[go: up one dir, main page]

JP2024111756A - Exhaust purification equipment - Google Patents

Exhaust purification equipment Download PDF

Info

Publication number
JP2024111756A
JP2024111756A JP2023016450A JP2023016450A JP2024111756A JP 2024111756 A JP2024111756 A JP 2024111756A JP 2023016450 A JP2023016450 A JP 2023016450A JP 2023016450 A JP2023016450 A JP 2023016450A JP 2024111756 A JP2024111756 A JP 2024111756A
Authority
JP
Japan
Prior art keywords
temperature
adsorption
catalyst
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023016450A
Other languages
Japanese (ja)
Inventor
和也 安田
Kazuya Yasuda
哲郎 大西
Tetsuro Onishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2023016450A priority Critical patent/JP2024111756A/en
Publication of JP2024111756A publication Critical patent/JP2024111756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

To reduce an emission amount of HC as much as possible and inhibit deterioration of a catalyst to extend the service life thereof.SOLUTION: An exhaust emission control apparatus 41 is configured to: be mounted in the exhaust passage 4 of an internal combustion engine 100; have an HC adsorption exhaust emission control device 411 capable of adsorbing HC, and another type of exhaust emission control device 412 capable of controlling emission of HC; and be accompanied by a cooling mechanism 413 capable of cooling the HC adsorption exhaust emission control device 411. The exhaust emission control device 41 is configured to suppress, by the cooling mechanism 413, the temperature of the HC adsorption exhaust emission control device 411 to a predetermined adsorption temperature or less when the temperature of the other type of exhaust emission control device 412 is below a predetermined activation temperature, and suppress the temperature of the HC adsorption exhaust emission control device 411 to a predetermined upper limit temperature or less, which is higher than the adsorption temperature, when the temperature of the other type of exhaust emission control device 412 is equal to or higher than the activation temperature.SELECTED DRAWING: Figure 2

Description

本発明は、車両等に搭載される内燃機関に適用できる排気浄化装置に関する。 The present invention relates to an exhaust purification device that can be applied to an internal combustion engine mounted on a vehicle, etc.

一般に、内燃機関の排気通路には、排気中に含まれる有害物質である炭化水素HC、一酸化炭素CO、窒素酸化物NOxを浄化する三元触媒が装着されている。三元触媒は、白金Pt、パラジウムPd、ロジウムRh等の貴金属を担体に担持させてなるものである。排気が三元触媒を通過するとき、HC及びCOが酸化反応するとともにNOxが還元反応して、無害な水H2O、二酸化炭素CO2及び窒素N2へと変化する(例えば、下記特許文献を参照)。 In general, a three-way catalyst is installed in the exhaust passage of an internal combustion engine to purify harmful substances contained in the exhaust, such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx ) . A three-way catalyst is made by supporting a precious metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) on a carrier. When exhaust gas passes through the three-way catalyst, HC and CO undergo an oxidation reaction and NOx undergoes a reduction reaction, converting them into harmless water ( H2O ), carbon dioxide ( CO2) , and nitrogen ( N2) (see, for example, the following patent document).

特開2013-155699号公報JP 2013-155699 A

内燃機関の冷間始動直後の時期は、内燃機関自体及び排気浄化用の三元触媒の温度がともに低い。気筒の燃焼室内でHCが生成されやすく、しかも三元触媒が活性化しておらず浄化能率が不十分である。それ故、HCが外部に排出されるおそれがある。 Immediately after a cold start of an internal combustion engine, the temperature of both the internal combustion engine itself and the three-way catalyst used to purify the exhaust gas are low. HC is easily generated in the combustion chamber of the cylinder, and the three-way catalyst is not yet activated, so its purification efficiency is insufficient. As a result, there is a risk that HC will be emitted to the outside.

対策として、HCを吸着できる吸着触媒を三元触媒の上流に配置し、三元触媒が昇温して活性化するまでの間、HCを保持して三元触媒に流入しないよう止めておくことが考えられる。 One possible solution is to place an adsorption catalyst that can adsorb HC upstream of the three-way catalyst, and hold the HC and stop it from flowing into the three-way catalyst until the three-way catalyst heats up and becomes activated.

