[go: up one dir, main page]

JP4134861B2 - Control device for premixed compression ignition type internal combustion engine - Google Patents

Control device for premixed compression ignition type internal combustion engine Download PDF

Info

Publication number
JP4134861B2
JP4134861B2 JP2003321727A JP2003321727A JP4134861B2 JP 4134861 B2 JP4134861 B2 JP 4134861B2 JP 2003321727 A JP2003321727 A JP 2003321727A JP 2003321727 A JP2003321727 A JP 2003321727A JP 4134861 B2 JP4134861 B2 JP 4134861B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
internal combustion
combustion engine
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003321727A
Other languages
Japanese (ja)
Other versions
JP2005090271A (en
Inventor
正浩 長江
崇志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003321727A priority Critical patent/JP4134861B2/en
Publication of JP2005090271A publication Critical patent/JP2005090271A/en
Application granted granted Critical
Publication of JP4134861B2 publication Critical patent/JP4134861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、予混合圧縮着火式内燃機関の制御装置に関する。   The present invention relates to a control device for a premixed compression ignition type internal combustion engine.

内燃機関の始動時や触媒不活性時に用いる燃料とそれ以外の通常時に用いる燃料とを切り替える技術(例えば、特許文献1参照。)、触媒不活性時は、補助燃料を混合して、触媒のHC転化率を向上させて触媒温度を上昇させる技術(例えば、特許文献2参照。)、オクタン価の異なる燃料を用いる内燃機関で負荷が低いほどオクタン価の低い燃料の使用割合を増加させる技術(例えば、特許文献3参照。)が知られている。   Technology for switching between fuel used when starting an internal combustion engine or when the catalyst is inactive and other fuel used when the catalyst is inactive (see, for example, Patent Document 1). When the catalyst is inactive, auxiliary fuel is mixed and the catalyst HC is mixed. A technique for increasing the catalyst temperature by improving the conversion rate (for example, see Patent Document 2), and a technique for increasing the use ratio of a fuel having a lower octane number as the load is lower in an internal combustion engine using fuels having different octane numbers (for example, patents). Reference 3) is known.

特開2001−193511号公報JP 2001-193511 A 特開昭56−154146号公報JP-A-56-154146 特開2000−179368号公報JP 2000-179368 A

ところで、冷間始動時には排気浄化触媒が活性温度に達していないために、該排気浄化触媒での未燃燃料等の有害物質の浄化率が低下するおそれがある。そのため、排気浄化触媒を速やかに活性温度まで上昇させる必要がある。また、冷間始動時には、内燃機関の温度が低いために、燃料の蒸発が緩慢となり、該内燃機関の始動性が劣る。   By the way, since the exhaust purification catalyst does not reach the activation temperature at the time of cold start, there is a possibility that the purification rate of harmful substances such as unburned fuel in the exhaust purification catalyst is lowered. Therefore, it is necessary to quickly raise the exhaust purification catalyst to the activation temperature. Further, at the time of cold start, since the temperature of the internal combustion engine is low, the evaporation of fuel becomes slow and the startability of the internal combustion engine is inferior.

本発明は、上記したような問題点に鑑みてなされたものであり、複数種類の燃料を用いる予混合圧縮着火式内燃機関の制御装置において、冷間始動時に問題となり得る始動性の悪化、触媒活性化の遅れを抑制する技術を提供することを目的とする。   The present invention has been made in view of the above-described problems, and in a control device for a premixed compression ignition type internal combustion engine using a plurality of types of fuel, the startability deterioration, catalyst, which can be a problem during cold start It aims at providing the technique which suppresses the delay of activation.

上記課題を達成するために本発明による予混合圧縮着火式内燃機関の制御装置は、以下の手段を採用した。即ち、
排気中の有害物質を浄化する排気浄化触媒を備え、揮発性の夫々異なる複数種類の燃料を供給し且つ筒内に供給される燃料の比率を機関状態に応じて制御する予混合圧縮着火式内燃機関の制御装置において、
前記内燃機関の始動時に冷間始動であるか否か判定する冷間始動判定手段を備え、
前記冷間始動判定手段により冷間始動であると判定された場合には、冷間始動ではないと判定された場合よりも、筒内に供給される燃料のうち揮発性がより高い燃料の比率を高くすることを特徴とする。
In order to achieve the above object, a control device for a premixed compression ignition type internal combustion engine according to the present invention employs the following means. That is,
Premixed compression ignition type internal combustion engine equipped with an exhaust purification catalyst for purifying harmful substances in exhaust gas, supplying a plurality of different types of volatile fuel, and controlling the ratio of the fuel supplied into the cylinder according to the engine state In the engine control device,
Cold start determination means for determining whether or not the internal combustion engine is a cold start at the time of starting,
When it is determined that the cold start is determined by the cold start determination means, the ratio of fuel having higher volatility in the fuel supplied into the cylinder than when it is determined that the cold start is not performed It is characterized by making it high.

本発明の最大の特徴は、内燃機関の冷間始動時には揮発性の高い燃料を主に用いることにより予混合気を形成させて、さらには燃料を良好に燃焼させて、排気浄化触媒の早期活性化を図ることにある。   The most important feature of the present invention is that a pre-mixed gas is formed mainly by using a highly volatile fuel at the time of cold start of the internal combustion engine, and further the fuel is burned well so that the early activation of the exhaust purification catalyst. It is to plan.

