension of the building, the horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension, and the working length dimension is the horizontal projection dimension of the working length multiplied by the gradient elongation rate for each slope of the roof, and when the plate-shaped roofing material is laid, the head side of the upper plate-shaped roofing material is placed on the tail side of the lower plate-shaped roofing material in the flow direction, and the sides of the adjacent plate-shaped roofing materials are placed in contact with each other in the girder direction, and by shifting the working width dimension by half for each step in the flow direction, standardized shape roofing materials can be placed at all roof ends such as the land ridge, corner ridge, eaves, trifurcated portion, hipped ridge difference portion, and valley portion.
Since standardized-shape roofing materials of standardized shapes are placed on all roof edges, there is no need to record which roofing materials were placed on which roof edges.
Furthermore, by using screws as fastening materials for the standardized roofing material laid on the roof edge, the plate-shaped roofing material on the roof edge can be easily removed, allowing it to be reused easily.
As a result, when re-roofing, using the roof structure of the sheet roofing material of the present invention to reuse the sheet roofing material and standardized shape roofing material is less costly than discarding the current roofing material and using new roofing material, resulting in many benefits of the present invention.

本発明の第2の実施の形態は、第1の実施の形態による板状屋根材の屋根構造において、前記板状屋根材及び前記規格化形状板状屋根材の材質が陶磁器であるというものである。
本実施の形態によれば、屋根材の素材を耐久性が非常に高い陶磁器にした場合、200年、300年と繰り返し使うことが出来るので、温室効果ガスの排出抑制、資源消費の最小化、廃棄物の抑制による環境保護といった人類共通の課題に対して多くの貢献が出来、屋根材における「循環経済」への移行を実現することが出来る。
また、陶磁器の屋根材の場合、紫外線劣化による退色が無いため、屋根材の塗り替えにおけるメンテナンス費用が掛からない。
陶磁器の屋根材では、下葺き材の劣化から葺き替えといったメンテナンス費用が必要になるが、本実施の形態を用いることで、板状屋根材だけでなく規格化形状屋根材の再利用が非常に高い施工性で可能となるため、新たな屋根材を購入する必要が無くなり葺き替えの際に掛かる費用を大幅に下げることが出来る。
A second embodiment of the present invention is a roof structure using plate-shaped roofing materials according to the first embodiment, in which the plate-shaped roofing materials and the standardized shape plate-shaped roofing materials are made of ceramics.
According to this embodiment, if the roofing material is made of extremely durable ceramics, it can be used repeatedly for 200 or 300 years. This will make a great contribution to solving common challenges faced by all of humanity, such as reducing greenhouse gas emissions, minimizing resource consumption, and protecting the environment by reducing waste, and will help realize a transition to a "circular economy" for roofing materials.
In addition, ceramic roofing materials do not fade due to ultraviolet degradation, so there are no maintenance costs associated with repainting the roofing material.
Ceramic roofing materials require maintenance costs such as re-roofing due to deterioration of the underlayment, but by using this embodiment, it is possible to reuse not only plate-shaped roofing materials but also standardized shaped roofing materials with extremely high workability, eliminating the need to purchase new roofing materials and significantly reducing the costs involved in re-roofing.

本発明の第3の実施の形態は、第1の実施の形態による板状屋根材の屋根構造において、前記水抜き部は前記第1緊結穴毎に前記下面の前記第1緊結穴の両側に前記第1緊結穴から離隔した位置で設けるというものである。
本実施の形態によれば、水上止水部で止水した雨水をより円滑に水抜き部から軒先側に円流し出すことが出来る。
The third embodiment of the present invention is such that, in a roof structure using a plate-shaped roofing material according to the first embodiment, the water drainage portion is provided on both sides of the first fastening hole on the underside at a position spaced apart from the first fastening hole for each first fastening hole.
According to this embodiment, rainwater that has been stopped by the above-water water-stopping section can be more smoothly circularly discharged from the drainage section toward the eaves side.