だが、HC吸着触媒の吸着温度は約200℃までであり、それを超えて昇温すると吸着していたHCを放散してしまう。翻って、三元触媒の活性温度は約350℃以上である。従って、三元触媒が活性化する前にHC吸着触媒からのHCが流入するという問題が生起する。 However, the adsorption temperature of the HC adsorption catalyst is limited to approximately 200°C, and if the temperature is raised beyond that, the adsorbed HC will dissipate. In contrast, the activation temperature of a three-way catalyst is approximately 350°C or higher. This creates a problem in that HC will flow in from the HC adsorption catalyst before the three-way catalyst is activated.

一方、内燃機関の暖機が完了し触媒が必要十分に昇温した後、内燃機関が高負荷運転されると、高温の排気が多量に排気通路を流れ、触媒の温度が過剰に上昇して触媒の劣化を招く懸念がある。 On the other hand, after the internal combustion engine has finished warming up and the catalyst has sufficiently heated up, if the internal combustion engine is operated under high load, a large amount of high-temperature exhaust gas will flow through the exhaust passage, causing the catalyst temperature to rise excessively, which could lead to catalyst deterioration.

本発明は、HCの排出量をできる限り低減し、かつ触媒の劣化を抑制して長寿命化を図ることを所期の目的としている。 The intended purpose of the present invention is to reduce HC emissions as much as possible and to inhibit catalyst deterioration to extend its life.

本発明では、内燃機関の排気通路に装着される排気浄化装置であって、HCを吸着できるHC吸着触媒及びHCを浄化できる他の種類の触媒を有し、HC吸着触媒を冷却できる冷却機構が付随しており、前記冷却機構により、前記他の種類の触媒の温度が所定の活性温度未満であるときに前記HC吸着触媒の温度を所定の吸着温度以下に抑制し、他の種類の触媒の温度が活性温度以上であるときにHC吸着触媒の温度を前記吸着温度よりも高い所定の上限温度以下に抑制する排気浄化装置を構成した。 In the present invention, an exhaust purification device is provided that is mounted in the exhaust passage of an internal combustion engine, has an HC adsorption catalyst capable of adsorbing HC, and another type of catalyst capable of purifying HC, and is provided with a cooling mechanism capable of cooling the HC adsorption catalyst, and the cooling mechanism suppresses the temperature of the HC adsorption catalyst below a predetermined adsorption temperature when the temperature of the other type of catalyst is below a predetermined activation temperature, and suppresses the temperature of the HC adsorption catalyst below a predetermined upper limit temperature higher than the adsorption temperature when the temperature of the other type of catalyst is equal to or higher than the activation temperature.

前記HC吸着触媒及び前記他の種類の触媒は、内燃機関の排気マニホルドに近接して配置することが好ましい。 The HC adsorption catalyst and the other types of catalysts are preferably positioned in close proximity to the exhaust manifold of the internal combustion engine.

本発明によれば、HCの排出量をより一層低減することができる。なおかつ、触媒の劣化を抑制して長寿命化を図ることができる。 The present invention can further reduce HC emissions. It also makes it possible to suppress catalyst deterioration and extend the catalyst's life.

本発明の一実施形態における内燃機関の概略構成を示す図。1 is a diagram showing a schematic configuration of an internal combustion engine according to an embodiment of the present invention; 同実施形態の排気浄化装置の構造を一部を破断して示す側面図。2 is a side view showing the structure of the exhaust gas purification device according to the embodiment, with a part cut away; FIG. 同実施形態の排気浄化装置が有するHC吸着触媒の要部を拡大して示す断面図。2 is an enlarged cross-sectional view showing a main part of an HC adsorption catalyst provided in the exhaust purification device of the embodiment; FIG. 同実施形態の制御装置がプログラムに従い実行する処理の例を示すフロー図。FIG. 4 is a flow chart showing an example of processing executed by the control device according to a program of the embodiment.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関100の概要を示す。本内燃機関100は、火花点火式の4ストロークレシプロエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気バルブよりも上流、各気筒1に連なる吸気ポートの近傍には、吸気ポートに向けて燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を起こす。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overview of an internal combustion engine 100 for a vehicle according to this embodiment. The internal combustion engine 100 is a spark-ignition four-stroke reciprocating engine having a plurality of cylinders 1 (one of which is shown in FIG. 1). An injector 11 that injects fuel toward the intake port is provided upstream of the intake valve of each cylinder 1 and near the intake port connected to each cylinder 1. An ignition plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The ignition plug 12 generates a spark discharge between the center electrode and the ground electrode when an induced voltage generated by the ignition coil is applied to the ignition coil. The ignition coil is integrally built into the coil case together with an igniter, which is a semiconductor switching element.