このように構成された予混合圧縮着火式内燃機関の制御装置では、内燃機関の冷間始動時には揮発性の高い燃料の供給比率を高くする。ここで、燃料の揮発性が高いほど燃料の蒸発量が多く、着火後の火炎伝播が良好に行われる。従って、冷間始動時に揮発性の高い燃料の供給比率を高くすることにより、燃料の燃焼が良好に行われ、排気の温度を高めることができる。これにより、排気浄化触媒の温度を速やかに上昇させ、活性化させることができる。また、揮発性の高い燃料の供給比率を高めることにより、燃料の燃焼が良好に行われるようになり、内燃機関の始動性を向上させることもできる。ここで、「冷間始動
」とは、内燃機関の温度が雰囲気温度近くのときの始動に限らず、暖機完了前の温度での始動をも含めることができる。また、「揮発性」とは、常圧において低い沸点あるいは昇華温度をもち、常温において高い蒸気圧をもつという性質をいう。
In the control device of the premixed compression ignition type internal combustion engine configured as described above, the supply ratio of highly volatile fuel is increased when the internal combustion engine is cold started. Here, the higher the fuel volatility, the greater the amount of fuel evaporation, and the better the flame propagation after ignition. Therefore, by increasing the supply ratio of the highly volatile fuel at the cold start, the fuel can be burned well and the temperature of the exhaust can be raised. As a result, the temperature of the exhaust purification catalyst can be quickly raised and activated. Further, by increasing the supply ratio of highly volatile fuel, the fuel can be burned well, and the startability of the internal combustion engine can be improved. Here, the “cold start” is not limited to the start when the temperature of the internal combustion engine is close to the ambient temperature, but can also include a start at a temperature before the completion of warm-up. “Volatile” means the property of having a low boiling point or sublimation temperature at normal pressure and a high vapor pressure at normal temperature.

本発明においては、前記排気浄化触媒が活性化しているか否か判定する触媒活性判定手段を更に備え、
前記触媒活性判定手段により前記排気浄化触媒が活性化していないと判定された場合には、内燃機関の吸入空気量を減少させるとともに、前記触媒活性判定手段により触媒が活性していると判定された場合よりも、筒内に供給される燃料のうち揮発性のより高い燃料の比率を高めて燃料を燃焼させることができる。
In the present invention, further comprising catalyst activity determination means for determining whether or not the exhaust purification catalyst is activated,
When it is determined by the catalyst activity determining means that the exhaust purification catalyst is not activated, the intake air amount of the internal combustion engine is decreased and it is determined that the catalyst is activated by the catalyst activity determining means. The fuel can be burned by increasing the ratio of the more volatile fuel out of the fuel supplied into the cylinder.

このように構成された予混合圧縮着火式内燃機関の制御装置では、排気浄化触媒が活性化していない場合には、揮発性のより高い燃料、すなわち排気温度がより高くなる燃料の供給比率を高くして排気の温度を上昇させる。ここで、揮発性のより高い燃料を用いると、空燃比がより低い状態で燃焼を行うことができる。そして、吸入空気量を少なくすることで、トルクの増大を招くことなく排気の排出量に対する燃料の発熱量を大きくすることができ、結果として排気の温度を高くすることが可能となる。 また、排気浄化触媒が活性化しているとは、排気中の有害物質を許容される範囲まで浄化可能な状態にあることを表し、この許容される範囲は規制値等により定められる。   In the control device of the premixed compression ignition type internal combustion engine configured as described above, when the exhaust purification catalyst is not activated, the supply ratio of the fuel with higher volatility, that is, the fuel with higher exhaust temperature is increased. And raise the exhaust temperature. Here, when a fuel having higher volatility is used, combustion can be performed with a lower air-fuel ratio. By reducing the intake air amount, it is possible to increase the amount of heat generated by the fuel with respect to the exhaust amount without causing an increase in torque, and as a result, the exhaust temperature can be increased. Further, that the exhaust purification catalyst is activated means that it is in a state where it is possible to purify harmful substances in the exhaust to a permissible range, and this permissible range is determined by a regulation value or the like.

本発明においては、前記排気浄化触媒の温度を検出する温度検出手段を更に備え、前記温度検出手段により検出された温度が高いほど、筒内に供給される燃料のうち揮発性がより高くなる燃料の比率を低くすることができる。   In the present invention, the fuel cell further includes temperature detection means for detecting the temperature of the exhaust purification catalyst, and the higher the temperature detected by the temperature detection means, the higher the volatility of the fuel supplied into the cylinder. The ratio of can be lowered.

このように構成された予混合圧縮着火式内燃機関の制御装置では、排気浄化触媒の温度が高くなるに従って排気の温度が低下し、排気浄化触媒の温度に応じた温度の排気を該排気浄化触媒に流入させることができる。   In the control device for the premixed compression ignition type internal combustion engine configured as described above, the temperature of the exhaust gas decreases as the temperature of the exhaust gas purification catalyst increases, and the exhaust gas having a temperature corresponding to the temperature of the exhaust gas purification catalyst is discharged to the exhaust gas purification catalyst. Can be allowed to flow into.

本発明に係る予混合圧縮着火式内燃機関の制御装置では、冷間始動時に排気温度が高くなる燃料の供給比率を高めることにより、始動性を向上させ、また、排気浄化触媒の温度を速やかに上昇させることができる。   In the control device for a premixed compression ignition type internal combustion engine according to the present invention, the startability is improved by increasing the fuel supply ratio at which the exhaust temperature becomes high at the cold start, and the temperature of the exhaust purification catalyst is quickly increased. Can be raised.

以下、本発明による予混合圧縮着火式内燃機関の具体的な実施態様について図面に基づいて説明する。ここでは、本発明による予混合圧縮着火式内燃機関を車両駆動用のディーゼル機関に適用した場合を例に挙げて説明する。   Hereinafter, specific embodiments of a premixed compression ignition type internal combustion engine according to the present invention will be described with reference to the drawings. Here, a case where the premixed compression ignition internal combustion engine according to the present invention is applied to a diesel engine for driving a vehicle will be described as an example.