以下本発明の実施例による板状屋根材1の屋根構造について説明する。
図1は実施例による板状屋根材1の製品図面である。
図1は板状屋根材1の製品図面で投影法による6面図である。
左側面図は右側面図と対象にあらわれるため省略している。
図1の平面図では製品の上面9をあらわしており、板状屋根材1を屋根2に敷設する際の伏せ図で用いる図である。
桁方向3は図面位置での左右方向、流れ方向4は図面位置での上下方向となり、図面位置の下側が板状屋根材1の頭側6、上側が尻側5となる。
実施例の板状屋根材1では、働き幅寸法Wは455mmであり建物の設計単位寸法Pでは、尺モジュールの0.5Pにあたる寸法としている。
実施例の板状屋根材1は、耐久性の高い陶磁器素材とし、金型で成形しやすい形状としている。
全長さ寸法LAについては300mmであり、働き幅寸法Wとの寸法比は次の通りとなる。
全長さ寸法LA:働き幅寸法W=1:約1.5
働き長さLについては、屋根2の勾配26ごとに勾配伸び率応じて設定を変えている。
実施例では、働き長さの水平投影寸法Lhを建物の設計単位寸法Pの1/4にあたる227.5mmとし、働き長さの水平投影寸法Lhに勾配伸び率を掛けて働き長さLを求めている。平面図には3寸勾配、4寸勾配、5寸勾配でのそれぞれの働き長さLを記載している。
尻側水切りと第1緊結穴11を働き長さLよりも尻側5に設けている。
第1緊結穴11は4個であり左右対称に設けている。
また、平面図では第1緊結穴11と同時に緊結穴上面側11Uも表している。
右側面図では、側端部7、下面8の尻側5に尻部垂直面17とルーフィング接地面18を表している。
実施例では、板状屋根材1の厚みTは8.5mmとしている。
下面8には凹面10が設けて有り、凹面深さDは1mmとしている。
底面図は、板状屋根材1の下面8を表す図である。
前記板状屋根材1の下面8には矩形の凹面10を一定間隔で複数個設け、格子状としている。
本発明の板状屋根材1は、下面8に矩形の凹面10を一定間隔で複数個設けた格子状とすることで、屋根材として必要な耐曲げ破壊荷重を維持しながら屋根材の軽量化を図ることが出来る。
下面8に矩形の凹面10を一定間隔で複数個設けた格子状とすることで、板状屋根材1の下面8とルーフィング25上面との空間容量が増え、板状屋根材1から屋根下地24への断熱性能が向上する。
板状屋根材1の尻側5には複数の第1緊結穴11を設け、下面8には第1緊結穴11毎に第1緊結穴11よりも尻側5に水上止水部12を設けている。
実施例では、4つの第1緊結穴11に対して、それぞれの尻側5に水上止水部12を設け、第1緊結穴11毎に水上止水部12の両端に凹面10の水抜き部13を設けている。
水抜き部13は、一つひとつの第1緊結穴11毎に第1緊結穴11の両側で離隔した位置に設けている。
水上止水部12の両端に凹面10を設けることで、敷設の際に水抜き部13はルーフィング25の上面と離隔し、ルーフィング25上に浸入した雨水を滞留させることなく軒先側27へ排出する。
水上止水部12の長さは短い方が雨水の滞留は少なくなるが、第1緊結穴11からの離隔距離が短くなると軒先側27に流れる際にルーフィング25上で雨水が第1緊結穴11の方まで広がる恐れがある。
第1緊結穴11と水抜き穴13の離隔距離は5mmから60mmの範囲が望ましい。
言い換えれば、第1緊結穴11に対して尻側5に位置する水上止水部12は桁方向3の片側で5mmから60mmの範囲で第1緊結穴に重なる構成が望ましく、水上止水部12の長さで表現すれば10mmから120mmの長さの範囲が望ましい。
実施例の水上止水部12の桁方向3の長さ寸法は、46mmと32mmとなっている。
4つの第1緊結穴11に対して第1緊結穴11の両側に水抜き穴13を設けているが、3つの水抜き穴13は隣り合う第1緊結穴11と共用しているので、4つの第1緊結穴11に対して5つの水抜き穴13を設けている。
板状屋根材1の下面8の第1緊結穴11の周囲は、第1緊結穴11の周囲が水上止水部12と連続した矩形の平面としている。
板状屋根材1は下面8における第1緊結穴11の周囲面と水上止水部12とが連続した矩形の平面なのでルーフィング25上面との密着が第1緊結穴11周囲面まで及び止水性能が向上する。
また、第1緊結穴11の周囲の基材の肉厚が厚いため強風による吹き上げ荷重がかかった際にも高い耐風強度を発揮することが出来る。
水上止水部12には板状屋根材1の上面9と平行な平面部15を有し、水上止水部12には水上止水部12の平面部15の尻側端部16から尻部垂直面17の下端部に向けてルーフィング接地面18を設けている。
本実施例では、平面部15の尻側端部16が水上止水部12となるが、水上止水部12はルーフィング25上面とルーフィング接地面18と面で接地しルーフィング接地面18全体が水上止水部12として機能する。
板状屋根材1の下面8の頭側6には矩形で凹面10の緊結材収納空間14を4個設けている。緊結材収納空間14は第1緊結穴11と対応する構成のため、本実施例では第1緊結穴11が4個なので緊結材収納空間も4個を設けている。
本実施例の緊結材収納空間14は桁方向3に縦長になっているが、これは勾配26毎の勾配伸び率により重なり寸法が変わることで緊結材19と緊結材収納空間14の位置関係が変わったとしても緊結材収納空間14に収納できるよう縦長になっている。
図1には図2に記載の断面図の断面位置を記載している。
Hereinafter, a roof structure using a sheet-shaped roofing material 1 according to an embodiment of the present invention will be described.
FIG. 1 is a product drawing of a sheet-shaped roofing material 1 according to an embodiment of the present invention.
FIG. 1 is a product drawing of a sheet-shaped roofing material 1, which is a six-sided view according to a projection method.
The left side view is omitted because it appears symmetrically with the right side view.
The plan view of FIG. 1 shows the top surface 9 of the product, and is used as a plan view when laying the sheet roofing material 1 on a roof 2.
The girder direction 3 is the left-right direction at the drawing position, and the flow direction 4 is the up-down direction at the drawing position, with the lower side at the drawing position being the head side 6 of the plate-shaped roof material 1 and the upper side being the tail side 5.
In the plate-shaped roofing material 1 of the embodiment, the working width dimension W is 455 mm, which corresponds to 0.5P of the shaku module in terms of the design unit dimension P of the building.
The plate-shaped roofing material 1 of the embodiment is made of a highly durable ceramic material and has a shape that is easy to mold with a mold.
The overall length dimension LA is 300 mm, and the dimensional ratio to the working width dimension W is as follows:
Overall length dimension LA: Working width dimension W = 1: approx. 1.5
The working length L is set differently depending on the slope elongation rate for each slope 26 of the roof 2.
In the embodiment, the horizontal projection dimension Lh of the working length is set to 227.5 mm, which is 1/4 of the design unit dimension P of the building, and the working length L is calculated by multiplying the horizontal projection dimension Lh of the working length by the gradient elongation rate. The plan drawing shows the working length L for each of the 3-inch gradient, 4-inch gradient, and 5-inch gradient.
The tail side drain and the first fastening hole 11 are provided on the tail side 5 from the working length L.
The first fastening holes 11 are four in number and are provided symmetrically on the left and right.
In addition, the plan view shows the first fastening hole 11 as well as the fastening hole upper surface side 11U.
In the right side view, the side end portion 7 and the tail side 5 of the underside 8 are shown with a tail vertical surface 17 and a roofing contact surface 18 .
In this embodiment, the thickness T of the plate-shaped roofing material 1 is 8.5 mm.
The lower surface 8 is provided with a concave surface 10, the depth D of which is 1 mm.
The bottom view shows the underside 8 of the sheet roofing material 1 .
A plurality of rectangular concave surfaces 10 are provided at regular intervals on the lower surface 8 of the plate-shaped roofing material 1, forming a lattice pattern.
The plate-shaped roofing material 1 of the present invention has a lattice-like structure with multiple rectangular concave surfaces 10 spaced at regular intervals on the underside 8, which makes it possible to reduce the weight of the roofing material while maintaining the bending fracture load required for a roofing material.
By forming a lattice pattern with multiple rectangular concave surfaces 10 spaced at regular intervals on the underside 8, the spatial volume between the underside 8 of the plate-shaped roofing material 1 and the upper surface of the roofing 25 is increased, improving the insulating performance from the plate-shaped roofing material 1 to the roof underlay 24.
A plurality of first fastening holes 11 are provided at the tail end 5 of the plate-like roofing material 1, and a water-resistant water stopper 12 is provided at the underside 8 for each of the first fastening holes 11, closer to the tail end 5 than the first fastening holes 11.
In the embodiment, a water-surface water-stopping portion 12 is provided at the tail side 5 of each of the four first fastening holes 11, and a water draining portion 13 with a concave surface 10 is provided at both ends of the water-surface water-stopping portion 12 for each first fastening hole 11.
The water draining portions 13 are provided for each of the first fastening holes 11 at positions spaced apart on both sides of the first fastening hole 11 .
By providing concave surfaces 10 on both ends of the water-stopping portion 12, the water drainage portion 13 is separated from the upper surface of the roofing 25 during installation, and rainwater that has infiltrated onto the roofing 25 is drained to the eaves side 27 without stagnating.
The shorter the length of the water-stopping portion 12, the less rainwater will stagnate, but if the distance from the first fastening hole 11 is too short, there is a risk that rainwater will spread over the roofing 25 toward the first fastening hole 11 as it flows toward the eaves side 27.
The distance between the first fastening hole 11 and the drain hole 13 is preferably in the range of 5 mm to 60 mm.
In other words, it is desirable for the above-water water-stopping portion 12, which is located on the tail side 5 of the first fastening hole 11, to overlap the first fastening hole within a range of 5 mm to 60 mm on one side of the girder direction 3, and in terms of the length of the above-water water-stopping portion 12, a length range of 10 mm to 120 mm is desirable.
The length dimensions in the girder direction 3 of the above-water water-stopping portion 12 in the embodiment are 46 mm and 32 mm.
Water drainage holes 13 are provided on both sides of the four first fastening holes 11, but three of the water drainage holes 13 are shared with the adjacent first fastening holes 11, so five water drainage holes 13 are provided for the four first fastening holes 11.
The periphery of the first fastening hole 11 on the underside 8 of the plate-shaped roofing material 1 is a rectangular plane that is continuous with the above-water water-stopping portion 12 .
Since the surrounding surface of the first fastening hole 11 on the underside 8 of the plate-shaped roofing material 1 and the above-water water-stopping portion 12 are continuous rectangular planes, the roofing material 25 is tightly attached to the upper surface of the roofing 25 up to the surrounding surface of the first fastening hole 11, improving the water-stopping performance.
In addition, since the thickness of the base material around the first fastening hole 11 is large, high wind resistance can be achieved even when a load caused by strong winds is applied.
The above-water water-stopping portion 12 has a flat portion 15 parallel to the upper surface 9 of the plate-shaped roofing material 1, and the above-water water-stopping portion 12 has a roofing contact surface 18 extending from the tail side end 16 of the flat portion 15 of the above-water water-stopping portion 12 toward the lower end of the tail vertical surface 17.
In this embodiment, the tail end portion 16 of the flat portion 15 becomes the above-water water-stopping portion 12, which contacts the upper surface of the roofing 25 and the roofing contact surface 18 in a plane such that the entire roofing contact surface 18 functions as the above-water water-stopping portion 12.
Four fastening material storage spaces 14 are provided on the head side 6 of the underside 8 of the sheet roofing material 1, each having a rectangular concave surface 10. The fastening material storage spaces 14 correspond to the first fastening holes 11, and since there are four first fastening holes 11 in this embodiment, four fastening material storage spaces are also provided.
In this embodiment, the fastening material storage space 14 is elongated vertically in the girder direction 3, but this is because the overlap dimension changes depending on the gradient elongation rate for each gradient 26, so that the fastening material 19 can be stored in the fastening material storage space 14 even if the positional relationship between the fastening material 19 and the fastening material storage space 14 changes.
FIG. 1 shows the cross-sectional position of the cross-sectional view shown in FIG.

図2は実施例による板状屋根材1の製品図面の断面図である。
図2(a)は、図1の平面図に図示されたA-A断面箇所における断面図である。
板状屋根材1の下面8には凹面深さDが1mmの凹面10が流れ方向4で連続している。
図2(a)の拡大図は第1緊結穴11の周囲及び水上止水部12の構成を示している。
板状屋根材1の下面8の水上止水部12には板状屋根材1の上面9と平行な平面部15を有し、水上止水部12には水上止水部12の平面部15の尻側端部16から尻部垂直面17の下端部に向けてルーフィング接地面18を設けている。
第1緊結穴11の下面8の周囲が水上止水部12と連続した平面となっている。
緊結穴上面側11Uは円錐形状になっており、断面図では上面9に向けて広がるテーパー形状になっている。
図2(b)は、図1の平面図に図示されたB-B断面箇所における断面図である。
板状屋根材1の下面8の頭側6には、凹面深さDが1mmの緊結材収納空間14がある。
図2(b)の拡大図は水抜き部13の構成を示している。
水上止水部12の両側に凹面10を設け、その凹面10を水抜き止水部13としている構成なので、板状屋根材1を敷設する際、水抜き部13はルーフィング25上面より凹面深さDと近似する距離だけ離隔することにより、ルーフィング25上に浸入した雨水を緊結材19で屋根下地24に留め付けた留め付け穴に雨水を浸入させることなく軒先側27に排水することが出来る。
図2(c)は、図1の底面図に図示されたC-C断面箇所における断面図である。
板状屋根材1の下面8には凹面深さDが1mmの凹面10が桁方向3で連続している。
FIG. 2 is a cross-sectional view of a product drawing of a sheet-shaped roofing material 1 according to an embodiment of the present invention.
FIG. 2A is a cross-sectional view taken along line AA of the plan view of FIG.
A concave surface 10 having a concave depth D of 1 mm is formed on the lower surface 8 of the plate-shaped roofing material 1 in the flow direction 4 .
The enlarged view of FIG. 2( a ) shows the configuration of the periphery of the first fastening hole 11 and the above-water water-stopping portion 12 .
The water-above water-stopping portion 12 on the underside 8 of the plate-shaped roofing material 1 has a flat portion 15 parallel to the upper surface 9 of the plate-shaped roofing material 1, and the water-above water-stopping portion 12 has a roofing contact surface 18 extending from the tail side end 16 of the flat portion 15 of the water-above water-stopping portion 12 toward the lower end of the tail vertical surface 17.
The periphery of the underside 8 of the first fastening hole 11 is a flat surface that is continuous with the above-water water-stopping portion 12 .
The fastening hole upper surface side 11U has a conical shape, and in a cross-sectional view has a tapered shape that widens toward the upper surface 9.
FIG. 2B is a cross-sectional view taken along line BB of the plan view of FIG.
At the head side 6 of the underside 8 of the plate-shaped roofing material 1, there is a fastening material storage space 14 having a concave depth D of 1 mm.
The enlarged view of FIG. 2( b ) shows the configuration of the water draining portion 13 .
Since concave surfaces 10 are provided on both sides of the above-water water-stopping portion 12 and the concave surfaces 10 serve as water-draining water-stopping portions 13, when the plate-shaped roofing material 1 is laid, the water-draining portions 13 are spaced a distance approximating the concave depth D from the upper surface of the roofing 25, so that rainwater that has seeped onto the roofing 25 can be drained to the eaves side 27 without seeping into the fastening holes fastened to the roof underlayment 24 by fastening material 19.
FIG. 2C is a cross-sectional view taken along line CC shown in the bottom view of FIG.
A concave surface 10 having a concave depth D of 1 mm is formed on the lower surface 8 of the plate-shaped roofing material 1 in the girder direction 3 .