吸気を気筒1に供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、吸気絞り弁である電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順に配設している。 The intake passage 3, which supplies intake air to the cylinders 1, takes in air from the outside and directs it to the intake port of each cylinder 1. An air cleaner 31, an electronic throttle valve 32, which is an intake throttle valve, a surge tank 33, and an intake manifold 34 are arranged in this order from upstream on the intake passage 3.

排気を気筒1から排出するための排気通路4は、気筒1内で燃料を燃焼させたことで発生するガスを各気筒1の排気ポートから外部へと導く。排気通路4上には、排気マニホルド42及び排気浄化装置41を配設している。 The exhaust passage 4, which discharges exhaust gas from the cylinders 1, guides gas generated by burning fuel inside the cylinders 1 to the outside through the exhaust port of each cylinder 1. An exhaust manifold 42 and an exhaust purification device 41 are arranged on the exhaust passage 4.

図2に示すように、本実施形態の排気浄化装置41は、HC吸着触媒411の直下流にHC吸着触媒以外の他の種類の触媒412、具体的には三元触媒412を直列に並べたものである。HC吸着触媒411は、気筒1から排出されるガスに含まれるHCを一時的に吸着する。HC吸着触媒411は、ゼオライト等のHCを吸着できる材料4111を担体4110に塗布し担持させて構成する。担体4110は、その伸長方向即ち排ガスが流通する方向に沿って当該担体4110を貫通する無数の小孔が穿たれたハニカム構造体である。HC吸着触媒411の担体4110は、三元触媒412の担体に比して熱伝導率のより高い金属製またはセラミックス製、例えばチタニアTiO2やアルミナAl23等を用いて作製することが好ましい。なお、図3に示すように、担体4110にHC吸着材料4111を塗布し、それに重ねて三元触媒として機能する白金Pt、パラジウムPd、ロジウムRh等の貴金属材料4112を塗布してコーティングすることも考えられる。 As shown in FIG. 2, the exhaust purification device 41 of this embodiment has a catalyst 412 other than the HC adsorption catalyst, specifically a three-way catalyst 412, arranged in series immediately downstream of the HC adsorption catalyst 411. The HC adsorption catalyst 411 temporarily adsorbs HC contained in the gas discharged from the cylinder 1. The HC adsorption catalyst 411 is formed by coating and supporting a material 4111 capable of adsorbing HC, such as zeolite, on a carrier 4110. The carrier 4110 is a honeycomb structure having numerous small holes penetrating the carrier 4110 along its extension direction, i.e., the direction in which the exhaust gas flows. The carrier 4110 of the HC adsorption catalyst 411 is preferably made of a metal or ceramic having a higher thermal conductivity than the carrier of the three-way catalyst 412, such as titania TiO 2 or alumina Al 2 O 3 . As shown in FIG. 3, it is also possible to coat a carrier 4110 with an HC adsorption material 4111 and then coat the carrier with a precious metal material 4112 such as platinum (Pt), palladium (Pd), or rhodium (Rh) that functions as a three-way catalyst.

三元触媒412は、気筒1から排出されるガスに含まれる有害物質HC、CO及びNOxの酸化/還元反応を惹起し、これらを無害化する。三元触媒412は、Pt、Pd、Rh等の貴金属を担体に塗布し担持させて構成する。三元触媒412の担体もまた、その伸長方向即ち排ガスが流通する方向に沿って当該担体を貫通する無数の小孔が穿たれたハニカム構造体である。三元触媒412の担体は、セラミックス製である。 The three-way catalyst 412 induces an oxidation/reduction reaction of harmful substances HC, CO, and NOx contained in the gas discharged from the cylinder 1, rendering them harmless. The three-way catalyst 412 is formed by coating and supporting a carrier with a precious metal such as Pt, Pd, or Rh. The carrier of the three-way catalyst 412 is also a honeycomb structure with countless small holes that penetrate the carrier in the extension direction, i.e., the direction in which the exhaust gas flows. The carrier of the three-way catalyst 412 is made of ceramics.