図1は、本実施例によるエンジン1及びその吸排気系の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of an engine 1 and an intake / exhaust system thereof according to this embodiment.

図1に示すエンジン1は、気筒2を有し、予混合燃焼及び拡散燃焼により運転が可能な内燃機関である。   An engine 1 shown in FIG. 1 is an internal combustion engine that has a cylinder 2 and can be operated by premixed combustion and diffusion combustion.

エンジン1には、気筒2内へ軽油を噴射する筒内燃料噴射弁3が備えられている。   The engine 1 is provided with an in-cylinder fuel injection valve 3 that injects light oil into the cylinder 2.

また、エンジン1には、吸気通路4が接続されている。この吸気通路4には、該吸気通路4内を流通する吸気中にガソリンを噴射する吸気内燃料噴射弁5が設けられている。   An intake passage 4 is connected to the engine 1. The intake passage 4 is provided with an in-intake fuel injection valve 5 for injecting gasoline during intake air flowing through the intake passage 4.

尚、ガソリンは軽油よりも揮発性が高く、従って、本実施例では、揮発性の高い燃料と
してガソリンを使用し、揮発性の低い燃料として軽油を使用する。
In addition, gasoline has higher volatility than light oil. Therefore, in this embodiment, gasoline is used as a highly volatile fuel, and light oil is used as a low volatile fuel.

吸気通路4には、該吸気通路4内を流通する吸気の流量を調節する吸気絞り弁41が設けられている。この吸気絞り弁41には、ステップモータ等で構成されて該吸気絞り弁41を開閉駆動する吸気絞り用アクチュエータ42が取り付けられている。   The intake passage 4 is provided with an intake throttle valve 41 for adjusting the flow rate of intake air flowing through the intake passage 4. The intake throttle valve 41 is provided with an intake throttle actuator 42 that is configured by a step motor or the like and that drives the intake throttle valve 41 to open and close.

一方、エンジン1には、排気通路6が接続されている。排気通路6の途中には、排気中の有害物質を浄化する排気浄化触媒7が備えられている。この排気浄化触媒7は、上流側に選択還元型NOx触媒7a、下流側に酸化触媒7bを備えて構成されている。この選択
還元型NOx触媒7aは、流入する排気が酸素過剰の雰囲気であって、還元剤(HC等)
が存在するときに、排気中に含まれるNOxを還元または分解する触媒である。尚、本実
施例で単に排気浄化触媒7という場合には、選択還元型NOx触媒7aと酸化触媒7bと
の両方の触媒を示すものとする。
On the other hand, an exhaust passage 6 is connected to the engine 1. An exhaust purification catalyst 7 for purifying harmful substances in the exhaust is provided in the middle of the exhaust passage 6. The exhaust purification catalyst 7 includes a selective reduction type NOx catalyst 7a on the upstream side and an oxidation catalyst 7b on the downstream side. This selective reduction type NOx catalyst 7a has an atmosphere in which the exhaust gas flowing in has an excess of oxygen, and a reducing agent (HC or the like).
Is a catalyst that reduces or decomposes NOx contained in the exhaust gas. In the present embodiment, when the exhaust purification catalyst 7 is simply used, both the selective reduction type NOx catalyst 7a and the oxidation catalyst 7b are shown.

排気浄化触媒7の下流の排気通路6には、該排気通路6を流通する排気の温度に応じた信号を出力する排気温度センサ8が備えられている。この排気温度センサ8により、排気浄化触媒7から流出する排気の温度を検出し、排気浄化触媒7の床温を測定することができる。   The exhaust passage 6 downstream of the exhaust purification catalyst 7 is provided with an exhaust temperature sensor 8 that outputs a signal corresponding to the temperature of the exhaust flowing through the exhaust passage 6. The exhaust temperature sensor 8 can detect the temperature of the exhaust gas flowing out from the exhaust purification catalyst 7 and measure the floor temperature of the exhaust purification catalyst 7.

ここで、筒内燃料噴射弁3に駆動電流が印加されると、筒内燃料噴射弁3が開弁し、その結果、筒内燃料噴射弁3から気筒2内へ軽油が噴射される。一方、吸気内燃料噴射弁5に駆動電流が印加されると、吸気内燃料噴射弁5が開弁し、その結果、吸気内燃料噴射弁5から吸気通路4内へガソリンが噴射される。吸気通路4内へ噴射されたガソリンは、空気とともに混合気を形成して気筒2へ吸入される。これにより、予混合燃焼が可能となる。一方、吸気行程中に筒内燃料噴射弁3から軽油を噴射させることによっても予混合燃焼を行うことが可能である。また、筒内燃料噴射弁3及び吸気内燃料噴射弁5から噴射される燃料の量や供給比率は、エンジン回転数と負荷とからマップにより算出される。更に、燃料噴射時期もエンジン回転数とエンジン負荷とからマップにより算出される。これらのマップは、予め実験等により求めておく。   Here, when a drive current is applied to the in-cylinder fuel injection valve 3, the in-cylinder fuel injection valve 3 is opened, and as a result, light oil is injected from the in-cylinder fuel injection valve 3 into the cylinder 2. On the other hand, when a drive current is applied to the intake fuel injection valve 5, the intake fuel injection valve 5 is opened, and as a result, gasoline is injected from the intake fuel injection valve 5 into the intake passage 4. The gasoline injected into the intake passage 4 forms an air-fuel mixture with air and is sucked into the cylinder 2. Thereby, premixed combustion becomes possible. On the other hand, premixed combustion can also be performed by injecting light oil from the in-cylinder fuel injection valve 3 during the intake stroke. Further, the amount and supply ratio of the fuel injected from the in-cylinder fuel injection valve 3 and the in-intake fuel injection valve 5 are calculated from a map of the engine speed and load. Further, the fuel injection timing is also calculated from a map from the engine speed and the engine load. These maps are obtained in advance by experiments or the like.