図3は実施例による板状屋根材1と規格化形状屋根材29の屋根伏せ図である。
本実施例の伏せ図は切妻屋根もしくは片流れ屋根形状の一つの屋根面における屋根伏せ図であり、平部と屋根端部28のケラバ部35に板状屋根材1と規格化形状屋根材29が敷設されている図である。
実施例の板状屋根材1の働き幅寸法Wは建物の設計単位寸法Pの二分の一であり、建物の設計単位寸法Pは尺モジュールの910mmなので、働き幅寸法Wは910mmの二分の一の455mmとなる。
板状屋根材1の働き長さの水平投影寸法Lhは働き幅寸法Wの二分の一であり、実施例では227.5mmとなる。
働き長さ寸法Lは屋根2の勾配26ごとに働き長さの水平投影寸法Lhに勾配伸び率を乗じた寸法である。
働き長さの水平投影寸法Lhは働き幅寸法Wの二分の一であり、かつ設計単位寸法Pの四分の一の227.5mmである。働き長さの水平投影寸法Lhは一定だが、働き長さLは勾配26毎に勾配伸び率が異なるため勾配26毎に変化する。
屋根2の勾配26は5寸勾配としているので、勾配伸び率は1.118となる。
よって、本図における板状屋根材1の働き長さLは、働き長さの水平投影寸法Lhの227.5mmに勾配伸び率の1.118を掛けた寸法の254.4mmとなる。
板状屋根材1の全長さ寸法LAは300mmなので、屋根材の重なり寸法は45.6mmとなる。
敷設は、軒先側27から葺き始める。軒先側27の1段目を桁方向3の左側のケラバ部35から葺き始めると仮定して敷設手順を記載する。
1段目の葺き始めは屋根端部28のケラバ部35に板状屋根材1を配置し、隣り合う板状屋根材1の側面7を当接するように右側に連続して配置する。
1段目が全て敷設出来たら、1段目の板状屋根材1の尻側5に2段目の板状屋根材1の頭側6を重ねて配置する。
流れ方向4においては、下段の板状屋根材1の尻側5に上段の板状屋根材1の頭側6を重ねて配置することを陸棟部33まで繰り返すが、図3は施工手順をあらわすために途中で配置を終えている。
桁方向においては、1段毎に働き幅寸法Wの二分の一である227.5mmをずらして配置する。
1段目のケラバ部35には板状屋根材1を配置しているので、2段目は板状屋根材1の働き幅寸法Wの半分の働き幅寸法を有した規格化形状屋根材29の半瓦48をケラバ部35に配置する。
2段目に半瓦48をケラバ部35に配置することで、2段目の板状屋根材1は1段目と比べて働き幅寸法Wの二分の一である227.5mmをずらした配置となる。
屋根端部28のケラバ部35には、板状屋根材1と規格化した形状の規格化形状屋根材29である半瓦48を段ごとに交互に配置する。
規格化形状屋根材29である半瓦48は第2緊結穴30を有し、緊結材19はビス19Bを用いて屋根下地24に固定する。
1段目と2段目の板状屋根材1と規格化形状屋根材29の配置の関係は、3段目と4段目に繰り返され、以後も同じ配置の関係が繰り返される。
本実施例の板状屋根材1は、耐久性の高い陶磁器素材としている。
陶磁器素材は、紫外線劣化もなく、耐久性は200年、300年と長く使える素材であり、緊結材19をビス19Bとすることで屋根2から板状屋根材1及び規格化形状屋根材29を取り外す際に、板状屋根材1及び規格化形状屋根材29を損傷させることなく容易に取り外せる構成としている。
板状屋根材1の取り付け方法は、上面9の尻側5の屋根材重なり部に設けている4つの第1緊結穴11の内、内側の2つの第1緊結穴11を用いてジョイント板23と板状屋根材1を緊結材19で屋根下地24に共打ちで固定する。
ジョイント板23の中央ラインと板状屋根材1の側端部7を合わせることで容易に働き幅寸法Wの二分の一をずらした千鳥葺きを行うことが出来る。
緊結材19は屋根下地24への固定保持力が高く取り外しが容易なビス19Bを用いる。
留め付けの手順としては、先ず、板状屋根材1の4つの第1緊結穴11の内、外側の2つの第1緊結穴11を用いて、板状屋根材1と屋根下地24を固定する。
その後、内側の2つの第1緊結穴11を用いてジョイント板23と板状屋根材1を緊結材19で屋根下地24に共打ちで固定する。
ビス19Bを用いて屋根下地25に固定する構成としているので損傷なく板状屋根材1と規格化形状屋根材29を取り外すことが出来、再利用することで製品を廃棄することなく繰り返し使用することが出来る。
FIG. 3 is a roof plan view of the sheet-shaped roofing material 1 and the standardized shape roofing material 29 according to the embodiment.
The plan view of this embodiment is a roof plan view of one roof surface of a gable roof or a single-shed roof, and shows that a plate-shaped roof material 1 and a standardized shaped roof material 29 are laid on the flat portion and the eaves portion 35 of the roof edge 28.
The working width dimension W of the plate-shaped roofing material 1 of the embodiment is half the design unit dimension P of the building, and since the design unit dimension P of the building is 910 mm in shaku modules, the working width dimension W is 455 mm, which is half of 910 mm.
The horizontal projection dimension Lh of the working length of the plate-shaped roofing material 1 is half the working width dimension W, and in this embodiment is 227.5 mm.
The working length dimension L is the horizontal projection dimension Lh of the working length multiplied by the gradient elongation rate for each gradient 26 of the roof 2.
The horizontal projection dimension Lh of the working length is half the working width dimension W and is 227.5 mm which is one-fourth of the design unit dimension P. The horizontal projection dimension Lh of the working length is constant, but the working length L changes for each gradient 26 because the gradient elongation rate differs for each gradient 26.
Since the slope 26 of the roof 2 is a 5 inch slope, the slope extension rate is 1.118.
Therefore, the working length L of the plate-shaped roofing material 1 in this figure is 254.4 mm, which is the horizontal projection dimension Lh of the working length of 227.5 mm multiplied by the gradient elongation rate of 1.118.
Since the total length dimension LA of the plate-shaped roofing material 1 is 300 mm, the overlap dimension of the roofing materials is 45.6 mm.
Laying begins from the eaves side 27. The laying procedure will be described assuming that the first stage of the eaves side 27 begins from the eaves section 35 on the left side in the girder direction 3.
To begin laying the first tier, a sheet roofing material 1 is placed on the eaves 35 of the roof end 28, and adjacent sheet roofing materials 1 are placed continuously to the right side so that the sides 7 of the adjacent sheet roofing materials 1 abut against each other.
When the entire first layer has been laid, the head side 6 of the second layer of sheet roofing material 1 is placed on the tail side 5 of the first layer of sheet roofing material 1.
In the flow direction 4, the tail end 5 of the lower level plate-shaped roofing material 1 is overlapped with the head end 6 of the upper level plate-shaped roofing material 1, and this is repeated up to the ridge section 33, but in Figure 3 the arrangement is stopped halfway in order to show the construction procedure.
In the girder direction, each stage is shifted by 227.5 mm, which is half the working width dimension W.
Since a plate-shaped roofing material 1 is arranged on the eaves portion 35 of the first stage, a half tile 48 of a standardized shape roofing material 29 having a working width dimension half the working width dimension W of the plate-shaped roofing material 1 is arranged on the eaves portion 35 of the second stage.
By arranging the half roof tiles 48 in the second row at the eaves portion 35, the second row of plate-like roofing materials 1 are shifted by 227.5 mm, which is half the working width dimension W, compared to the first row.
At the eaves 35 of the roof end 28, the plate-shaped roofing material 1 and the half roof tiles 48 which are standardized shaped roofing materials 29 having a standardized shape are arranged alternately in rows.
The half tile 48, which is the standardized shape roof material 29, has a second fastening hole 30, and the fastening material 19 is fixed to the roof base 24 using a screw 19B.
The arrangement relationship between the plate-shaped roofing materials 1 and the standardized shape roofing materials 29 in the first and second rows is repeated in the third and fourth rows, and the same arrangement relationship is repeated thereafter.
The plate-shaped roofing material 1 of this embodiment is made of highly durable ceramic material.
The ceramic material is a material that is not deteriorated by ultraviolet rays and has a durability of 200 to 300 years, and by using screws 19B as fastening materials 19, the plate-shaped roofing material 1 and the standardized shaped roofing material 29 can be easily removed from the roof 2 without damaging them.
The method of mounting the plate-shaped roofing material 1 is to fix the joint plate 23 and the plate-shaped roofing material 1 together to the roof underlayment 24 with fastening material 19 using the inner two first fastening holes 11 out of the four first fastening holes 11 provided in the roofing material overlapping portion at the tail side 5 of the upper surface 9.
By matching the center line of the joint plate 23 with the side end portion 7 of the plate-like roofing material 1, staggered roofing can be easily performed with a shift of half the working width dimension W.
The fastening material 19 uses screws 19B which have a high fixing strength to the roof base 24 and are easy to remove.
The fastening procedure is as follows: first, of the four first fastening holes 11 in the plate-shaped roofing material 1, the two outer first fastening holes 11 are used to fasten the plate-shaped roofing material 1 to the roof underlayment 24.
Thereafter, the joint plate 23 and the plate-shaped roofing material 1 are fixed together to the roof base 24 with fastening material 19 using the two inner first fastening holes 11.
Since the plate-like roofing material 1 and the standardized shape roofing material 29 are fixed to the roof base 25 using screws 19B, they can be removed without damage, and by reusing them, the product can be used repeatedly without being discarded.