三元触媒412の担体は、HC吸着触媒411の担体4110に下流側から当接または近接させる。その上で、両者を、一体の筒状体のケーシング415内にともに収容するようにしている。三元触媒412の担体の外周とケーシング415の内周との間には、既知の保持材414を介在させて設ける。これに対し、HC吸着触媒411の担体4110の外周とケーシング415の内周との間には、必ずしも保持材を設けず、担体4110をケーシング415に直に当接または近接させる。尤も、担体4110とケーシング415との間に保持材を設けることを妨げない。 The carrier of the three-way catalyst 412 is in contact with or close to the carrier 4110 of the HC adsorption catalyst 411 from the downstream side. Both are then housed together in a single cylindrical casing 415. A known retaining material 414 is provided between the outer periphery of the carrier of the three-way catalyst 412 and the inner periphery of the casing 415. In contrast, a retaining material is not necessarily provided between the outer periphery of the carrier 4110 of the HC adsorption catalyst 411 and the inner periphery of the casing 415, and the carrier 4110 is directly in contact with or close to the casing 415. However, there is no prohibition on providing a retaining material between the carrier 4110 and the casing 415.

HC吸着触媒411及び三元触媒412を内包する排気浄化装置41(のケーシング415)は、排気通路4における排気マニホルド42の下流に直結するか排気マニホルド42にできる限り近接させる。並びに、この排気浄化装置41は、内燃機関100の本体(シリンダブロック及び/またはシリンダヘッド)の側面に当接または近接させる。 The exhaust purification device 41 (casing 415) containing the HC adsorption catalyst 411 and the three-way catalyst 412 is directly connected downstream of the exhaust manifold 42 in the exhaust passage 4 or is located as close as possible to the exhaust manifold 42. In addition, the exhaust purification device 41 is abutted against or located close to the side of the main body (cylinder block and/or cylinder head) of the internal combustion engine 100.

図1及び図2に示すように、HC吸着触媒411には、冷却機構413、51、52が付随している。冷却機構は、HC吸着触媒411を囲繞するウォータジャケット413を有し、当該ウォータジャケット413を流通する冷却水によりHC吸着触媒411を冷やしてその昇温を適切に抑制する水冷式のものである。ウォータジャケット413は、三元触媒412は必ずしも囲繞せず、三元触媒412を直接冷やさない。冷却水は、内燃機関100のそれを流用することが好ましい。つまり、内燃機関100の各部を流れる冷却水の一部を内燃機関100の本体からウォータジャケット413へと導入し、ウォータジャケット413を通過した冷却水を再び内燃機関100の本体へと帰還させるのである。さすれば、内燃機関100のウォータポンプ51をウォータジャケット413用のポンプとしても援用できる。図示例では、ウォータケット413をケーシング415の外周に沿って配しているが、ウォータジャケット413をケーシング415内、担体4110の外周とケーシング415の内周との間に配しても構わない。 1 and 2, the HC adsorption catalyst 411 is provided with cooling mechanisms 413, 51, and 52. The cooling mechanism is a water-cooled type that has a water jacket 413 surrounding the HC adsorption catalyst 411 and cools the HC adsorption catalyst 411 with cooling water flowing through the water jacket 413 to appropriately suppress the temperature rise. The water jacket 413 does not necessarily surround the three-way catalyst 412 and does not directly cool the three-way catalyst 412. It is preferable to use the cooling water of the internal combustion engine 100. In other words, a portion of the cooling water flowing through each part of the internal combustion engine 100 is introduced from the main body of the internal combustion engine 100 into the water jacket 413, and the cooling water that has passed through the water jacket 413 is returned to the main body of the internal combustion engine 100. In this way, the water pump 51 of the internal combustion engine 100 can also be used as a pump for the water jacket 413. In the illustrated example, the water tucket 413 is arranged along the outer periphery of the casing 415, but the water jacket 413 may be arranged inside the casing 415, between the outer periphery of the carrier 4110 and the inner periphery of the casing 415.

冷却水の流通経路上には、制御バルブ52を設置する。制御バルブ52が開くと、冷却水がウォータジャケット413を流れる。制御バルブ52が閉じると、冷却水がウォータジャケット413を流れず停滞する。制御バルブ52は、電子制御装置(Electronic Control Unit)0により制御可能なものであることが好ましい。但し、制御バルブ52は、ワックスやバイメタル、形状記憶合金等を用いた機械式のサーモスタットであることがある。また、制御バルブ52は、開度を柔軟に拡縮させて冷却水の流量を増減させることが可能な流量制御バルブであることがある。 A control valve 52 is installed on the cooling water flow path. When the control valve 52 is open, the cooling water flows through the water jacket 413. When the control valve 52 is closed, the cooling water does not flow through the water jacket 413 and stagnates. The control valve 52 is preferably one that can be controlled by an electronic control unit (ECU) 0. However, the control valve 52 may be a mechanical thermostat that uses wax, bimetal, shape memory alloy, etc. The control valve 52 may also be a flow control valve that can flexibly increase or decrease the flow rate of the cooling water by expanding or contracting the opening degree.