ここで、図2は、エンジン回転数とエンジン発生トルクとエンジン燃焼状態との関係の一例を示した図である。   Here, FIG. 2 is a diagram showing an example of the relationship among the engine speed, the engine generated torque, and the engine combustion state.

エンジン回転数が低く且つエンジン発生トルクが小さい運転領域(1)では、軽油の供給比率を多くし、且つ、軽油の噴射時期を例えばクランクアングルで上死点前60度から90度までの間とする。ガソリンは、吸気行程中に噴射される。この運転領域(1)では、主に軽油の燃焼によりエンジン1の運転が行われるが、ガソリンも少量供給し軽油の着火性を向上させている。即ち、運転領域(1)は、軽油及びガソリンによる予混合燃焼を行う燃焼モードが選択される。燃料の供給比率は、例えば軽油9割に対しガソリン1割である。ここでは、気筒2内への軽油の供給時期を通常よりも早くし、ガソリン及び軽油で予混合気を形成させる。尚、この運転領域(1)では、軽油だけを供給するようにしても良い。   In the operation region (1) where the engine speed is low and the engine generated torque is small, the light oil supply ratio is increased, and the light oil injection timing is, for example, between 60 degrees and 90 degrees before top dead center at the crank angle. To do. Gasoline is injected during the intake stroke. In this operation region (1), the engine 1 is operated mainly by the combustion of light oil, but a small amount of gasoline is also supplied to improve the ignitability of the light oil. That is, in the operation region (1), a combustion mode in which premixed combustion with light oil and gasoline is performed is selected. The fuel supply ratio is, for example, 10% of gasoline to 90% of light oil. Here, the supply timing of the light oil into the cylinder 2 is made earlier than usual, and a premixed gas is formed with gasoline and light oil. In this operation region (1), only light oil may be supplied.

また、エンジン回転数及びエンジン発生トルクが中程度の運転領域(2)では、運転領域(1)と比較してガソリンの供給量を増加させ、且つ、軽油の噴射時期を例えばクランクアングルで上死点前60度から90度までの間とする。ガソリンは、吸気行程中に噴射される。この運転領域(2)でも、気筒2内への軽油の供給時期を通常よりも早くし、軽油及びガソリンで予混合気を形成させる。即ち、運転領域(2)は、軽油及びガソリンによる予混合燃焼を行う燃焼モードが選択される。また、エンジン回転数若しくはエンジン発生トルクが大きくなるに従いガソリンの供給比率を高くする。   Further, in the operation region (2) where the engine speed and the engine generated torque are medium, the gasoline supply amount is increased as compared with the operation region (1), and the injection timing of the light oil is dead at a crank angle, for example. It is between 60 degrees and 90 degrees before the point. Gasoline is injected during the intake stroke. Also in this operation region (2), the supply timing of light oil into the cylinder 2 is made earlier than usual, and a premixed gas is formed with light oil and gasoline. That is, in the operation region (2), a combustion mode in which premixed combustion with light oil and gasoline is performed is selected. Further, the gasoline supply ratio is increased as the engine speed or engine generated torque increases.

更に、エンジン回転数が高く且つエンジン発生トルクが大きい運転領域(3)では、運転領域(2)であって運転領域(3)に切り替わる直前の高回転高負荷側と比較してガソリンの供給量を減少させ、且つ、軽油の噴射時期を例えばクランクアングルで上死点前30度から上死点後10度までの間とする。ガソリンは、吸気行程中に噴射される。この運転領域(3)では、主に軽油によりエンジン1の運転が行われるが、軽油の着火性を向上させるためにガソリンも供給されている。即ち、運転領域(3)は、主に軽油による拡散燃焼を行う燃焼モードが選択される。   Further, in the operation region (3) where the engine speed is high and the engine generated torque is large, the gasoline supply amount is compared with the high rotation high load side immediately before the operation region (2) is switched to the operation region (3). And the light oil injection timing is, for example, between 30 degrees before top dead center and 10 degrees after top dead center at a crank angle. Gasoline is injected during the intake stroke. In this operation region (3), the engine 1 is operated mainly by light oil, but gasoline is also supplied to improve the ignitability of light oil. That is, in the operation region (3), a combustion mode that mainly performs diffusion combustion with light oil is selected.

以上述べたように構成されたエンジン1には、該エンジン1を制御するための電子制御ユニット(ECU:Electronic Control Unit)9が併設されている。このECU9は、
エンジン1の運転条件や運転者の要求に応じてエンジン1の運転状態を制御するユニットである。
The engine 1 configured as described above is provided with an electronic control unit (ECU: Electronic Control Unit) 9 for controlling the engine 1. This ECU 9
It is a unit that controls the operating state of the engine 1 in accordance with the operating conditions of the engine 1 and the driver's request.