図4は実施例による板状屋根材1の施工断面図である。
図4(a)は、図3の屋根伏せ図に図示されたD-D断面箇所における断面図であり、流れ方向4での断面図である。
屋根2の勾配26は5寸勾配で、勾配伸び率は1.118となる。
屋根下地24の上にルーフィング25を施工し、そのルーフィング25上に板状屋根材1を直接敷設し、緊結材19にて屋根下地24に固定する構造である。
緊結材19はビス19Bを用いる。
緊結材19をビス19Bにすることで屋根下地24への固定強度が増すことで、大型台風などの強風においても飛散することなく板状屋根材1を固定することが出来る基本性能だけでなく、緊結穴上面側11Uの円錐形状の上面9又は板状屋根材1上面9とビス頭部20Hの下面8が密着することで板状屋根材1上面9からの止水性能が向上する。
さらに、ビス19Bで固定することで板状屋根材1の水上止水部12とルーフィング25上面が完全に密着するため板状屋根材1下面8からの止水性能を向上させることが出来る。
働き長さの水平投影寸法Lhは設計単位寸法の1/4の227.5mmであり、働き長さLは、働き長さの水平投影寸法Lhの227.5mmに勾配伸び率の1.118を掛けて254.4mmとなる。
流れ方向4で下段の板状屋根材1の尻側5に上段の板状屋根材1の頭側6を重ねて配置する。
水上止水部12はルーフィング25上面と接地し、水抜き部13はルーフィング25上面より離隔する。
本実施例では、働き幅寸法Wの半分ずらした千鳥葺きなので1段ごとにビス19Bにて留め付けている図になっている。水上止水部12とルーフィング25上から離隔している水抜き部13の納まりが交互となっている。
本発明では、板状屋根材1にて1次防水を行いルーフィング25で2次防水を行っている。
暴風雨などでは1次防水だけでは雨水の浸入を防ぎきることが出来ないため、屋根材の奥のルーフィング25上まで雨水が吹き込んだ場合、ルーフィング25上の雨水を緊結材19で屋根下地24に開けた穴から屋根下地24内部に浸入させることなく軒先側27に円滑に流し出すことが防水性能として必要になる。
板状屋根材1は、尻側5に設けた複数の第1緊結穴11に対して尻側5の下面8に水上止水部12を設けている。
この水上止水部12が板状屋根材1を敷設した際にルーフィング25上面と接地することで水上止水部12は雨水の水下側への浸入を止水する。
板状屋根材1は、緊結材19で屋根下地24に固定する際にことで、水上止水部12とルーフィング25上面の接地面は密着され、屋根材の下面8側のルーフィング25上まで吹き込んだ雨水は水上止水部12で完全に止水される。
水上止水部12の水下側にある第1緊結穴11への雨水の浸入は無くなり、その結果、緊結材19で屋根下地24に開けた穴から屋根下地24内部に雨水が浸入することも無くなる。
本実施例におけるルーフィング接地面18の傾斜角度は、板状屋根材1を働き長さLを254.4mmで敷設した際に、板状屋根材1の厚みT8.5mmにより発生する戻り勾配の角度となる。
厚みT8.5mm÷働き長さLを254.4mm=0.0334となり、この0.0334をアークタンジェントで計算することで戻り勾配の角度を算出することが出来る。
本実施例における戻り勾配は1.9度となるため、ルーフィング接地面18の傾斜角度を1.9度で設定することでルーフィング25の上面とルーフィング接地面18とは面接地する。
図4(b)は、図4(a)の施工断面図に図示されたE-E断面箇所における断面図であり、桁方向3での断面図である。
緊結材19の水上側に水上止水部12があり、その水上止水部12の両端には凹面10の水抜き部13を設けている。
水上止水部12はルーフィング25上と接地することでルーフィング25上に浸入した雨水を止水し、水上止水部12の両端に設けた水抜き部13にて雨水を軒先側に流す構造となっている。
ルーフィング25上まで吹き込んだ雨水は、水上止水部12で止水することで一旦雨水が滞留するが、水上止水部12の両端に設けた凹面10を有した水抜き部13がルーフィング25上面と離隔しているので、水上止水部12で滞留した雨水を軒先側27に流し出すことが出来る。
図4(c)は、図4(a)の水抜き部13の拡大図である。
水抜き部13がルーフィング25上から離隔しているため、吹き込んだ雨水を水抜き部13で軒先側27に流す。
その結果、緊結材19で屋根下地24に開けた穴から屋根下地24内部に雨水を浸入させることが無い。
本発明の板状屋根材1は、敷設の際に流れ方向4で下段の板状屋根材1の尻側5に上段の板状屋根材1の頭側6を重ねて配置する構成により、ルーフィング25上面と板状屋根材1の下面8は、軒先側27に行くにしたがって板状屋根材1の厚みT分だけ離隔する為、水抜き部13から流れた雨水を軒先側27まで円滑に流し出すことが出来る。
FIG. 4 is a cross-sectional view showing the installation of the sheet roofing material 1 according to the embodiment.
FIG. 4( a ) is a cross-sectional view taken along line DD of the roof plan of FIG. 3 , and is a cross-sectional view taken along the flow direction 4 .
The slope 26 of the roof 2 is a 5 inch slope, and the slope extension rate is 1.118.
The structure is such that roofing 25 is constructed on a roof base 24, and the plate-shaped roofing material 1 is laid directly on the roofing 25 and fixed to the roof base 24 with fastening material 19.
The fastening material 19 is made of screws 19B.
By using screws 19B as the fastening material 19, the fixing strength to the roof underlay 24 is increased, thereby not only achieving the basic performance of being able to fix the plate-shaped roofing material 1 without it being blown away even in strong winds such as a large typhoon, but also improving the water-stopping performance from the top surface 9 of the plate-shaped roofing material 1 by closely adhering the conical upper surface 9 of the fastening hole upper side 11U or the top surface 9 of the plate-shaped roofing material 1 to the underside 8 of the screw head 20H.
Furthermore, by fixing with screws 19B, the water-stopping portion 12 of the plate-shaped roofing material 1 and the upper surface of the roofing 25 are brought into complete contact with each other, thereby improving the water-stopping performance from the underside 8 of the plate-shaped roofing material 1.
The horizontal projection dimension Lh of the working length is 227.5 mm, which is 1/4 of the design unit dimension, and the working length L is 254.4 mm, which is calculated by multiplying the horizontal projection dimension Lh of the working length, 227.5 mm, by the gradient elongation rate of 1.118.
In the flow direction 4, the head side 6 of the upper sheet-like roofing material 1 is placed overlapping the tail side 5 of the lower sheet-like roofing material 1.
The above-water water-stopping portion 12 is in contact with the upper surface of the roofing 25 , and the water drainage portion 13 is spaced apart from the upper surface of the roofing 25 .
In this embodiment, the staggered roofing is offset by half the working width dimension W, so each step is fastened with a screw 19B. The placement of the water-resistant portion 12 above the water and the drainage portion 13 spaced apart from the roofing 25 is alternated.
In the present invention, the plate-shaped roofing material 1 provides primary waterproofing, and the roofing 25 provides secondary waterproofing.
In a storm or the like, the primary waterproofing alone is not enough to completely prevent rainwater from entering, so when rainwater blows into the roofing 25 at the back of the roof material, the waterproofing performance needs to be such that the rainwater on the roofing 25 can be smoothly drained out to the eaves side 27 through holes opened in the roof underlayment 24 with the fastening material 19 without entering the inside of the roof underlayment 24.
The plate-shaped roofing material 1 has a water-stopping portion 12 on the underside 8 of the tail end 5 for a plurality of first fastening holes 11 provided at the tail end 5.
When the plate-shaped roof material 1 is laid, this above-water water-stopping portion 12 comes into contact with the upper surface of the roofing 25, thereby preventing rainwater from penetrating below the water.
When the plate-like roof material 1 is fixed to the roof underlayment 24 with a fastening material 19, the contact surface between the water-above water stop part 12 and the upper surface of the roofing 25 is brought into close contact, and rainwater blown up to the roofing 25 on the lower surface 8 side of the roof material is completely stopped by the water-above water stop part 12.
Rainwater does not infiltrate into the first fastening hole 11 on the underwater side of the above-water water stop part 12, and as a result, rainwater does not infiltrate into the roof underlay 24 through a hole opened in the roof underlay 24 by the fastening material 19.
The inclination angle of the roofing contact surface 18 in this embodiment is the angle of the return gradient caused by the thickness T of the plate-shaped roofing material 1 of 8.5 mm when the plate-shaped roofing material 1 is laid with a working length L of 254.4 mm.
Thickness T 8.5 mm ÷ working length L 254.4 mm = 0.0334, and by calculating the arc tangent of this 0.0334, the return gradient angle can be calculated.
In this embodiment, the return gradient is 1.9 degrees, so by setting the inclination angle of the roofing contact surface 18 at 1.9 degrees, the upper surface of the roofing 25 and the roofing contact surface 18 come into contact with each other.
FIG. 4(b) is a cross-sectional view at the E-E cross section shown in the construction cross-sectional view of FIG. 4(a), and is a cross-sectional view in the girder direction 3.
There is an above-water water stop portion 12 on the above-water side of the fastening material 19, and water drainage portions 13 of the concave surface 10 are provided on both ends of the above-water water stop portion 12.
The above-water water-stopping portion 12 is grounded on the roofing 25 to stop rainwater that has infiltrated onto the roofing 25, and is structured so that the rainwater flows toward the eaves side via the drainage portions 13 provided on both ends of the above-water water-stopping portion 12.
Rainwater that is blown up onto the roofing 25 is temporarily retained by being stopped by the above-water water stop section 12, but since the drainage sections 13 with concave surfaces 10 provided on both ends of the above-water water stop section 12 are separated from the upper surface of the roofing 25, the rainwater retained in the above-water water stop section 12 can be drained out to the eaves side 27.
FIG. 4C is an enlarged view of the water draining portion 13 in FIG.
Since the drainage section 13 is separated from above the roofing 25, the blown-in rainwater is drained to the eaves side 27 by the drainage section 13.
As a result, rainwater is prevented from penetrating into the roof foundation 24 through holes opened in the roof foundation 24 by the fastening material 19.
The plate-shaped roofing material 1 of the present invention is configured such that, when laid, the head side 6 of the upper plate-shaped roofing material 1 is overlapped on the tail side 5 of the lower plate-shaped roofing material 1 in the flow direction 4, so that the upper surface of the roofing 25 and the underside 8 of the plate-shaped roofing material 1 are separated by the thickness T of the plate-shaped roofing material 1 as they approach the eaves side 27, allowing rainwater flowing from the drainage section 13 to flow smoothly to the eaves side 27.