排気通路4における排気浄化装置41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよいが、本実施形態ではO2センサを想定している。O2センサ43、44には、これを加熱するヒータを付設することがある。 Air-fuel ratio sensors 43, 44 are installed upstream and downstream of the exhaust purification device 41 in the exhaust passage 4 to detect the air-fuel ratio of the gas flowing through the exhaust passage 4. The air-fuel ratio sensors 43, 44 may be O2 sensors having nonlinear output characteristics with respect to the air-fuel ratio of the gas, or linear A/F sensors having output characteristics proportional to the air-fuel ratio of the gas, but in this embodiment, O2 sensors are assumed. The O2 sensors 43, 44 may be provided with heaters for heating them.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、排気通路4と吸気通路3とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気浄化装置41の下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、特にサージタンク33若しくは吸気マニホルド34に接続している。 The exhaust gas recirculation device 2 includes an external EGR passage 21 that connects the exhaust passage 4 and the intake passage 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR valve 23 that opens and closes the EGR passage 21 to control the flow rate of EGR gas flowing through the EGR passage 21. The inlet of the EGR passage 21 is connected to a predetermined location downstream of the exhaust purification device 41 in the exhaust passage 4. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, in particular the surge tank 33 or the intake manifold 34.

内燃機関100の運転制御を司るECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラが、CAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 The ECU 0, which controls the operation of the internal combustion engine 100, is a microcomputer system having a processor, memory, an input interface, an output interface, etc. The ECU 0 may be configured by connecting multiple ECUs or controllers so that they can communicate with each other via an electrical communication line such as a CAN (Controller Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関100のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、車両の運転者によるアクセルペダルの踏込量をアクセル開度(いわば、要求されるエンジン負荷率またはエンジントルク)として検出するセンサから出力されるアクセル開度信号c、内燃機関100の冷却水の温度を検出する水温センサから出力される冷却水温信号d、吸気通路3特にサージタンク33若しくは吸気マニホルド34内の吸気温及び吸気圧を検出するセンサから出力される吸気温・吸気圧信号e、排気通路4における排気浄化装置41の上流のガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、排気浄化装置41の下流のガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。 The input interface of the ECU0 receives inputs such as a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from a crank angle sensor that detects the rotation angle of the crankshaft of the internal combustion engine 100 and the engine speed, an accelerator opening signal c output from a sensor that detects the amount of depression of the accelerator pedal by the driver of the vehicle as the accelerator opening (in other words, the required engine load rate or engine torque), a cooling water temperature signal d output from a water temperature sensor that detects the temperature of the cooling water of the internal combustion engine 100, an intake air temperature/intake pressure signal e output from a sensor that detects the intake air temperature and intake pressure in the intake passage 3, particularly the surge tank 33 or the intake manifold 34, an air-fuel ratio signal f output from an air-fuel ratio sensor 43 that detects the air-fuel ratio of the gas upstream of the exhaust purification device 41 in the exhaust passage 4, an air-fuel ratio signal g output from an air-fuel ratio sensor 44 that detects the air-fuel ratio of the gas downstream of the exhaust purification device 41, and an atmospheric pressure signal h output from an atmospheric pressure sensor that detects the atmospheric pressure.

ECU0の出力インタフェースからは、点火プラグ12に付随するイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、電子スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l、制御バルブ52に対して開度操作信号m等を出力する。 The output interface of ECU0 outputs an ignition signal i to an igniter associated with the spark plug 12, a fuel injection signal j to the injector 11, an opening operation signal k to the electronic throttle valve 32, an opening operation signal l to the EGR valve 23, an opening operation signal m to the control valve 52, etc.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関100の運転を制御する。ECU0は、内燃機関100の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、気筒1に吸入される空気量に見合った要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング(一度の燃焼に対する火花点火の回数を含む)、要求EGR率(または、EGRガス量)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、mを出力インタフェースを介して印加する。 The processor of ECU0 interprets and executes a program stored in memory in advance, calculates operating parameters, and controls the operation of internal combustion engine 100. ECU0 acquires various information a, b, c, d, e, f, g, and h required for controlling the operation of internal combustion engine 100 via an input interface, and determines various operating parameters such as the required fuel injection amount appropriate to the amount of air taken into cylinder 1, fuel injection timing (including the number of fuel injections per combustion), fuel injection pressure, ignition timing (including the number of spark ignitions per combustion), and required EGR rate (or EGR gas amount). ECU0 applies various control signals i, j, k, l, and m corresponding to the operating parameters via an output interface.

図4に示すように、本実施形態では、内燃機関100の冷間始動直後、内燃機関100及び排気浄化装置41が低温である時期に、内燃機関100の暖機が完了しかつ三元触媒412の温度が所定の活性温度、例えば約350℃以上に高まるまでの間(ステップS1)、HC吸着触媒411の温度を所定の吸着温度、例えば約200℃以下に抑制する(ステップS2)。そのために、ECU0は、三元触媒412の現在温度が活性温度に達するまでHC吸着触媒411の現在温度を吸着温度以下に維持するべく、制御バルブ52に制御信号mを与えてこれを開閉操作するフィードバック制御を実施する。HC吸着触媒411及び三元触媒412の現在温度はそれぞれ、温度センサを介して実測してもよく、既知の手法を持って推定してもよい。ステップS2は、三元触媒412が活性化して有害物質HCの浄化性能を十分に発揮するようになるまでの間、HCを吸着触媒411に吸着して止めておく意図である。 As shown in FIG. 4, in this embodiment, immediately after the cold start of the internal combustion engine 100, when the internal combustion engine 100 and the exhaust purification device 41 are at low temperatures, the temperature of the HC adsorption catalyst 411 is suppressed to a predetermined adsorption temperature, for example, about 200° C. or less (step S2) until the warm-up of the internal combustion engine 100 is completed and the temperature of the three-way catalyst 412 rises to a predetermined activation temperature, for example, about 350° C. or more (step S1). To achieve this, the ECU 0 performs feedback control by giving a control signal m to the control valve 52 to open and close it in order to maintain the current temperature of the HC adsorption catalyst 411 below the adsorption temperature until the current temperature of the three-way catalyst 412 reaches the activation temperature. The current temperatures of the HC adsorption catalyst 411 and the three-way catalyst 412 may be measured by a temperature sensor or may be estimated by a known method. Step S2 is intended to adsorb and stop HC in the adsorption catalyst 411 until the three-way catalyst 412 is activated and fully exerts the purification performance of the harmful substance HC.

しかして、三元触媒412が活性温度以上に昇温したならば、以後、HC吸着触媒411の温度を所定の上限温度、例えば約800℃以下に抑制する(ステップS3)。併せて、三元触媒413の温度を活性温度以上かつ所定の上限温度、例えば約800℃以下に抑制する。そのために、ECU0は、HC吸着触媒411の現在温度を上限温度以下に維持し、及び/または、三元触媒412の現在温度を上限温度以下に維持するべく、制御バルブ52に制御信号mを与えてこれを開閉操作するフィードバック制御を実施する。ステップS3は、HC吸着触媒411及び三元触媒412の熱害による劣化を防止する意図である。 If the temperature of the three-way catalyst 412 rises above the activation temperature, the temperature of the HC adsorption catalyst 411 is subsequently suppressed to a predetermined upper limit temperature, for example, about 800°C or less (step S3). At the same time, the temperature of the three-way catalyst 413 is suppressed to a temperature above the activation temperature and a predetermined upper limit temperature, for example, about 800°C or less. To achieve this, the ECU 0 performs feedback control by giving a control signal m to the control valve 52 to open and close it in order to maintain the current temperature of the HC adsorption catalyst 411 below the upper limit temperature and/or to maintain the current temperature of the three-way catalyst 412 below the upper limit temperature. Step S3 is intended to prevent deterioration of the HC adsorption catalyst 411 and the three-way catalyst 412 due to heat damage.

なお、ステップS2及びS3のそれぞれの作用を、制御バルブ52たるサーモスタットの設定により実現することもある。 The actions of steps S2 and S3 may be achieved by setting the thermostat, which is the control valve 52.

本実施形態では、内燃機関100の排気通路4に装着される排気浄化装置41であって、HCを吸着できるHC吸着排気浄化装置411及びHCを浄化できる他の種類の排気浄化装置412を有し、HC吸着排気浄化装置411を冷却できる冷却機構413、51、52が付随しており、冷却機構413、51、52により、他の種類の排気浄化装置412の温度が所定の活性温度未満であるときにHC吸着排気浄化装置411の温度を所定の吸着温度以下に抑制し、他の種類の排気浄化装置412の温度が活性温度以上であるときにHC吸着排気浄化装置411の温度を吸着温度よりも高い所定の上限温度以下に抑制する排気浄化装置41を構成した。 In this embodiment, the exhaust purification device 41 is mounted in the exhaust passage 4 of the internal combustion engine 100, and has an HC adsorption exhaust purification device 411 capable of adsorbing HC and another type of exhaust purification device 412 capable of purifying HC. The exhaust purification device 41 is provided with cooling mechanisms 413, 51, and 52 capable of cooling the HC adsorption exhaust purification device 411. The cooling mechanisms 413, 51, and 52 suppress the temperature of the HC adsorption exhaust purification device 411 to a predetermined adsorption temperature or lower when the temperature of the other type of exhaust purification device 412 is below a predetermined activation temperature, and suppress the temperature of the HC adsorption exhaust purification device 411 to a predetermined upper limit temperature higher than the adsorption temperature when the temperature of the other type of exhaust purification device 412 is equal to or higher than the activation temperature.

本実施形態によれば、三元触媒412が活性化するまでの間、HC吸着触媒411の昇温を抑制して吸着したHCが放散されないように保持できる。三元触媒412が活性化した後は、HC吸着触媒411からHCを放散させ、三元触媒412において適正に浄化処理することができる。ひいては、有害物質HCの排出量の一層の削減に寄与し得る。 According to this embodiment, the temperature rise of the HC adsorption catalyst 411 can be suppressed until the three-way catalyst 412 is activated, so that the adsorbed HC is prevented from being dispersed. After the three-way catalyst 412 is activated, the HC can be dispersed from the HC adsorption catalyst 411 and appropriately purified by the three-way catalyst 412. This can contribute to further reducing the amount of harmful HC emissions.

しかも、三元触媒412が活性化した後は、HC吸着触媒411及び三元触媒412が過剰な高温となることを回避できる(内燃機関100の暖機完了後の高負荷運転域でも冷却機構413、51、52を利用する)。従って、触媒411、412の劣化を抑制してその長寿命化を図ることができる。 In addition, after the three-way catalyst 412 is activated, the HC adsorption catalyst 411 and the three-way catalyst 412 can be prevented from becoming excessively hot (the cooling mechanisms 413, 51, and 52 are used even in the high-load operating range after the internal combustion engine 100 has finished warming up). Therefore, deterioration of the catalysts 411 and 412 can be suppressed, and their lifespan can be extended.

一体のケーシング415にHC吸着触媒411及び三元触媒412をともに内装し、これを内燃機関100の本体に添設しているので、内燃機関100及び排気浄化装置41の総体としてコンパクト化し、車体のエンジンルーム(エンジンコンパートメント)内にそれらを収容することができる。内燃機関100から離れた箇所、車体の床下で前後に伸びる排気管に各種触媒を配設することは不要である。三元触媒412を内燃機関100の本体に可及的に近づけることは、冷間始動時における三元触媒412の昇温を促進し早期の活性化を実現することに繋がる。 The HC adsorption catalyst 411 and the three-way catalyst 412 are both housed inside a single casing 415, which is attached to the main body of the internal combustion engine 100, making the internal combustion engine 100 and the exhaust purification device 41 as a whole compact and allowing them to be housed inside the engine room (engine compartment) of the vehicle body. It is not necessary to place various catalysts in a location away from the internal combustion engine 100, in the exhaust pipe that extends forward and backward under the floor of the vehicle body. Placing the three-way catalyst 412 as close as possible to the main body of the internal combustion engine 100 promotes the temperature rise of the three-way catalyst 412 during cold start, leading to early activation.

排気浄化装置41の上流及び下流に設置した空燃比センサ43、44の出力信号f、gを参照して、触媒411、412の劣化診断(ダイアグノーシス)を実行することも可能である。 It is also possible to perform deterioration diagnosis (diagnosis) of the catalysts 411, 412 by referring to the output signals f, g of the air-fuel ratio sensors 43, 44 installed upstream and downstream of the exhaust purification device 41.

なお、本発明は以上に詳述した実施形態には限定されない。例えば、図2中の符号412で指し示す部位に、三元触媒とともに、粒子状物質(Particulate Matter)を捕捉するフィルタ(Gasoline Particulate Filter)を配設してもよい。 The present invention is not limited to the embodiment described above. For example, a gasoline particulate filter that captures particulate matter may be provided in addition to the three-way catalyst at the location indicated by reference numeral 412 in FIG. 2.

その他、各部の具体的な構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part can be modified in various ways without departing from the spirit of the present invention.

100…内燃機関
0…制御装置(ECU)
4…排気通路
41…排気浄化装置
411…HC吸着触媒
412…他の種類の触媒(三元触媒)
413、51、52…冷却機構(ウォータジャケット、ウォータポンプ、制御バルブ)
415…ケーシング
42…排気マニホルド
43、44…空燃比センサ
m…制御バルブの開度操作信号
100... internal combustion engine 0... control device (ECU)
4... Exhaust passage 41... Exhaust purification device 411... HC adsorption catalyst 412... Other type of catalyst (three-way catalyst)
413, 51, 52...cooling mechanism (water jacket, water pump, control valve)
415: Casing 42: Exhaust manifold 43, 44: Air-fuel ratio sensor m: Control valve opening operation signal

Claims (2)

内燃機関の排気通路に装着される排気浄化装置であって、
HCを吸着できるHC吸着触媒及びHCを浄化できる他の種類の触媒を有し、HC吸着触媒を冷却できる冷却機構が付随しており、
前記冷却機構により、前記他の種類の触媒の温度が所定の活性温度未満であるときに前記HC吸着触媒の温度を所定の吸着温度以下に抑制し、他の種類の触媒の温度が活性温度以上であるときにHC吸着触媒の温度を前記吸着温度よりも高い所定の上限温度以下に抑制する排気浄化装置。
An exhaust purification device that is installed in an exhaust passage of an internal combustion engine,
The present invention relates to an HC adsorption catalyst and a catalyst for purifying HC.
The exhaust purification device uses the cooling mechanism to suppress the temperature of the HC adsorption catalyst to below a predetermined adsorption temperature when the temperature of the other type of catalyst is below a predetermined activation temperature, and to suppress the temperature of the HC adsorption catalyst to below a predetermined upper limit temperature that is higher than the adsorption temperature when the temperature of the other type of catalyst is equal to or higher than the activation temperature.
前記HC吸着触媒及び前記他の種類の触媒を内燃機関の排気マニホルドに近接して配置する請求項1記載の排気浄化装置。 The exhaust purification device according to claim 1, in which the HC adsorption catalyst and the other type of catalyst are disposed in close proximity to the exhaust manifold of the internal combustion engine.
JP2023016450A 2023-02-06 2023-02-06 Exhaust purification equipment Pending JP2024111756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023016450A JP2024111756A (en) 2023-02-06 2023-02-06 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023016450A JP2024111756A (en) 2023-02-06 2023-02-06 Exhaust purification equipment

Publications (1)

Publication Number Publication Date
JP2024111756A true JP2024111756A (en) 2024-08-19

Family

ID=92423738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023016450A Pending JP2024111756A (en) 2023-02-06 2023-02-06 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP2024111756A (en)

Similar Documents

Publication Publication Date Title
US6931839B2 (en) Apparatus and method for reduced cold start emissions
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
US9297292B2 (en) Engine cooling device
CN110832174B (en) System and method for exhaust gas aftertreatment of an internal combustion engine
JP5141824B2 (en) Exhaust gas purification device for internal combustion engine
US20120301365A1 (en) Exhaust purification device for internal combustion engine
JP3779828B2 (en) Exhaust gas purification device for internal combustion engine
JP2019513930A (en) Emission control system and method for a motor vehicle
JP2024111756A (en) Exhaust purification equipment
CN112983603B (en) Post-processing system and method
JP3985266B2 (en) NOx detector
JP2015081570A (en) Exhaust emission control system
JP3925617B2 (en) Exhaust gas purification device for internal combustion engine
JP2008519194A (en) Apparatus for controlling the operating state of a catalytic converter in an exhaust passage attached to an internal combustion engine and an engine equipped with the apparatus
JP2008082199A (en) Exhaust gas purification device for internal combustion engine
JP2006316728A (en) Exhaust particulate purification device
JP2021076047A (en) Exhaust emission control device
US11047278B2 (en) Catalyst warning apparatus
JP2019157715A (en) Engine system
JP4586629B2 (en) Exhaust gas purification device for internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP4134861B2 (en) Control device for premixed compression ignition type internal combustion engine
JP2018132018A (en) Engine exhaust purification system
JP2001059428A (en) Exhaust gas purification device for internal combustion engine
JP3552561B2 (en) Internal combustion engine with exhaust gas purification device