ECU9には、各種センサが電気配線を介して接続され、上記した各種センサの他、エンジン1に取り付けられ該エンジン1の冷却水温度を測定する水温センサ10の出力信号がECU9に入力されるようになっている。一方、ECU9には、筒内燃料噴射弁3、吸気内燃料噴射弁5等が電気配線を介して接続され、これらを制御することが可能になっている。また、前記ECU9は、各種アプリケーションプログラム及び各種制御マップを記憶している。   Various sensors are connected to the ECU 9 via electric wiring, and in addition to the various sensors described above, an output signal of a water temperature sensor 10 that is attached to the engine 1 and measures the cooling water temperature of the engine 1 is input to the ECU 9. It has become. On the other hand, the in-cylinder fuel injection valve 3, the intake fuel injection valve 5 and the like are connected to the ECU 9 via electric wiring, and can be controlled. The ECU 9 stores various application programs and various control maps.

ところで、エンジン1の冷間始動時には、燃料が蒸発しにくいためシリンダ壁面に燃料が付着する等して該燃料に着火しにくくなる。このように燃料に着火しにくくなると、エンジン1の始動性が悪化する。   By the way, when the engine 1 is cold-started, the fuel is difficult to evaporate, so that the fuel adheres to the cylinder wall surface and the fuel is difficult to ignite. Thus, when it becomes difficult to ignite fuel, the startability of the engine 1 will deteriorate.

ここで、軽油はガソリンに比べると、低い温度で蒸発しにくい。これは、軽油がガソリンよりも揮発性が低いことによる。従って、エンジン1の冷間始動時に軽油を多く使用すると、該軽油は蒸発しにくいためエンジン1の始動もしにくくなる。しかし、エンジン1の始動時はエンジン回転数が低くエンジン発生トルクが小さいので、図2のマップによれば、運転領域(1)に該当し、燃料として主に軽油が使用される。これにより、エンジン1の冷間始動時の始動性が悪化してしまう。   Here, light oil is less likely to evaporate at a lower temperature than gasoline. This is because light oil is less volatile than gasoline. Therefore, if a large amount of light oil is used when the engine 1 is cold started, the light oil is difficult to evaporate and therefore the engine 1 is difficult to start. However, since the engine speed is low and the engine generated torque is small when the engine 1 is started, according to the map of FIG. 2, it corresponds to the operation region (1), and light oil is mainly used as fuel. Thereby, the startability at the time of the cold start of the engine 1 will deteriorate.

その点、本実施例では、エンジン1の冷間始動時には、ガソリンの供給比率を多くする。例えば、エンジン1の始動時であって、水温センサ10から得られる冷却水温度が規定の温度よりも低い場合には、冷間始動時であるとして、ガソリンと軽油との供給比率を例えば9対1とする。一方、冷却水温度若しくは吸気温度が規定の温度以上の場合には、冷間始動時ではないとして、ガソリンと軽油との供給比率を例えば1対9とする。軽油はガソリンを着火させるために必要となるため、少なくとも着火に必要な量を供給する。すなわち、軽油はガソリンと比較して着火性がよく、火種となり得るが、軽油の粒子に着火してもその周りに予混合気が形成されていないと火炎伝播しにくい。そのため、予混合気を形成しておく必要がある。一方、ガソリンのみを供給しても着火しにくいので、着火性のよい軽油を気筒内に供給する必要がある。   In this regard, in this embodiment, the gasoline supply ratio is increased when the engine 1 is cold started. For example, when the engine 1 is started and the coolant temperature obtained from the water temperature sensor 10 is lower than a specified temperature, the supply ratio of gasoline to light oil is set to, for example, 9 pairs as a cold start. Set to 1. On the other hand, when the cooling water temperature or the intake air temperature is equal to or higher than a specified temperature, the supply ratio of gasoline to light oil is set to 1: 9, for example, not during cold start. Since light oil is needed to ignite gasoline, it supplies at least the amount necessary for ignition. That is, light oil has better ignitability than gasoline and can be a fire type, but even if light oil particles are ignited, flame propagation is difficult unless a premixed gas is formed around them. Therefore, it is necessary to form a premixed gas. On the other hand, since it is difficult to ignite even if only gasoline is supplied, it is necessary to supply light oil with good ignitability into the cylinder.

ここで、「規定の温度」は、ガソリンと軽油との供給比率を例えば1対9とした場合に、燃料に着火しにくくなる冷却水温度として予め実験等により求めても良い。また、暖機完了後の温度としても良く、例えば、冷却水温度が70℃のときとしても良い。   Here, the “specified temperature” may be obtained in advance through experiments or the like as the cooling water temperature at which the fuel is difficult to ignite when the supply ratio of gasoline to light oil is, for example, 1: 9. Moreover, it is good also as the temperature after completion of warming-up, for example, it is good also when the cooling water temperature is 70 degreeC.

尚、本実施例においては、冷却水温度が低くなるほど、ガソリンの供給比率を高くしても良い。ここで、冷却水の温度とガソリンの供給比率との関係を予め実験等により求めマップ化し、該マップに冷却水温度を代入してガソリンの供給比率を得ることができる。   In the present embodiment, the gasoline supply ratio may be increased as the coolant temperature decreases. Here, the relationship between the temperature of the cooling water and the supply ratio of gasoline can be obtained in advance through experiments or the like and mapped, and the supply ratio of gasoline can be obtained by substituting the cooling water temperature into the map.

このように、エンジン1の冷間始動時に揮発性の高い燃料であるガソリンの供給比率を高くすることにより、燃料の着火性、更にはエンジン1の始動性を向上させることができる。   Thus, by increasing the supply ratio of gasoline, which is a highly volatile fuel, when the engine 1 is cold started, it is possible to improve the ignitability of the fuel and further the startability of the engine 1.

本実施例では、排気浄化触媒7の昇温時に揮発性の高い燃料、即ちガソリンの供給比率を高くする。   In the present embodiment, the supply ratio of highly volatile fuel, that is, gasoline, is increased when the exhaust purification catalyst 7 is heated.