図5は実施例による板状屋根材の施工断面図における、図4(a)のビス19B固定部の拡大図である。
図5(a)は、D-D断面図のビス19Bで固定している部分の拡大図であり、ビス頭部20Hの上面がフラット形状のビス19Bを使用している図である。
ビス19Bは、ビス頭部20Hと軸部21の接合部22が円錐形状となっている。
本実施の形態では、板状屋根材1の上面9からビス頭部20Hを極力出したくないことから、ビス頭部20Hの上面形状をフラット形状のビス19Bとしている。
また、第1緊結穴11の緊結穴上面側11Uもビス19Bと同様に円錐形状となっている。
ビス頭部20Hの上面9がフラット形状のビス19Bの場合、ビス頭部20Hと軸部21の剪断強度を上げるためにビス頭部20Hと軸部21の接合部22を円錐形状とし、ビス19Bの円錐形状部と第1緊結穴11が干渉しないように緊結穴上面側11Uも円錐形状にすることで、板状屋根材1の上面9からのビス頭20Hの出寸法を最小にすることが出来る。
板状屋根材1を敷設して固定する際にビス19Bで屋根下地24に留め付けることで、緊結穴上面側11Uの前記円錐形状の上面とビス19Bのビス頭部20Hの下面が密着する。
更に、ビス19Bで屋根下地24に固定することで、水上止水部12とルーフィング25上面が密着する。
その結果、板状屋根材1の重なり部に浸入した雨水や重なり部を越えてルーフィング25上まで浸入した雨水を止水することが出来る。
板状屋根材1の下面8の頭側6には、凹面10の緊結材収納空間14を設けている。
敷設した際に、上段の板状屋根材1の緊結材収納空間14の凹面深さDが、下段の板状屋根材1を留め付けているビス19Bのビス頭部20Hの高さより深くなっているので、ビス頭部20Hは板状屋根材1の下面8と干渉することなく緊結材収納空間14内に納まる。
本実施の形態によれば、板状屋根材1を留め付ける緊結材19は、緊結材19の緊結材頭部20の高さ分だけ板状屋根材1の上面9よりも高い位置に位置するが、緊結材19の緊結材頭部20の高さよりも深い凹面10を持った緊結材収納空間14が緊結材19の緊結材頭部20を収納するので、板状屋根材1の下面と緊結材19の緊結材頭部20が干渉して板状屋根材1の頭側6が浮き、隙間が出来てしまうことを防ぐことが出来る。
その結果、上下段の板状屋根材1は隙間なく敷設されるため、風雨の吹込みに対して高い防水性能を発揮することが出来る。
また、緊結材19の緊結材頭部20と板状屋根材1の下面8が干渉した場合、施工者が板状屋根材1に載った際に施工者の体重が点荷重として板状屋根材1に掛かるため、踏み割れなどの不具合が発生してしまうが、緊結材収納空間14を設けることで板状屋根材1の頭側6の下面8と板状屋根材1の尻側5の上面9が面で荷重を受けるので高い耐荷重性能を発揮することが出来る。
板状屋根材1の下面8に設けている水上止水部12には板状屋根材1の上面9と平行な平面部15を有し、水上止水部12の平面部15の尻側端部16から尻部垂直面17の下端部に向けてルーフィング接地面18を設ける。
水上止水部12の内、ルーフィング25の上面と接地することで止水機能を発揮している部分は、尻側端部16とルーフィング接地面18となる。
本実施の形態によれば、本発明の板状屋根材1はルーフィング接地面18がルーフィング25の上面と面接地することで水上止水部12における止水性能がさらに向上する。
更に施工者が板状屋根材1の上に載ったり、積雪などにより板状屋根材1の上面9から板状屋根材1の本体に荷重が掛かった際に、ルーフィング接地面18がルーフィング25上面と面接地するため、板状屋根材1の強度を向上させることが出来る。
図5(b)はD-D断面図のビス19Bで固定している部分の拡大図であり、ビス頭部20Hの上面がフラットに近く厚みが薄い円弧形状のビス19Bを使用している図である。
板状屋根材1の上面9からビス頭部20Hを極力出したくないことから、ビス頭部20Hの上面形状をフラットに近い薄い頭部のビス19Bとしている。
ビス19Bは、ビス頭部20Hと軸部21の接合部22が円錐形状となっている。
また、第1緊結穴11の緊結穴上面側11Uもビス19Bと同様に円錐形状となっている。
ビス頭部20Hの上面9がフラットに近い薄い頭部形状のビス19Bの場合、ビス頭部20Hと軸部21の剪断強度を上げるためにビス頭部20Hと軸部21の接合部22を円錐形状とし、ビス19Bの円錐形状部と第1緊結穴11が干渉しないように緊結穴上面側11Uも円錐形状にすることで、板状屋根材1の上面9からのビス頭20Hの出寸法を最小にすることが出来る。
板状屋根材1を敷設して固定する際にビス19Bで屋根下地24に留め付けることで、板状屋根材1上面9と前記ビス19Bのビス頭部20Hの下面が密着する。
更に、ビス19Bで屋根下地24に固定することで、水上止水部12とルーフィング25上面が密着する。
その結果、板状屋根材1の重なり部に浸入した雨水や重なり部を越えてルーフィング25上まで浸入した雨水を止水することが出来る。
板状屋根材1の下面8の頭側6には、凹面10の緊結材収納空間14を設けている。
敷設した際に、上段の板状屋根材1の緊結材収納空間14の凹面深さDが、下段の板状屋根材1を留め付けているビス19Bのビス頭部20Hの高さより深くなっているので、ビス頭部20Hは板状屋根材1の下面8と干渉することなく緊結材収納空間14内に納まる。
板状屋根材1の下面8に設けている水上止水部12には板状屋根材1の上面9と平行な平面部15を有し、水上止水部12の平面部15の尻側端部16から尻部垂直面17の下端部に向けてルーフィング接地面18を設ける。
水上止水部12の内、ルーフィング25の上面と接地することで止水機能を発揮している部分は、尻側端部16とルーフィング接地面18となる。
FIG. 5 is an enlarged view of the fixing portion of the screw 19B in FIG. 4(a) in a cross-sectional view of the plate-shaped roofing material according to the embodiment.
FIG. 5A is an enlarged view of a portion fixed by a screw 19B in a DD cross section, in which the screw 19B has a flat upper surface at its head 20H.
The screw 19B has a joint 22 between the screw head 20H and the shaft 21 that is cone-shaped.
In this embodiment, since it is desired to minimize the protrusion of the screw head 20H from the upper surface 9 of the plate-shaped roofing material 1, the upper surface shape of the screw head 20H is made into a flat shape of the screw 19B.
The upper surface 11U of the first fastening hole 11 is also cone-shaped like the screw 19B.
In the case of a screw 19B having a flat-shaped upper surface 9 of the screw head 20H, the joint 22 between the screw head 20H and the shank 21 is made conical in shape to increase the shear strength of the screw head 20H and the shank 21, and the upper side 11U of the fastening hole is also made conical in shape to prevent interference between the conical portion of the screw 19B and the first fastening hole 11, thereby minimizing the projection dimension of the screw head 20H from the upper surface 9 of the plate-shaped roofing material 1.
When laying and fixing the plate-shaped roofing material 1, it is fastened to the roof underlayment 24 with the screw 19B, so that the upper surface of the cone shape of the fastening hole upper side 11U and the lower surface of the screw head 20H of the screw 19B are in tight contact with each other.
Furthermore, by fixing it to the roof base 24 with screws 19B, the water-stopping part 12 and the upper surface of the roofing 25 are tightly attached to each other.
As a result, rainwater that has infiltrated into the overlapping portion of the plate-shaped roofing material 1 and that has crossed the overlapping portion and infiltrated onto the roofing 25 can be stopped.
A fastening material storage space 14 is provided on the concave surface 10 at the head side 6 of the underside 8 of the plate-shaped roofing material 1.
When laid, the concave depth D of the fastening material storage space 14 of the upper plate-like roofing material 1 is deeper than the height of the screw head 20H of the screw 19B fastening the lower plate-like roofing material 1, so that the screw head 20H fits within the fastening material storage space 14 without interfering with the lower surface 8 of the plate-like roofing material 1.
According to this embodiment, the fastening material 19 that fastens the plate-like roofing material 1 is positioned at a position higher than the upper surface 9 of the plate-like roofing material 1 by the height of the fastening material head 20 of the fastening material 19, but the fastening material storage space 14, which has a concave surface 10 deeper than the height of the fastening material head 20 of the fastening material 19, stores the fastening material head 20 of the fastening material 19, so that it is possible to prevent the underside of the plate-like roofing material 1 and the fastening material head 20 of the fastening material 19 from interfering with each other, causing the head side 6 of the plate-like roofing material 1 to float and creating a gap.
As a result, the upper and lower plate-like roofing materials 1 are laid without any gaps, so that high waterproof performance can be achieved against wind and rain.
In addition, if the fastening material head 20 of the fastening material 19 interferes with the underside 8 of the plate-shaped roofing material 1, when the installer stands on the plate-shaped roofing material 1, the installer's weight will be applied to the plate-shaped roofing material 1 as a point load, causing problems such as cracks. However, by providing a fastening material storage space 14, the underside 8 of the head side 6 of the plate-shaped roofing material 1 and the upper surface 9 of the tail side 5 of the plate-shaped roofing material 1 receive the load as a surface, thereby achieving high load-bearing performance.
The water-stopping portion 12 provided on the underside 8 of the plate-shaped roofing material 1 has a flat portion 15 parallel to the upper surface 9 of the plate-shaped roofing material 1, and a roofing contact surface 18 is provided from the tail side end 16 of the flat portion 15 of the water-stopping portion 12 toward the lower end of the tail vertical surface 17.
Of the above-water water-stopping portion 12, the portions that perform the water-stopping function by coming into contact with the upper surface of the roofing 25 are the tail end portion 16 and the roofing contact surface 18.
According to this embodiment, the plate-shaped roofing material 1 of the present invention has the roofing contact surface 18 in contact with the upper surface of the roofing 25, thereby further improving the water-stopping performance of the above-water water-stopping portion 12.
Furthermore, when a contractor stands on the plate roofing material 1 or when a load is applied to the main body of the plate roofing material 1 from the upper surface 9 of the plate roofing material 1 due to snow accumulation or the like, the roofing contact surface 18 comes into contact with the upper surface of the roofing 25, thereby improving the strength of the plate roofing material 1.
FIG. 5B is an enlarged view of the portion fixed by the screw 19B in the DD cross section, in which the screw 19B is in a thin arc shape with a nearly flat upper surface of the screw head 20H.
Since it is desired to minimize the protrusion of the screw head 20H from the upper surface 9 of the plate-like roofing material 1, the screw 19B has a thin head whose upper surface shape is nearly flat.
The screw 19B has a joint 22 between the screw head 20H and the shaft 21 that is cone-shaped.
The upper surface 11U of the first fastening hole 11 is also cone-shaped like the screw 19B.
In the case of screws 19B having a thin head shape in which the upper surface 9 of the screw head 20H is nearly flat, the joint 22 between the screw head 20H and the shank 21 is made conical in shape to increase the shear strength of the screw head 20H and the shank 21, and the upper side 11U of the fastening hole is also made conical in shape so that the conical portion of the screw 19B does not interfere with the first fastening hole 11, thereby minimizing the projection dimension of the screw head 20H from the upper surface 9 of the plate-shaped roofing material 1.
When laying and fixing the plate-shaped roofing material 1, it is fastened to the roof underlayment 24 with a screw 19B, so that the upper surface 9 of the plate-shaped roofing material 1 and the underside of the screw head 20H of the screw 19B are in close contact with each other.
Furthermore, by fixing it to the roof base 24 with screws 19B, the water-stopping part 12 and the upper surface of the roofing 25 are tightly attached to each other.
As a result, rainwater that has infiltrated into the overlapping portion of the plate-shaped roofing material 1 and that has crossed the overlapping portion and infiltrated onto the roofing 25 can be stopped.
A fastening material storage space 14 is provided on the concave surface 10 at the head side 6 of the underside 8 of the plate-shaped roofing material 1.
When laid, the concave depth D of the fastening material storage space 14 of the upper plate-like roofing material 1 is deeper than the height of the screw head 20H of the screw 19B fastening the lower plate-like roofing material 1, so that the screw head 20H fits within the fastening material storage space 14 without interfering with the lower surface 8 of the plate-like roofing material 1.
The water-stopping portion 12 provided on the underside 8 of the plate-shaped roofing material 1 has a flat portion 15 parallel to the upper surface 9 of the plate-shaped roofing material 1, and a roofing contact surface 18 is provided from the tail side end 16 of the flat portion 15 of the water-stopping portion 12 toward the lower end of the tail vertical surface 17.
Of the above-water water-stopping portion 12, the portions that perform the water-stopping function by coming into contact with the upper surface of the roofing 25 are the tail end portion 16 and the roofing contact surface 18.

図6は実施例による板状屋根材1と規格化形状屋根材29の屋根伏せ図である。
屋根形状は寄棟切妻混合屋根で、屋根端部28に陸棟部33、隅棟部34、ケラバ部35、三又部36、寄棟棟違い部38、谷部37を有し、全ての屋根端部28には、規格化した形状の規格化形状屋根材29を配置している。
屋根2は、5つの屋根面を有する棟違い屋根であり、水平投影図ではL字型の屋根形状である。
設計単位寸法Pは、尺モジュールであり、1Pが910mmである。
軒の出31は455mm、破風の出32も455mmであり、設計単位寸法Pで表すと0.5Pとなる。
板状屋根材1の働き幅寸法Wは455mm、働き長さの水平投影寸法Lhは227.5mmであり、設計単位寸法Pで表すと0.5Pと0.25Pとなる。
屋根2には多くの屋根端部28を有しており、2本の陸棟部33、4本の隅棟部34、左右のケラバ部35、1本の谷部37といった屋根端部28を有している。
また、陸棟部33と2本の隅棟部34が交差する屋根端部28の三又部36、陸棟部33と隅棟部34と谷部37が交差する屋根端部28の寄棟棟違い部38を有している。
棟違い部は切妻屋根と寄棟屋根で異なった形状の規格化形状屋根材29を有する。
本実施例での棟違い部は寄棟棟違い部38である。
陸棟部33に配置される規格化形状屋根材29は陸棟規格化形状屋根材41であり、板状屋根材1の尻側5の縦重なり部分が切断された形状である。
全ての陸棟部33には同一形状の陸棟規格化形状屋根材41が用いられる。
隅棟部34に配置される規格化形状屋根材29は隅棟右規格化形状屋根材39と隅棟左規格化形状屋根材40であり、左右の隅棟部34の角度に合わせて板状屋根材1を切断した形状である。
右側の隅棟部34には同一形状の隅棟右規格化形状屋根材39が用いられ、左側の隅棟部34には同一形状の隅棟左規格化形状屋根材40が用いられる。
ケラバ部35に配置される規格化形状屋根材29は板状屋根材1を半分に切断した半瓦48である。
実施例では、板状屋根材1を千鳥葺きしているのでケラバ部35では規格化形状屋根材29として板状屋根材1と半瓦48を1段ごとに交互に用いている。
全てのケラバ部35には同一形状の半瓦48と板状屋根材1が用いられる。
三又部36に配置される規格化形状屋根材29は三角形形状の屋根面に用いる三又規格化形状屋根材42と陸棟部33を有する屋根面に用いる陸隅右規格化形状屋根材46と陸隅左規格化形状屋根材47である。
陸隅右規格化形状屋根材46と陸隅左規格化形状屋根材47は、隅棟右規格化形状屋根材39と隅棟左規格化形状屋根材40の尻側5の縦重なり部分が切断された形状である。
三又規格化形状屋根材42は、陸隅右規格化形状屋根材46と陸隅左規格化形状屋根材47の斜め切断部を合わせた二等辺三角形形状である。
全ての三又部36には同一形状の三又規格化形状屋根材42と陸隅右規格化形状屋根材46と陸隅左規格化形状屋根材47が用いられる。
谷部37に配置される規格化形状屋根材29は谷右規格化形状屋根材43と谷左規格化形状屋根材44であり、谷部37の角度に合わせて板状屋根材1を左右面で切断した形状である。
軒側から見て谷部37の左側に位置する方に谷右規格化形状屋根材43が用いられ、右側に位置する方に谷左規格化形状屋根材44が用いられる。
全ての谷部37には同一形状の谷右規格化形状屋根材43と谷左規格化形状屋根材44が用いられる。
寄棟棟違い部38に配置される規格化形状屋根材29は軒側から見て右方向に隅棟部34がある実施例においては寄棟棟違右規格化形状屋根材45である。
寄棟棟違右規格化形状屋根材45の形状は、板状屋根材1を隅棟部34の角度に合わせて切断し、陸棟部33に面している部分は板状屋根材1の尻側5の縦重なり部分が切断された形状である。
見え掛かり部は、板状屋根材1や陸棟規格化形状屋根材41と同様に見えるが、実際の形状は隅棟部34に面している部分は縦重なり部分があり他の規格化形状屋根材29とは異なる形状である。
実施例のように右側に隅棟部34がある全ての寄棟棟違い部38には同一形状の寄棟棟違右規格化形状屋根材45が用いられる。
本発明の構成とすることにより、本実施例のように全ての屋根端部28には規格化した形状の規格化形状屋根材29が配置される。
その結果、従来技術のようにどこの屋根端部28にどの屋根材を配置していたのかを記録する必要が無くなる。
また、屋根端部28に敷設する規格化形状屋根材29の緊結材19をビス19Bとすることで、屋根端部28の規格化形状屋根材29の取り外しが容易となり、板状屋根材1と同様に再利用を簡単に行うことが出来る。
その結果、葺き替えの際に、現状の屋根材を廃棄し新たな屋根材を用いて施工するよりも、本発明の板状屋根材1の屋根構造を用いて板状屋根材1と規格化形状屋根材29を再利用した方がコスト的に安くなり、本発明によるメリットが多くなる。
また、社会的には、屋根材を長期間繰り返し使うことにより、省資源、廃棄物の削減、省エネルギーといった地球環境の保護にも役立つ。
FIG. 6 is a roof plan view of the plate-shaped roofing material 1 and the standardized shape roofing material 29 according to the embodiment.
The roof shape is a mixed hip-gable roof, with a land ridge section 33, a corner ridge section 34, a eaves section 35, a trifurcation section 36, a hip ridge difference section 38, and a valley section 37 at the roof edge 28, and standardized shape roof materials 29 of a standardized shape are arranged at all of the roof edges 28.
The roof 2 is a staggered roof having five roof surfaces, and has an L-shaped roof shape in a horizontal projection view.
The design unit dimension P is a shaku module, and 1P is 910 mm.
The eaves overhang 31 is 455 mm and the gable overhang 32 is also 455 mm, which is 0.5P when expressed in design unit dimension P.
The working width dimension W of the plate-shaped roofing material 1 is 455 mm, and the horizontal projection dimension Lh of the working length is 227.5 mm, which, when expressed in terms of the design unit dimension P, are 0.5P and 0.25P.
The roof 2 has many roof edges 28, such as two land ridge portions 33, four corner ridge portions 34, left and right eaves portions 35, and one valley portion 37.
It also has a three-pronged portion 36 of the roof end 28 where the land ridge portion 33 and two corner ridge portions 34 intersect, and a hipped ridge portion 38 of the roof end 28 where the land ridge portion 33, the corner ridge portion 34 and a valley portion 37 intersect.
The ridge difference portion has standardized shape roofing material 29 of different shapes for a gable roof and a hip roof.
In this embodiment, the ridge difference portion is a hipped ridge difference portion 38 .
The standardized shape roof material 29 placed on the land ridge portion 33 is a land ridge standardized shape roof material 41, and has a shape in which the vertical overlap portion of the tail side 5 of the plate-shaped roof material 1 is cut off.
The same shape of standardized land-based roofing material 41 is used for all land-based sections 33.
The standardized shaped roof materials 29 to be placed at the corner ridge portions 34 are a right corner standardized shaped roof material 39 and a left corner standardized shaped roof material 40, and are shaped by cutting the plate-shaped roof material 1 to match the angles of the left and right corner ridge portions 34.
A right-corner standardized roof material 39 of the same shape is used for the right-side corner ridge portion 34, and a left-corner standardized roof material 40 of the same shape is used for the left-side corner ridge portion 34.
The standardized shape roofing material 29 placed on the eaves portion 35 is a half tile 48 formed by cutting the plate-shaped roofing material 1 in half.
In this embodiment, the plate-shaped roofing materials 1 are laid in a staggered pattern, so that in the eaves portion 35, plate-shaped roofing materials 1 and half roof tiles 48 are used alternately for each row as the standardized shape roofing material 29.
Half tiles 48 and plate-shaped roofing materials 1 of the same shape are used for all of the eaves portions 35.
The standardized shaped roof material 29 placed on the three-pronged portion 36 is a three-pronged standardized shaped roof material 42 used for triangular shaped roof surfaces and a right land corner standardized shaped roof material 46 and a left land corner standardized shaped roof material 47 used for roof surfaces having a land ridge portion 33.
The land corner right standardized shaped roof material 46 and the land corner left standardized shaped roof material 47 have a shape in which the vertical overlapping portions of the tail end 5 of the corner ridge right standardized shaped roof material 39 and the corner ridge left standardized shaped roof material 40 are cut.
The three-pronged standardized roof material 42 has an isosceles triangular shape formed by combining the diagonal cut portions of the land corner right standardized roof material 46 and the land corner left standardized roof material 47 .
For all three-pronged portions 36, the same three-pronged standardized roof material 42, the land corner right standardized roof material 46, and the land corner left standardized roof material 47 are used.
The standardized shaped roof materials 29 placed in the valley portion 37 are a valley right standardized shaped roof material 43 and a valley left standardized shaped roof material 44, and are shaped by cutting the plate-shaped roof material 1 on the left and right sides to match the angle of the valley portion 37.
When viewed from the eaves side, a valley-right standardized shaped roof material 43 is used on the side located to the left of the valley portion 37, and a valley-left standardized shaped roof material 44 is used on the side located to the right.
The same shaped valley right standardized shaped roof material 43 and valley left standardized shaped roof material 44 are used for all the valley portions 37.
In an embodiment in which the corner ridge portion 34 is located to the right when viewed from the eaves side, the standardized shape roof material 29 placed at the hipped ridge difference portion 38 is a right-side standardized shape roof material 45 .
The shape of the standardized hipped roof material 45 is obtained by cutting the plate roof material 1 to match the angle of the corner ridge portion 34, and the portion facing the land ridge portion 33 is formed by cutting the vertical overlap portion of the butt end 5 of the plate roof material 1.
The apparent portion looks similar to the plate-shaped roofing material 1 and the land-ridge standardized shape roofing material 41, but the actual shape of the portion facing the corner ridge portion 34 has a vertical overlap portion and is a different shape from the other standardized shape roofing materials 29.
As in the embodiment, the same shape of hipped ridge right standardized shape roof material 45 is used for all hipped ridge misalignment parts 38 that have a corner ridge part 34 on the right side.
By adopting the configuration of the present invention, standardized-shape roof materials 29 having a standardized shape are arranged on all roof edges 28 as in this embodiment.
As a result, there is no need to record which roof material was placed on which roof edge 28 as in the prior art.
In addition, by using screws 19B as the fastening material 19 for the standardized shaped roof material 29 laid on the roof end 28, the standardized shaped roof material 29 on the roof end 28 can be easily removed, and can be easily reused in the same way as the plate-shaped roof material 1.
As a result, when re-roofing, it is cheaper to reuse the plate-shaped roofing material 1 and the standardized shape roofing material 29 using the roof structure of the plate-shaped roofing material 1 of the present invention than to discard the existing roofing material and use a new roofing material, and the advantages of the present invention are numerous.
From a social perspective, the repeated use of roofing materials over a long period of time also contributes to protecting the global environment by conserving resources, reducing waste, and saving energy.

図7は実施例による隅棟右規格化形状屋根材39の製品図面である。
隅棟右規格化形状屋根材39は規格化形状屋根材29であり、軒側から見て右側に隅棟部34があるときに隅棟際に配置される規格化形状屋根材29である。
図7は隅棟右規格化形状屋根材39の製品図面で投影法による投影図であり、平面図、正面図、底面図の3面図にて表している。
図7の平面図では製品の上面9をあらわしており、隅棟右規格化形状屋根材39を屋根2に敷設する際の伏せ図で用いる図である。
図面位置の下側が板状屋根材1の頭側6、上側が尻側5となる。
実施例の隅棟右規格化形状屋根材39では、働き幅寸法Wは455mmであり建物の設計単位寸法Pでは、尺モジュールの0.5Pにあたる寸法としている。
全長さ寸法LAは、板状屋根材1と同じ300mmである。
尻側5には、第2緊結穴30を2箇所設けている。
隅棟右規格化形状屋根材39の右側の側端部7は寄棟屋根における4寸勾配屋根の隅棟角度に合わせた形状になっている。
働き長さ寸法Lが4寸勾配の245mm、働き幅寸法Wの二分の一の寸法である227.5mmの交点と製品の頭部の右側端とを結んだ線が隅棟右規格化形状屋根材39の右側のラインになっている。
隅棟右規格化形状屋根材39は板状屋根材1を切断して製作することを想定している。
底面図は、隅棟右規格化形状屋根材39の下面8を表す図である。
板状屋根材1と同様に下面8には、水上止水部12、水抜き部13,ルーフィング接地面18、凹部10、緊結材収納空間14、第2緊結穴30を設けている。
本実施例のように、規格化形状屋根材29は、板状屋根材1を工場で加工して事前に作っておくことが出来る。
規格化形状屋根材29は、第2緊結穴30を有し、その第2緊結穴30を用いて屋根下地24にビス19Bで留め付けることにより、大型台風でも飛散しない固定強度を発揮することが出来る。
また、屋根端部28で形状を規格化出来、かつビス19Bを用いることで規格化形状屋根材29を容易に損傷させることなく取り外すことが出来るので、再利用を簡易にすることが出来る。
FIG. 7 is a product drawing of a right corner roof material 39 according to an embodiment.
The right corner ridge standardized shape roof material 39 is a standardized shape roof material 29 that is placed near the corner ridge when the corner ridge portion 34 is on the right side when viewed from the eaves side.
FIG. 7 is a product drawing of the right-corner standardized roof material 39, which is a projection drawing by a projection method, and is shown in three views, namely, a plan view, a front view, and a bottom view.
The plan view of Figure 7 shows the top surface 9 of the product, and is a plan view used when laying the right-corner standardized roofing material 39 on the roof 2.
The lower side of the drawing position is the head side 6 of the plate-shaped roofing material 1, and the upper side is the tail side 5.
In the example of the right corner roof material 39, the working width dimension W is 455 mm, which corresponds to 0.5P of the shaku module in terms of the design unit dimension P of the building.
The overall length dimension LA is 300 mm, the same as that of the plate-shaped roofing material 1.
Two second fastening holes 30 are provided on the rear end side 5.
The right side end 7 of the right corner ridge standardized shape roof material 39 is shaped to match the corner ridge angle of a 4-inch sloped hip roof.
The line connecting the intersection of the working length dimension L of 245 mm with a 4-inch slope and 227.5 mm, which is half the working width dimension W, and the right end of the head of the product forms the right line of the corner ridge right standardized shape roof material 39.
The right corner roof material 39 is assumed to be manufactured by cutting the sheet roof material 1.
The bottom view shows the underside 8 of the right corner roof material 39 .
As with the plate-shaped roofing material 1, the underside 8 is provided with a water-stopping portion 12 above water, a water drainage portion 13, a roofing contact surface 18, a recess 10, a fastening material storage space 14, and a second fastening hole 30.
As in this embodiment, the standardized shape roofing material 29 can be produced in advance by processing the plate-shaped roofing material 1 in a factory.
The standardized shape roof material 29 has a second fastening hole 30, and by fastening it to the roof base 24 with a screw 19B using the second fastening hole 30, it can exhibit a fixing strength that will not fly away even in a large typhoon.
In addition, the shape can be standardized at the roof end 28, and the standardized shape roof material 29 can be easily removed without being damaged by using screws 19B, making it easy to reuse.

本発明は、実施例においては建物の設計単位寸法Pは尺モジュールとしたが、建物の設計単位寸法Pはメーターモジュールでもインチモジュールでも利用できる。
本発明におけるルーフィング接地面18の傾斜角度は、所定の働き長さLで設定するが、設定した働き長さLに限定するものではなく、所定の範囲内においては効果的に機能する。
また、実施例においては規格化形状屋根材29で陸棟規格化形状屋根材41は、縦重なり部分を切断した形状としたが、この形状に限定されるものではなく、例えば陸棟部33を板状屋根材1の形状とした規格化形状屋根材29でも良い。
In the present invention, the design unit dimension P of a building is a shaku module in the embodiment, but the design unit dimension P of a building can be either a meter module or an inch module.
The inclination angle of the roofing contact surface 18 in the present invention is set to a predetermined working length L, but is not limited to the set working length L, and functions effectively within a predetermined range.
In addition, in the embodiment, the standardized shaped roof material 29 has a shape in which the vertical overlapping portion is cut off to form the land-ridge standardized shaped roof material 41, but this shape is not limited to this, and it may also be, for example, a standardized shaped roof material 29 in which the land-ridge portion 33 has the shape of the plate-shaped roof material 1.

1 板状屋根材
2 屋根
3 桁方向
4 流れ方向
5 尻側
6 頭側
7 側端部
8 下面
9 上面
10 凹面
11 第1緊結穴
11U 第1緊結穴上面側
12 水上止水部
13 水抜き部
14 緊結材収納空間
15 平面部
16 尻側端部
17 尻部垂直面
18 ルーフィング接地面
19 緊結材
19B ビス
20 緊結材頭部
20H ビス頭部
21 軸部
22 接合部
23 ジョイント板
24 屋根下地
25 ルーフィング
26 勾配
27 軒先側
28 屋根端部
29 規格化形状屋根材
30 第2緊結穴
31 軒の出
32 破風の出
33 陸棟部
34 隅棟部
35 ケラバ部
36 三又部
37 谷部
38 寄棟棟違い部
39 隅棟右規格化形状屋根材
40 隅棟左規格化形状屋根材
41 陸棟規格化形状屋根材
42 三又規格化形状屋根材
43 谷右規格化形状屋根材
44 谷左規格化形状屋根材
45 寄棟棟違右規格化形状屋根材
46 陸隅右規格化形状屋根材
47 陸隅左規格化形状屋根材
48 半瓦
Lh 働き長さの水平投影寸法
L 働き長さ寸法
LA 全長さ寸法
W 働き幅寸法
T 厚み
D 凹面深さ
H ビス頭部高さ
P 設計単位寸法
1 Plate-shaped roofing material 2 Roof 3 Girder direction 4 Flow direction 5 Bottom side 6 Head side 7 Side end 8 Underside 9 Top side 10 Concave surface 11 First fastening hole 11U Top side of first fastening hole 12 Water stopper part 13 Water drainage part 14 Fastening material storage space 15 Flat part 16 Bottom side end 17 Bottom vertical surface 18 Roofing contact surface 19 Fastening material 19B Screw 20 Fastening material head 20H Screw head 21 Shaft part 22 Joint part 23 Joint plate 24 Roof underlay 25 Roofing 26 Slope 27 Eaves side 28 Roof end 29 Standardized shape roofing material 30 Second fastening hole 31 Eaves overhang 32 Gable overhang 33 Land ridge part 34 Corner ridge part 35 Eaves part 36 Tri-forked part 37 Valley part 38 Hip ridge difference part 39 Standardized shaped roof material for right corner ridge 40 Standardized shaped roof material for left corner ridge 41 Standardized shaped roof material for land ridge 42 Standardized shaped roof material for three-pronged ridge 43 Standardized shaped roof material for right valley 44 Standardized shaped roof material for left valley 45 Standardized shaped roof material for right hipped ridge 46 Standardized shaped roof material for right land corner 47 Standardized shaped roof material for left land corner 48 Half tile Lh Horizontal projection dimension L of working length Working length dimension LA Total length dimension W Working width dimension T Thickness D Concave depth H Screw head height P Design unit dimension

Claims (3)

勾配を有する建物の屋根の屋根下地の上にルーフィングを設け、前記ルーフィングの上に板状屋根材を直接敷設し、緊結材はビスを用いて前記屋根下地に固定する前記板状屋根材の屋根構造において、
前記板状屋根材の尻側には複数の第1緊結穴を設け、
前記下面には前記第1緊結穴毎に前記第1緊結穴よりも前記尻側に水上止水部を設け、
前記水上止水部の両端には水抜き部を設け、
前記板状屋根材の働き幅寸法は前記建物の設計単位寸法の二分の一とし、
前記板状屋根材の働き長さの水平投影寸法は前記働き幅寸法の二分の一とし、
働き長さ寸法は前記屋根の前記勾配ごとに前記働き長さの水平投影寸法に勾配伸び率を乗じた寸法とし、
前記板状屋根材を敷設した際には、
流れ方向で下段の前記板状屋根材の前記尻側に上段の前記板状屋根材の頭側を重ねて配置し、
桁方向では隣り合う前記板状屋根材の側面を当接するように配置し、
前記流れ方向の段毎で前記働き幅寸法の二分の一をずらして配置し、
前記水上止水部は前記ルーフィングの上面と接地し、
前記水抜き部は前記ルーフィングの前記上面より離隔し、
陸棟部、隅棟部、ケラバ部、三又部、寄棟棟違い部、谷部などの全ての屋根端部には、規格化した形状の規格化形状屋根材を配置し、
前記規格化形状屋根材は第2緊結穴を有し、
前記規格化形状屋根材の前記緊結材は前記ビスを用いて前記屋根下地に固定することを特徴とする板状屋根材の屋根構造。
In a roof structure using said plate-shaped roofing material, a roofing sheet is provided on a roof base of a building having a slope, a plate-shaped roofing material is directly laid on said roofing sheet, and a fastening material is fixed to said roof base using a screw,
A plurality of first fastening holes are provided at the rear end of the plate-shaped roofing material,
a water stopper portion is provided on the underside of each of the first fastening holes on the rear side of the first fastening holes;
A water drain is provided at both ends of the water-surface water stop portion,
The working width dimension of the plate-shaped roofing material shall be half the design unit dimension of the building,
The horizontal projection dimension of the working length of the plate-shaped roofing material is half the working width dimension,
The working length dimension is the horizontal projection dimension of the working length multiplied by the slope extension rate for each slope of the roof,
When the plate-shaped roofing material is installed,
The head side of the upper sheet roofing material is arranged so as to overlap the tail side of the lower sheet roofing material in the flow direction;
In the girder direction, the side surfaces of the adjacent plate-shaped roofing materials are arranged to abut against each other,
The stages are arranged in the flow direction with a shift of half the working width dimension,
The water-stopping portion is in contact with the upper surface of the roofing,
The drainage portion is spaced from the upper surface of the roofing,
Standardized roofing materials are placed on all roof edges, including the ridge, corners, eaves, trifurcation, hipped ridge, and valleys.
The standardized roofing material has a second fastening hole,
A roof structure using plate-shaped roofing materials, characterized in that the fastening material of the standardized shape roofing material is fixed to the roof base using the screws.
前記板状屋根材及び前記規格化形状板状屋根材の材質が陶磁器であることを特徴とする請求項1の板状屋根材の屋根構造。
2. The roof structure of claim 1, wherein said sheet roofing material and said standardized shape sheet roofing material are made of ceramic.
前記水抜き部は前記第1緊結穴毎に前記下面の前記第1緊結穴の両側に前記第1緊結穴から離隔した位置で設けたことを特徴とする請求項1記載の板状屋根材の屋根構造。 The roof structure of the plate-shaped roof material described in claim 1, characterized in that the water drainage portion is provided on both sides of the first fastening hole on the underside for each of the first fastening holes at a position spaced apart from the first fastening hole.
JP2023023885A 2023-02-18 2023-02-18 Sheet roofing material Pending JP2024117667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023023885A JP2024117667A (en) 2023-02-18 2023-02-18 Sheet roofing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023023885A JP2024117667A (en) 2023-02-18 2023-02-18 Sheet roofing material

Publications (1)

Publication Number Publication Date
JP2024117667A true JP2024117667A (en) 2024-08-29

Family

ID=92502956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023023885A Pending JP2024117667A (en) 2023-02-18 2023-02-18 Sheet roofing material

Country Status (1)

Country Link
JP (1) JP2024117667A (en)

Similar Documents

Publication Publication Date Title
US10370855B2 (en) Roof deck intake vent
US20200354965A1 (en) Panelized lath and drainage plane system for building exteriors
JP2024117667A (en) Sheet roofing material
JP2024098658A (en) Sheet roofing material
JP2017201120A (en) building
US5519975A (en) Drainage roofing tile
US8898962B2 (en) Building roof system
JP2011144575A (en) Structure of photovoltaic panel-installed roof, and method for constructing the same
JP2024083179A (en) Plate-like roof material
JP5890662B2 (en) Roof construction
JP5626979B2 (en) Roof structure
US20200256056A1 (en) Interlocking Roofing Panels
JP7481853B2 (en) Roof structure
JP3233209U (en) Underlay structure of tiled roof
JP7530210B2 (en) How to install the roofing material set
JPH03110243A (en) Construction of tiled roof and assembled rails with heat insulating material therefor
JP3369516B2 (en) Floor / roof drainage structure and trough members
JP2024096504A (en) Roof structure manufacturing method and roof material installation method
JP4263272B2 (en) Construction method of ceramic roofing materials for group buildings
JP2011144574A (en) Structure of photovoltaic panel-installed roof, and method for constructing the same
JP2025003415A (en) Sheet roofing material or sheet wall material
US10724244B2 (en) Tile roofing riser
US11136763B2 (en) Aerodynamically stable roof paver system and ballast block therefor
JP6963985B2 (en) Waterproof structure of the outer wall parting part and its formation method
GB2523738A (en) Combined roof insulation and tile support panel system