尚、本実施例においては、適用対象となるエンジン1やその他ハードウェアの基本構成については、実施例1と共通なので説明を割愛する。   In the present embodiment, the basic configuration of the engine 1 and other hardware to be applied is the same as that of the first embodiment, and thus the description thereof is omitted.

ところで、排気浄化触媒7が活性温度まで上昇していない場合には、該排気浄化触媒7における排気中の有害成分の浄化率が低下する。しかし、予混合圧縮着火による燃焼を行うと、NOxの排出を抑制することはできるが、HCやCOが排出されることがある。こ
の場合、下流の排気浄化触媒7で浄化することが前提となるが、該排気浄化触媒7が活性化していない場合には、HCやCOの浄化率が低下するため、該排気浄化触媒7の温度を活性温度まで速やかに上昇させて活性化させることが重要となる。
By the way, when the exhaust purification catalyst 7 does not rise to the activation temperature, the purification rate of harmful components in the exhaust in the exhaust purification catalyst 7 decreases. However, combustion by premixed compression ignition can suppress NOx emission, but HC and CO may be emitted. In this case, it is assumed that the exhaust purification catalyst 7 on the downstream side is used for purification. However, if the exhaust purification catalyst 7 is not activated, the purification rate of HC and CO decreases, so that the exhaust purification catalyst 7 It is important to increase the temperature quickly to the activation temperature for activation.

ここで、ガソリンは軽油と比較して揮発性が高く、また、理論空燃比近傍で燃焼させること可能である。そして、理論空燃比近傍でガソリンを燃焼させる場合には、リーン空燃比で軽油を燃焼させる場合と比較して、エンジン1の吸入空気量が少ないため、排気温度が高くなる。即ち、吸気絞り弁41を絞ることにより吸入空気量を減少させて、空燃比を低下させると、排気の流量が減少させ且つ排気の温度を高くすることができる。ここで、吸入空気量が減り、圧力の低い状態から吸気の圧縮行われるため、圧縮行程末期の温度が低くなるので揮発性の低い燃料は蒸発しないでシリンダ壁面に付着するなどして着火しにくくなり、未燃燃料が排出されてしまうおそれがある。そこで、本実施例では、ガソリンの供給比率を高めつつ吸気絞り弁41を絞って排気の温度を上昇させる。   Here, gasoline has higher volatility than light oil and can be burned near the stoichiometric air-fuel ratio. When gasoline is burned near the stoichiometric air-fuel ratio, the exhaust air temperature becomes higher because the intake air amount of the engine 1 is smaller than when light oil is burned at a lean air-fuel ratio. That is, if the intake air amount is decreased by reducing the intake throttle valve 41 and the air-fuel ratio is lowered, the flow rate of the exhaust gas can be decreased and the temperature of the exhaust gas can be increased. Here, since the intake air amount is reduced and the intake air is compressed from a low pressure state, the temperature at the end of the compression stroke is lowered, so that the low-volatile fuel does not evaporate and adheres to the cylinder wall surface and is difficult to ignite. Therefore, unburned fuel may be discharged. Therefore, in this embodiment, the intake throttle valve 41 is throttled to raise the exhaust gas temperature while increasing the gasoline supply ratio.

このように、ガソリンを燃焼させると、軽油を燃焼させた場合よりも排気の温度を高くすることができ、従って、排気浄化触媒7を速やかに昇温させることができる。   In this way, when gasoline is burned, the temperature of the exhaust can be made higher than when light oil is burned, and therefore the exhaust purification catalyst 7 can be raised in temperature quickly.

そして、本実施例では、排気温度センサ8の出力信号から得られる排気温度、即ち排気浄化触媒7の温度に基づいてガソリンと軽油との供給比率をフィードバック制御する。例えば、排気温度センサ8により得られる排気の温度が排気浄化触媒7の活性温度以下の場合には、ガソリンの供給比率を9割とし、残り1割を軽油とする。一方、排気の温度が活性温度よりも高くなった場合には、ガソリンの供給比率を1割とし、残り9割を軽油とする。ここで、活性温度は、軽油中のHCを酸化可能な温度である例えば210℃とすることができる。また、選択還元型NOx触媒7a若しくは酸化触媒7bの何れか一方が活性
温度に達するまで燃料の供給比率を変更しても良く、両触媒7a、7bが活性温度に達するまで燃料の供給比率を変更するようにしても良い。
In this embodiment, the feed ratio between gasoline and light oil is feedback-controlled based on the exhaust temperature obtained from the output signal of the exhaust temperature sensor 8, that is, the temperature of the exhaust purification catalyst 7. For example, when the exhaust temperature obtained by the exhaust temperature sensor 8 is equal to or lower than the activation temperature of the exhaust purification catalyst 7, the gasoline supply ratio is 90%, and the remaining 10% is light oil. On the other hand, when the temperature of the exhaust gas becomes higher than the activation temperature, the gasoline supply ratio is 10%, and the remaining 90% is light oil. Here, the activation temperature can be set to, for example, 210 ° C., which is a temperature capable of oxidizing HC in light oil. Further, the fuel supply ratio may be changed until either the selective reduction type NOx catalyst 7a or the oxidation catalyst 7b reaches the activation temperature, and the fuel supply ratio is changed until both the catalysts 7a, 7b reach the activation temperature. You may make it do.

このように、排気浄化触媒7の温度が活性温度よりも低い場合には、軽油よりも揮発性の高い燃料であるガソリンの供給比率を高くすることにより、排気の温度を高くすることができ、排気浄化触媒7を活性温度まで速やかに昇温させることができる。   Thus, when the temperature of the exhaust purification catalyst 7 is lower than the activation temperature, the exhaust gas temperature can be increased by increasing the supply ratio of gasoline, which is a fuel having higher volatility than light oil, The exhaust purification catalyst 7 can be quickly heated up to the activation temperature.

また、排気浄化触媒7の温度が軽油を酸化可能な温度まで上昇した後は、軽油の供給比率を高くすることにより、排気浄化触媒7へ軽油中のHCを供給することができ、該HCの酸化反応熱により該排気浄化触媒7の温度を維持することができる。   Further, after the temperature of the exhaust purification catalyst 7 rises to a temperature at which light oil can be oxidized, the HC in the light oil can be supplied to the exhaust purification catalyst 7 by increasing the supply ratio of the light oil. The temperature of the exhaust purification catalyst 7 can be maintained by the oxidation reaction heat.

尚、本実施例では、排気浄化触媒7の床温に基づいて、段階的にガソリンと軽油との供給比率を変更しても良い。ここでは、排気浄化触媒7の温度を複数の段階で区切り、各段階で燃料の供給比率を変更し、且つ、排気浄化触媒7の温度が高い段階となるに従ってガソリンの供給比率が低くなるようにしても良い。即ち、排気温度がより高い燃料であるガソリンの供給比率を段階的に低くしても良い。ここで、排気浄化触媒7の温度と燃料の供給比率との関係を予め実験等により求めマップ化しておき、該マップに排気浄化触媒7の温度を代入して燃料の供給比率を得ることができる。この際、軽油中のHCが排気浄化触媒7の下流へ流出しない程度の燃料供給比率として求めても良い。   In this embodiment, the supply ratio of gasoline to light oil may be changed stepwise based on the bed temperature of the exhaust purification catalyst 7. Here, the temperature of the exhaust purification catalyst 7 is divided into a plurality of stages, the fuel supply ratio is changed at each stage, and the gasoline supply ratio becomes lower as the temperature of the exhaust purification catalyst 7 becomes higher. May be. That is, the supply ratio of gasoline, which is a fuel having a higher exhaust temperature, may be lowered stepwise. Here, the relationship between the temperature of the exhaust purification catalyst 7 and the fuel supply ratio can be obtained in advance through experiments or the like and mapped, and the temperature of the exhaust purification catalyst 7 can be substituted into the map to obtain the fuel supply ratio. . At this time, the fuel supply ratio may be determined so that HC in the light oil does not flow downstream of the exhaust purification catalyst 7.

また、本実施例では、排気浄化触媒7の床温に基づいて、ガソリンと軽油との供給比率を徐々に変化させても良い。即ち、排気温度がより高い燃料であるガソリンの供給比率を徐々に低くしても良い。ここで、排気浄化触媒7の温度と燃料の供給比率との関係を予め実験等により求めマップ化しておき、該マップへ排気浄化触媒7の温度を代入して燃料の供給比率を得ることができる。この際、軽油中のHCが排気浄化触媒7の下流へ流出しない程度の燃料供給比率として求めても良い。   In this embodiment, the supply ratio of gasoline to light oil may be gradually changed based on the bed temperature of the exhaust purification catalyst 7. That is, the supply ratio of gasoline, which is a fuel having a higher exhaust temperature, may be gradually lowered. Here, the relationship between the temperature of the exhaust purification catalyst 7 and the fuel supply ratio can be obtained by an experiment or the like in advance and mapped, and the temperature of the exhaust purification catalyst 7 can be substituted into the map to obtain the fuel supply ratio. . At this time, the fuel supply ratio may be determined so that HC in the light oil does not flow downstream of the exhaust purification catalyst 7.

以上説明したように、本実施例によれば、排気浄化触媒7の昇温時に揮発性の高い燃料、即ちガソリンの供給比率を高くすることにより、排気の温度を上昇させ、排気浄化触媒7の温度を速やかに活性温度まで上昇させることができる。   As described above, according to the present embodiment, the temperature of the exhaust gas is increased by increasing the supply ratio of highly volatile fuel, that is, gasoline, when the temperature of the exhaust gas purification catalyst 7 is raised. The temperature can be quickly raised to the activation temperature.

尚、実施例1および実施例2においては、揮発性の高い燃料としてガソリンを、揮発性の低い燃料として軽油を採用して説明したが、これに代えて、揮発性の高い燃料として軽質軽油を、揮発性の低い燃料として重質軽油を採用しても良い。   In Example 1 and Example 2, gasoline is used as the highly volatile fuel and light oil is used as the less volatile fuel. However, instead of this, light gas oil is used as the highly volatile fuel. Alternatively, heavy gas oil may be employed as a low-volatile fuel.

本願発明の実施例によるエンジン及びその吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the engine by the Example of this invention, and its intake / exhaust system. エンジン回転数とエンジン発生トルクとエンジン燃焼状態との関係の一例を示した図である。It is the figure which showed an example of the relationship between an engine speed, an engine generation torque, and an engine combustion state.

符号の説明Explanation of symbols

1 エンジン
2 気筒
3 筒内燃料噴射弁
4 吸気通路
5 吸気内燃料噴射弁
6 排気通路
7 排気浄化触媒
7a 選択還元型NOx触媒
7b 酸化触媒
8 排気温度センサ
9 ECU
10 水温センサ
41 吸気絞り弁
42 吸気絞り用アクチュエータ
DESCRIPTION OF SYMBOLS 1 Engine 2 Cylinder 3 In-cylinder fuel injection valve 4 Intake passage 5 In-intake fuel injection valve 6 Exhaust passage 7 Exhaust purification catalyst 7a Selective reduction type NOx catalyst 7b Oxidation catalyst 8 Exhaust temperature sensor 9 ECU
10 Water temperature sensor 41 Intake throttle valve 42 Intake throttle actuator

Claims (3)

排気中の有害物質を浄化する排気浄化触媒を備え、筒内に供給される揮発性の夫々異なる複数種類の燃料の比率を機関状態に応じて制御する予混合圧縮着火式内燃機関の制御装置において、
前記内燃機関の始動時に冷間始動であるか否か判定する冷間始動判定手段を備え、
前記冷間始動判定手段により冷間始動であると判定された場合には、冷間始動ではないと判定された場合よりも、筒内に供給される燃料のうち揮発性がより高い燃料の比率を高くすることを特徴とする予混合圧縮着火式内燃機関の制御装置。
In a control device for a premixed compression ignition internal combustion engine that includes an exhaust purification catalyst that purifies harmful substances in exhaust gas, and that controls the ratio of a plurality of types of volatile fuel that are supplied into the cylinder according to the engine state ,
Cold start determination means for determining whether or not the internal combustion engine is a cold start at the time of starting,
When it is determined that the cold start is determined by the cold start determination means, the ratio of fuel having higher volatility in the fuel supplied into the cylinder than when it is determined that the cold start is not performed A control device for a premixed compression ignition type internal combustion engine, characterized in that
前記排気浄化触媒が活性化しているか否か判定する触媒活性判定手段を更に備え、
前記触媒活性判定手段により前記排気浄化触媒が活性化していないと判定された場合には、内燃機関の吸入空気量を減少させるとともに、前記触媒活性判定手段により触媒が活性していると判定された場合よりも、筒内に供給される燃料のうち揮発性のより高い燃料の比率を高めて燃料を燃焼させることを特徴とする請求項1に記載の予混合圧縮着火式内燃機関の制御装置。
Further comprising catalyst activity determination means for determining whether or not the exhaust purification catalyst is activated;
When it is determined by the catalyst activity determining means that the exhaust purification catalyst is not activated, the intake air amount of the internal combustion engine is decreased and it is determined that the catalyst is activated by the catalyst activity determining means. 2. The control apparatus for a premixed compression ignition type internal combustion engine according to claim 1, wherein the fuel is burned by increasing a ratio of fuel having higher volatility in the fuel supplied into the cylinder than in the case.
前記排気浄化触媒の温度を検出する温度検出手段を更に備え、前記温度検出手段により検出された温度が高いほど、筒内に供給される燃料のうち揮発性がより高くなる燃料の比率を低くすることを特徴とする請求項1または2に記載の予混合圧縮着火式内燃機関の制御装置。
The apparatus further comprises temperature detection means for detecting the temperature of the exhaust purification catalyst, and the higher the temperature detected by the temperature detection means, the lower the proportion of fuel that is more volatile among the fuel supplied into the cylinder. The control device for a premixed compression ignition type internal combustion engine according to claim 1 or 2.
JP2003321727A 2003-09-12 2003-09-12 Control device for premixed compression ignition type internal combustion engine Expired - Fee Related JP4134861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321727A JP4134861B2 (en) 2003-09-12 2003-09-12 Control device for premixed compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321727A JP4134861B2 (en) 2003-09-12 2003-09-12 Control device for premixed compression ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005090271A JP2005090271A (en) 2005-04-07
JP4134861B2 true JP4134861B2 (en) 2008-08-20

Family

ID=34453329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321727A Expired - Fee Related JP4134861B2 (en) 2003-09-12 2003-09-12 Control device for premixed compression ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP4134861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826389B2 (en) * 2006-08-28 2011-11-30 トヨタ自動車株式会社 Multi-fuel internal combustion engine
JP4877206B2 (en) * 2007-11-15 2012-02-15 トヨタ自動車株式会社 Fuel injection control device

Also Published As

Publication number Publication date
JP2005090271A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US6438943B1 (en) In-cylinder injection type internal combustion engine
KR100319002B1 (en) Exhaust temperature increaser of cylinder-type internal combustion engine
KR100497829B1 (en) Exhaust emission control device of internal combustion engine
JP4918911B2 (en) Fuel pressure control device for in-cylinder direct fuel injection spark ignition engine
US6922986B2 (en) Catalytic converter early light off using cylinder deactivation
JP2003090271A (en) Internal combustion engine
JPH11107861A (en) Internal combustion engine
JP4175385B2 (en) Internal combustion engine exhaust purification catalyst warm-up system
US6370869B1 (en) Exhaust purification device of an engine
JP4155069B2 (en) Control at the start of operation in an internal combustion engine with variable compression ratio
JP3052777B2 (en) In-cylinder injection internal combustion engine
JP4134861B2 (en) Control device for premixed compression ignition type internal combustion engine
JP3785870B2 (en) Exhaust gas purification device for internal combustion engine
JP3149822B2 (en) Exhaust gas heating device for in-cylinder injection internal combustion engine
JP2006125267A (en) Hydrogenated internal combustion engine
JP3386008B2 (en) Exhaust gas purification device for internal combustion engine
JP3960720B2 (en) Exhaust gas purification device for internal combustion engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP2005083335A (en) Control device for premixed compression ignition type internal combustion engine
JP2009036132A (en) Exhaust emission control device of diesel engine
JP4492812B2 (en) In-cylinder injection internal combustion engine control device
JP3815140B2 (en) Exhaust gas purification device for internal combustion engine
JP2000097076A (en) In-cylinder injection internal combustion engine
JP3882401B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees