JP2024101527A - Production method for chromium-containing steel - Google Patents
Production method for chromium-containing steel Download PDFInfo
- Publication number
- JP2024101527A JP2024101527A JP2023149461A JP2023149461A JP2024101527A JP 2024101527 A JP2024101527 A JP 2024101527A JP 2023149461 A JP2023149461 A JP 2023149461A JP 2023149461 A JP2023149461 A JP 2023149461A JP 2024101527 A JP2024101527 A JP 2024101527A
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- molten metal
- mass
- reduced pressure
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、クロム含有鋼を製造する方法に関し、意図的にクロムを添加しない溶湯とクロム源を溶解した溶湯との合わせ湯を行う方法に関する。 The present invention relates to a method for producing chromium-containing steel, and relates to a method for combining a molten metal to which chromium has not been intentionally added with a molten metal in which a chromium source has been dissolved.
たとえば、ステンレス鋼、つまり、クロムおよびニッケルの含有量が多い鋼の溶製方法として一般的には電気炉-AOD法や転炉-RHOB法が知られている。前者の方法ではステンレス鋼屑および高炭素フェロクロム原料を主とした原料配合にて電気炉で溶解し、AOD(Argon Oxygen Decarburization)にて脱炭精錬を行うものである。後者の方法は、転炉内に溶銑を装入するとともに溶銑中にニッケルおよびクロム原料を投入して溶湯を脱炭精錬し、この溶鋼をRHOB(RH Oxygen Blowing)にて仕上げ脱炭および所望の組成へ成分調整するものである。しかし、それぞれ問題点がある。電気炉-AOD法については、ステンレス屑の活用により、原料コストが抑えられている。その一方で、電気炉は転炉に対してヒートサイズが小さいため小ロット生産になって、歩留りの低下が大きい問題がある。加えて、電気炉ゆえのエネルギーコストおよび耐火物コストが高いことが問題となる。一方で、転炉-RHOB法についてはエネルギーコストおよび耐火物コストは比較的低廉価である。ところが、ステンレス屑を大量には使用できないため原料コストが高く、また溶銑を多く使用するためCO2排出量が多くなる問題がある。 For example, the electric furnace-AOD method and the converter-RHOB method are generally known as methods for producing stainless steel, that is, steel with a high content of chromium and nickel. In the former method, a raw material blend consisting mainly of stainless steel scrap and high carbon ferrochromium raw materials is melted in an electric furnace, and decarburization and refining are performed by AOD (Argon Oxygen Decarburization). In the latter method, molten iron is charged into a converter, nickel and chromium raw materials are added to the molten iron, and the molten iron is decarburized and refined, and the molten steel is finish-decarburized and the composition is adjusted to a desired composition by RHOB (RH Oxygen Blowing). However, each method has problems. In the electric furnace-AOD method, raw material costs are kept down by utilizing stainless steel scrap. On the other hand, since the heat size of an electric furnace is smaller than that of a converter, small lot production is required, and there is a problem of a large decrease in yield. In addition, the high energy and refractory costs of the electric furnace are a problem. On the other hand, the energy and refractory costs of the converter-RHOB process are relatively low. However, the raw material costs are high because stainless steel scrap cannot be used in large quantities, and the use of a large amount of molten iron results in a large amount of CO2 emissions.
このような背景から、特許文献1には、電気炉溶解工程で得られた溶鋼を溶銑、および転炉吹錬後の溶鋼と合わせる、「合わせ湯」の技術が開示されている。 In light of this background, Patent Document 1 discloses a "combined molten metal" technology in which molten steel obtained in an electric furnace melting process is combined with molten pig iron and molten steel after blowing in a converter.
また、特許文献2には、高合金鋼、特に高ニッケル鋼を合わせ湯で製造する方法が開示されている。転炉でのニッケル汚染を抑止するために電気炉で高ニッケル鋼を溶解・溶製し、転炉精錬後の溶鋼と電気炉溶湯とを未脱酸で、[C]濃度が0.05質量%の合わせ湯をすることで復PおよびNピックアップを抑制することが可能としている。 Patent Document 2 also discloses a method for producing high alloy steel, particularly high nickel steel, by combining molten steel. In order to prevent nickel contamination in the converter, high nickel steel is melted and refined in an electric furnace, and the molten steel after converter refining and the molten steel from the electric furnace are combined without deoxidization and with a [C] concentration of 0.05% by mass, which makes it possible to suppress re-P and N pickup.
しかしながら、従来技術では、以下のような課題があった。
特許文献1に開示された技術では、電気炉で溶解した溶湯と転溶銑とを合わせて転炉に装入し、脱炭後にCr源を投入する。特許文献1では、溶銑装入量が低位な状況で攪拌動力を稼いだ状態でフェロクロムを投入し脱炭吹錬をすることでクロム損失の少ない脱炭吹錬が達成できるとしている。しかし、当該技術の効果として得られるクロム損失抑制技術としてはクロム損失が2%以上と高い。また、クロム源は基本的に転炉で投入するものであって電気炉で主にクロム源を溶製する技術については開示されていない。加えて、転炉がクロム汚染し、処理後にクロム規制の厳しい鋼種を溶製するにあたっては、転炉の洗浄が必要となるなどコスト増要因となる。
However, the conventional technology has the following problems.
In the technology disclosed in Patent Document 1, the molten metal melted in an electric furnace and the converted hot metal are charged together into a converter, and the Cr source is charged after decarburization. Patent Document 1 states that decarburization blowing with less chromium loss can be achieved by charging ferrochromium in a state where the amount of hot metal charged is low and stirring power is earned, and then performing decarburization blowing. However, the chromium loss suppression technology obtained as an effect of this technology has a high chromium loss of 2% or more. In addition, the chromium source is basically charged in the converter, and no technology is disclosed for melting the chromium source mainly in an electric furnace. In addition, the converter is contaminated with chromium, and when melting steel types with strict chromium regulations after processing, the converter needs to be cleaned, which is a factor that increases costs.
また、特許文献2に開示された技術では、高ニッケル鋼についての合わせ湯の技術が開示されている。しかし、この技術では、クロム含有鋼溶製のため、電気炉で安価フェロクロム源(高炭素フェロクロム等)を使用し高クロム溶湯を製造し合わせ湯を行う場合、電気炉では所定の脱炭を必要とする。この技術をクロム含有鋼製造に適用しようとすると、大気下の電気炉でのクロム溶湯の脱炭は低C領域になるにつれて優先脱炭しにくく、[C]濃度が0.05質量%以下の溶湯を得るのは熱力学上困難である。したがって、クロム含有鋼溶製の場合には適したプロセスとは言えない。 Patent Document 2 discloses a technique for combining high-nickel steel. However, this technique requires a certain amount of decarburization in an electric furnace when producing high-chromium molten metal using an inexpensive ferrochromium source (such as high-carbon ferrochromium) in an electric furnace to produce chromium-containing steel. If this technique is to be applied to the production of chromium-containing steel, preferential decarburization of chromium molten metal in an electric furnace under atmospheric conditions becomes difficult as the metal becomes lower in the C range, and it is thermodynamically difficult to obtain molten metal with a [C] concentration of 0.05% by mass or less. Therefore, this is not a suitable process for producing chromium-containing steel.
本発明は、上記の事情を鑑みてなされたものであって、生産効率を高め、クロム酸化損失を抑えて、合金コストを低廉化したクロム含有鋼を製造する方法を提案することを目的とするものである。 The present invention was made in consideration of the above circumstances, and aims to propose a method for producing chromium-containing steel that improves production efficiency, suppresses chromium oxidation loss, and reduces alloy costs.
上記課題を有利に解決する本発明にかかるクロム含有鋼の製造方法は、高炉溶銑に溶銑予備処理を施し転炉脱炭した第1の溶湯と、クロムを含むスクラップまたは合金鉄を溶解し必要に応じて精錬を施した第2の溶湯とを合わせ湯する工程を含み、第1の溶湯の溶製にあたっては意図的にクロム含有原料を用いないことを特徴とする。 The method for producing chromium-containing steel according to the present invention, which advantageously solves the above problems, includes a step of combining a first molten metal obtained by subjecting blast furnace hot metal to hot metal pretreatment and decarburizing in a converter with a second molten metal obtained by melting chromium-containing scrap or ferroalloys and refining them as necessary, and is characterized in that no chromium-containing raw material is intentionally used in the production of the first molten metal.
なお、本発明にかかるクロム含有鋼の製造方法は、
(a)前記第1の溶湯と前記第2の溶湯とを合わせ湯したクロム含有溶鉄に対し、必要に応じて炭素濃度を調整したうえで、減圧脱炭処理する工程を含むこと、
(b)減圧脱炭処理前の溶湯中窒素濃度[N]i(質量%)、減圧脱炭処理後の溶湯の目標炭素濃度[C]e(質量%)および目標窒素濃度[N]e(質量%)から下記式1を満たすように減圧脱炭処理前の溶湯中炭素濃度[C]i(質量%)を調整すること、
(c)減圧脱炭処理前の前記溶湯中炭素濃度[C]iは0.05質量%超であること、
(d)クロム含有鋼の成分組成が、質量基準で、Cr:7%以上、C:0.005%以上およびN:0.05%以下を含むこと、
などがより好ましい解決手段になり得る。
[式1]
[N]i-[N]e≦0.28×([C]i-[C]e)-0.04
The method for producing chromium-containing steel according to the present invention is as follows:
(a) a step of subjecting the chromium-containing molten iron obtained by combining the first molten metal and the second molten metal to a reduced pressure decarburization treatment after adjusting the carbon concentration as necessary;
(b) adjusting the carbon concentration [C] i (mass%) in the molten metal before the reduced pressure decarburization treatment so as to satisfy the following formula 1 based on the nitrogen concentration [N] i (mass%) in the molten metal before the reduced pressure decarburization treatment, the target carbon concentration [C] e (mass%) in the molten metal after the reduced pressure decarburization treatment , and the target nitrogen concentration [N] e (mass%);
(c) the carbon concentration [C] i in the molten metal before the reduced pressure decarburization treatment is more than 0.05 mass%;
(d) The composition of the chromium-containing steel includes, on a mass basis, Cr: 7% or more, C: 0.005% or more, and N: 0.05% or less;
This may be a more preferable solution.
[Formula 1]
[N] i - [N] e ≦0.28×([C] i - [C] e ) -0.04
本発明にかかるクロム含有鋼の製造方法によれば、クロム含有鋼溶製のため高炉溶銑と電気炉溶湯の合わせ湯を実施する。これにより、電気炉-AOD法および転炉-RHOB法で製造する場合に比べて生産効率を高め、クロム酸化損失および合金コストの低廉化が達成される。さらに、合わせ湯したクロム含有溶鋼を減圧脱炭することで、窒素濃度を低減することができる。 According to the method for producing chromium-containing steel of the present invention, blast furnace molten iron and electric furnace molten iron are combined to produce chromium-containing steel. This improves production efficiency and reduces chromium oxidation loss and alloy costs compared to production using the electric furnace-AOD process and converter-RHOB process. Furthermore, the nitrogen concentration can be reduced by decarburizing the combined chromium-containing molten steel under reduced pressure.
まず、本発明の実施形態の説明に先立ち、発明の理解を容易にするため、発明の概要を説明する。本発明に関連する技術として特許文献2に記載の技術があげられる。特許文献2に記載の技術は、主に高Ni鋼の溶製についての技術であり、転炉・電気炉ともにCOガスの発生抑制、吸N抑制および復P防止が前提条件となる。そのため、未脱酸出鋼、つまり、溶鋼中[O](酸素)濃度の増加、および、溶鋼の[C]濃度は0.05質量%以下を前提としている。一方、本発明にかかる技術は高Cr鋼についての技術である。まず、合わせ湯プロセスでの高Cr溶湯の電気炉溶解処理では大気雰囲気下で脱炭を行うこととなる。そこで、電気炉でのCr損失ロスを抑制するために、脱酸処理を行ってCr回収を行うことと、および、高[C]濃度の溶湯を製造することになる。転炉溶湯と電気炉溶湯の合わせ湯を大気下で行う場合、合わせられた溶湯は窒素との親和性の高いCrの濃度が高いため合わせ後の溶湯のN濃度は飽和窒素濃度まで吸Nされる。この点において、特許文献2に記載の技術とは、合わせ湯の前提条件が異なる。このような違いから、特許文献2に記載の技術により転炉精錬して得た溶鋼の[C]濃度は0.05質量%以下であり、電気炉溶解した高合金鋼の溶湯も0.05質量%以下である。つまり、特許文献2に記載の技術は合わせ湯後の溶湯の[C]濃度が0.05質量%以下とするものである。対して、本発明においては、減圧脱炭処理前の溶湯中炭素濃度を0.05質量%超(0.3質量%等)とすることが原理上好ましい。 First, before describing the embodiments of the present invention, an outline of the invention will be described to facilitate understanding of the invention. The technology described in Patent Document 2 is an example of a technology related to the present invention. The technology described in Patent Document 2 is mainly a technology for melting high Ni steel, and the prerequisites for both converter and electric furnace are suppression of CO gas generation, suppression of N absorption, and prevention of re-P. Therefore, it is assumed that the steel is not deoxidized, that is, the increase in the [O] (oxygen) concentration in the molten steel and the [C] concentration of the molten steel is 0.05 mass% or less. On the other hand, the technology according to the present invention is a technology for high Cr steel. First, in the electric furnace melting process of high Cr molten metal in the combined melting process, decarburization is performed in an air atmosphere. Therefore, in order to suppress Cr loss in the electric furnace, deoxidation is performed to recover Cr, and a molten metal with a high [C] concentration is produced. When the combined melting of the converter melt and the electric furnace melt is performed in the air, the combined melt has a high concentration of Cr, which has a high affinity for nitrogen, so the N concentration of the molten metal after the combination is absorbed N to the saturated nitrogen concentration. In this respect, the prerequisites for the combined molten metal are different from those of the technology described in Patent Document 2. Due to this difference, the [C] concentration of the molten steel obtained by converter refining using the technology described in Patent Document 2 is 0.05 mass% or less, and the molten metal of the high alloy steel melted in an electric furnace is also 0.05 mass% or less. In other words, the technology described in Patent Document 2 makes the [C] concentration of the molten metal after combined molten metal 0.05 mass% or less. In contrast, in the present invention, it is preferable in principle to make the carbon concentration in the molten metal before the reduced pressure decarburization treatment more than 0.05 mass% (e.g., 0.3 mass%).
以下、本発明の実施の形態について具体的に説明する。以下の実施形態は、本発明の技術的思想を具体化するための設備や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 The following is a detailed description of the embodiments of the present invention. The following embodiments are intended to exemplify equipment and methods for embodying the technical ideas of the present invention, and are not intended to specify the configuration as described below. In other words, the technical ideas of the present invention can be modified in various ways within the technical scope described in the claims.
本発明の一実施形態にかかるクロム含有鋼の製造フローを図1に示す。クロム含有鋼の1ヒートを製造するにあたり、高炉溶銑S1は、必要に応じて、溶銑予備処理工程S2によって、脱珪処理、脱リン処理および脱硫処理のいずれかまたは複数の処理を組み合わせて成分調整する。第1の合わせ工程S4では、高炉溶銑S1を転炉に装入する前に第1の電気炉溶解工程S3により製造された溶鉄と合わせ湯を行ってもよいが行わなくてもよい。第1の合わせ工程S4を実施する場合は、第1の電気炉溶解工程S3では、その後の転炉の酸素吹錬によって酸化損失を生ずるクロム合金の添加を避け、クロム以外の合金もしくは一般炭素鋼と同等成分の溶鉄に溶解することが好ましい。すなわち、ここでの溶湯の溶製にあたっては意図的にクロム含有原料を用いない。「意図的にクロム含有原料を用いない」とは、転炉吹錬中にクロム含有原料を全く添加しない場合の他、積極的には所定の割合以上となるクロム含有原料を添加しない場合を含む。質量基準で溶湯中のクロム濃度[Cr]の所定の割合は、たとえば、最大でも1%未満であり、0.5%とすることが好ましく、0.3%とすることがより好ましく、0.2%とすることがさらに好ましい。転炉吹錬S5ではクロムを含む原料を投入せずに吹錬を実施する。ただし、意図的添加をしないクロム源については含まれても良いものとする。転炉吹錬後の溶湯は脱酸処理する。一方で、第2の電気炉溶解工程S6では、電気炉にフェロクロムやクロム含有鋼屑などクロム原料を主体とした溶解を行う。電気炉のヒートサイズもしくは屑配合率の観点から第2の電気炉溶解工程S6は複数回処理してもよい。ただし、電気炉で複数回の溶解処理を行う場合は温度降下を鑑みてVAD(Vacuum Arc Degassing)やLF(Ladle Furnace)など加熱保持できる設備にて待機させることが好ましい。 The manufacturing flow of chromium-containing steel according to one embodiment of the present invention is shown in FIG. 1. When producing one heat of chromium-containing steel, the blast furnace hot metal S1 is adjusted in composition by a combination of one or more of desiliconization, dephosphorization, and desulfurization treatments in the hot metal pretreatment step S2 as necessary. In the first combining step S4, the blast furnace hot metal S1 may be combined with the molten iron produced in the first electric furnace melting step S3 before being charged into the converter, but this is not necessary. When the first combining step S4 is performed, it is preferable to avoid the addition of chromium alloys that cause oxidation loss by the subsequent oxygen blowing of the converter in the first electric furnace melting step S3, and to melt the molten iron into an alloy other than chromium or molten iron with the same composition as general carbon steel. In other words, chromium-containing raw materials are not intentionally used in the melting of the molten metal here. "Intentionally not using chromium-containing raw materials" includes cases where no chromium-containing raw materials are added during converter blowing, as well as cases where chromium-containing raw materials are not actively added at a predetermined ratio or more. The predetermined ratio of the chromium concentration [Cr] in the molten metal on a mass basis is, for example, less than 1% at most, preferably 0.5%, more preferably 0.3%, and even more preferably 0.2%. In the converter blowing S5, blowing is performed without charging raw materials containing chromium. However, a chromium source that is not intentionally added may be included. The molten metal after the converter blowing is deoxidized. On the other hand, in the second electric furnace melting step S6, melting is performed in the electric furnace, mainly using chromium raw materials such as ferrochromium and chromium-containing steel scrap. The second electric furnace melting step S6 may be performed multiple times from the viewpoint of the heat size of the electric furnace or the scrap blending ratio. However, when performing multiple melting processes in the electric furnace, it is preferable to wait in equipment that can maintain heating, such as VAD (Vacuum Arc Degassing) or LF (Ladle Furnace), in consideration of temperature drop.
第2の電気炉溶解工程S6では、原料コストの低廉化のために、高炭素フェロクロム([C]~10質量%、[Cr]~70質量%)の使用が好ましい。また、合わせてクロム含有製品屑やその他合金を含むスクラップを溶解してもよい。ここで、電気炉溶湯の仕上げ炭素濃度[C]は低い方が好ましいため、C含有量の大きい原料を使用する場合は必要に応じて脱炭処理を行う。第2の電気炉溶解工程S6を経て出湯された電気炉溶湯は鍋で受湯しその後搬送され、第2の合わせ工程S7にて転炉吹錬S5を施した溶鋼を受湯した鍋と合わせ湯を行う。第2の合わせ工程S7にて転炉吹錬S5後の溶鋼と電気炉溶湯とを合わせ湯するとき、溶鉄中溶存酸素濃度が高い状態であると合わせ時のCO生成反応により、COガスが発生し操業トラブルが懸念される。そのため、第2の電気炉溶解工程S6では電気炉精錬時には溶湯未脱酸でも良いが、出湯時もしくは出湯後合わせ湯をする前に脱酸材を用いて溶湯脱酸する、もしくは炉内精錬時に溶湯脱酸をすることが好ましい。また、第2の合わせ工程S7での配合比率は、S5の溶湯が1に対し、S6の溶湯が0.15~0.50の範囲で実施することが好ましい。たとえば、200~350t容量の転炉溶鋼と30~100t容量の電気炉の溶湯とを合わせ湯する際に、歩留まり、つまり、1回あたりの製造量を最優先にし、合金コストを最小化するクロム含有鋼を製造する場合、転炉溶鋼の比率が高い方が良いためである。 In the second electric furnace melting process S6, it is preferable to use high-carbon ferrochrome ([C] to 10% by mass, [Cr] to 70% by mass) to reduce raw material costs. Scrap containing chromium-containing products and other alloys may also be melted. Here, since it is preferable that the final carbon concentration [C] of the electric furnace molten metal is low, decarburization is performed as necessary when using raw materials with a high C content. The electric furnace molten metal discharged through the second electric furnace melting process S6 is received in a ladle and then transported, and in the second combining process S7, it is combined with the ladle that received the molten steel that has been subjected to converter blowing S5. When the molten steel after converter blowing S5 and the electric furnace molten metal are combined in the second combining process S7, if the dissolved oxygen concentration in the molten iron is high, CO gas will be generated due to the CO generation reaction during the combination, which may cause operational problems. Therefore, in the second electric furnace melting step S6, the molten metal may not be deoxidized during electric furnace refining, but it is preferable to deoxidize the molten metal using a deoxidizer when tapping or before combining after tapping, or to deoxidize the molten metal during refining in the furnace. Also, the blending ratio in the second combining step S7 is preferably in the range of 1 part of the molten metal from S5 to 0.15 to 0.50 parts of the molten metal from S6. For example, when combining molten metal from a converter with a capacity of 200 to 350 tonnes with molten metal from an electric furnace with a capacity of 30 to 100 tonnes, a higher ratio of converter molten steel is better when producing chromium-containing steel that minimizes alloy costs by prioritizing yield, i.e., the amount of production per run.
第2の合わせ工程S7を経るため、溶鉄の温度降下が大きい場合がある。そのためLFなどの加熱工程S8を経ることが好ましい。LF等の加熱工程では昇熱を実施するため、鋳込み鍋持ち込みスラグからのPやMnピックアップが懸念される。PやMn規格に応じてこの加熱工程S8の前に除滓工程を加えることが好ましいが、必ずしも実施するものではない。 The temperature of the molten iron may drop significantly due to the second combining step S7. Therefore, it is preferable to go through a heating step S8 such as LF. Since the heat is raised in the heating step such as LF, there is a concern that P and Mn may be picked up from the slag brought into the casting ladle. Depending on the P and Mn standards, it is preferable to add a slag removal step before this heating step S8, but this is not always necessary.
第2の電気炉溶解工程S6で、電気炉溶湯は脱酸された状態で合わせ湯をするため、大気下での第2の合わせ工程S7時に空気の巻き込みが大きくなり、大気中窒素のピックアップが発生する。この時、溶湯中クロムは窒素活量を下げる特性があり、大気下での第2の合わせ工程S7により飽和状態まで窒素をピックアップする。そのため、製品規格を満足する窒素濃度[N](質量%)を得るために脱窒処理が必須となる。脱窒処理はRH式真空処理装置などの減圧設備で実施する。 In the second electric furnace melting process S6, the electric furnace molten metal is combined in a deoxidized state, so air entrainment increases during the second combining process S7 in the atmosphere, causing nitrogen pick-up in the atmosphere. At this time, chromium in the molten metal has the property of lowering the nitrogen activity, and nitrogen is picked up to a saturated state by the second combining process S7 in the atmosphere. Therefore, denitrification treatment is essential to obtain a nitrogen concentration [N] (mass%) that meets the product specifications. Denitrification treatment is carried out using reduced pressure equipment such as an RH type vacuum treatment device.
本実施形態では減圧脱炭工程S9で脱炭処理と脱窒処理とを並行して行う。たとえば、脱窒処理は減圧脱炭処理でのCO生成反応に伴って進行することが知られている。図2にRH式真空処理装置を用いてクロム含有溶鋼を減圧脱炭処理したときの、減圧脱炭量Δ[C](質量%)と脱窒量Δ[N](質量%)の関係を示す。図2で用いたクロム含有溶鋼は、[Cr]:10.2~13.5質量%の範囲であった。ここで、減圧脱炭量Δ[C](質量%)は減圧脱炭処理前の溶湯中炭素濃度[C]i(質量%)と減圧脱炭処理後の溶湯中炭素濃度[C]f(質量%)との差である。また、脱窒量Δ[N](質量%)は減圧脱炭処理前の溶湯中窒素濃度[N]i(質量%)と減圧脱炭処理後の溶湯中窒素濃度[N]f(質量%)との差である。この結果から目標窒素濃度を得るための減圧脱炭処理前の炭素濃度を得る下記式1が導き出される。
[式1]
[N]i-[N]e≦0.28×([C]i-[C]e)-0.04
ここで、[N]iは減圧脱炭処理前の溶湯中窒素濃度(質量%)、
[N]eは減圧脱炭処理後の目標窒素濃度(質量%)、
[C]iは減圧脱炭処理前の溶湯中炭素濃度(質量%)、
[C]eは減圧脱炭処理後の溶湯の目標炭素濃度(質量%)
を表す。
In this embodiment, the decarburization process and the denitrification process are performed in parallel in the reduced pressure decarburization step S9. For example, it is known that the denitrification process proceeds with the CO generation reaction in the reduced pressure decarburization process. FIG. 2 shows the relationship between the reduced pressure decarburization amount Δ[C] (mass%) and the denitrification amount Δ[N] (mass%) when the chromium-containing molten steel is subjected to reduced pressure decarburization using an RH type vacuum processing apparatus. The chromium-containing molten steel used in FIG. 2 had a range of [Cr]: 10.2 to 13.5 mass%. Here, the reduced pressure decarburization amount Δ[C] (mass%) is the difference between the carbon concentration [C] i (mass%) in the molten metal before the reduced pressure decarburization process and the carbon concentration [C] f (mass%) in the molten metal after the reduced pressure decarburization process. In addition, the denitrification amount Δ[N] (mass%) is the difference between the nitrogen concentration [N] i (mass%) in the molten metal before the reduced pressure decarburization process and the nitrogen concentration [N] f (mass%) in the molten metal after the reduced pressure decarburization process. From this result, the following formula 1 is derived for obtaining the carbon concentration before the reduced pressure decarburization treatment to obtain the target nitrogen concentration.
[Formula 1]
[N] i - [N] e ≦0.28×([C] i - [C] e ) -0.04
Here, [N] i is the nitrogen concentration (mass%) in the molten metal before the reduced pressure decarburization treatment,
[N] e is the target nitrogen concentration (mass%) after reduced pressure decarburization treatment,
[C] i is the carbon concentration (mass%) in the molten metal before the reduced pressure decarburization treatment,
[C] e is the target carbon concentration (mass%) of the molten metal after reduced pressure decarburization treatment
Represents.
ある一定の脱窒量を得るためには所定の脱炭量を必要とする。すなわち減圧脱炭処理開始前にある一定の鋼中炭素濃度[C]i(質量%)を有していないと飽和状態までピックアップした鋼中窒素濃度[N]iから目標窒素濃度[N]e(質量%)までの脱窒処理が行えない。減圧脱炭処理開始時の鋼中炭素濃度[C]i(質量%)を確保するためには、電気炉出湯炭素濃度[C]を高めたり、減圧処理開始前(脱炭開始前)もしくは減圧処理開始前の加熱工程S8で合金等を投入し加炭したり、することが好ましい。くわえて、転炉吹錬S5後の溶鋼の炭素濃度[C]を0.05質量%超えとすることが好ましい。なお、減圧脱炭処理開始時の鋼中炭素濃度[C]iを過剰に高くすると、クロム含有鋼の炭素濃度規格を達成するために過度の脱炭処理が必要となるので、脱窒処理に必要十分な程度の炭素濃度とすることが好ましい。 A certain amount of decarburization is required to obtain a certain amount of decarburization. In other words, if the steel carbon concentration [C] i (mass%) is not certain before the start of the reduced pressure decarburization treatment, the decarburization treatment cannot be performed from the nitrogen concentration [N] i in the steel picked up to the saturated state to the target nitrogen concentration [N] e (mass%). In order to ensure the carbon concentration [C] i (mass%) in the steel at the start of the reduced pressure decarburization treatment, it is preferable to increase the carbon concentration [C] at the electric furnace tapping point, or to add an alloy or the like to carburize the steel before the start of the reduced pressure treatment (before the start of the decarburization) or in the heating step S8 before the start of the reduced pressure treatment. In addition, it is preferable to make the carbon concentration [C] of the molten steel after the converter blowing S5 more than 0.05 mass%. If the carbon concentration [C] i in the steel at the start of the reduced pressure decarburization treatment is excessively high, excessive decarburization is required to achieve the carbon concentration standard for chromium-containing steel, so it is preferable to make the carbon concentration sufficient for the decarburization treatment.
RH式真空処理装置を用いた減圧脱炭処理では送酸脱炭および真空脱炭を行うことができる。たとえば、ステンレス鋼の優先脱炭温度(下記式2)に基づき計算した温度T以上の条件で実施するとクロムの酸化損失が最小限に抑えられる。そのため、脱炭を開始する溶鋼温度Tを式2で計算される温度以上とすることが好ましい。こうしてRH式真空処理装置にて成分調整されたクロム含有溶鋼は、そのまま鋳造工程S11へと搬送して鋳造してもよい。また、減圧脱炭処理にてクロムが酸化したスラグを還元するためにLF等の取鍋精錬工程S10を経て鋳造工程S11へ移行する方が好ましい。
[式2]
log{(aCr
2/3・PCO)/aC}=8.48-13520/T
ここで、aCrはクロム含有溶鋼中のクロムの活量、
PCOは雰囲気中の一酸化炭素の分圧(atm)、
aCはクロム含有溶鋼中の炭素の活量、
Tはクロム含有溶鋼の温度(K)
を表す。
In the reduced pressure decarburization treatment using the RH type vacuum treatment device, oxygen sending decarburization and vacuum decarburization can be performed. For example, when the treatment is performed under conditions of a temperature T or higher calculated based on the preferential decarburization temperature of stainless steel (Equation 2 below), the oxidation loss of chromium can be minimized. Therefore, it is preferable to set the molten steel temperature T at which decarburization starts to be equal to or higher than the temperature calculated by Equation 2. The chromium-containing molten steel whose composition has been adjusted in this way in the RH type vacuum treatment device may be directly transported to the casting step S11 and cast. It is also preferable to move to the casting step S11 via a ladle refining step S10 such as LF in order to reduce the slag in which chromium has been oxidized in the reduced pressure decarburization treatment.
[Formula 2]
log {(a Cr 2/3・P CO )/a C }=8.48-13520/T
Here, a Cr is the activity of chromium in the chromium-containing molten steel,
PCO is the partial pressure of carbon monoxide in the atmosphere (atm),
a C is the activity of carbon in chromium-containing molten steel,
T is the temperature of the chromium-containing molten steel (K)
Represents.
上記実施形態では、減圧脱炭工程S9にRH式真空処理装置を用いる例を記載したが、これに限らない。本実施形態は減圧脱炭処理が可能な設備が適用可能である。鋳造工程S11は造塊分解法や連続鋳造法を適用することができる。歩留まりの観点から連続鋳造法が好ましい。 In the above embodiment, an example is described in which an RH type vacuum processing device is used in the reduced pressure decarburization process S9, but this is not limited to this. This embodiment can be applied to any equipment capable of reduced pressure decarburization. Ingot-making decomposition method or continuous casting method can be applied to the casting process S11. From the viewpoint of yield, continuous casting method is preferable.
本実施形態にかかるクロム含有鋼の製造方法における合わせ湯の実施に際しては、Cr、CおよびNの含有量に特に上下限の制約はない。しかしながら、質量基準で、Cr:7%以上、C:0.005%以上およびN:0.05%以下を含むクロム含有鋼に適用することが好ましい。Cr含有量が7%未満であれば、電気炉を用いてクロム原料を溶解するよりも転炉もしくは取鍋精錬でクロム原料を添加した方が安価である。なお、Cr含有量の上限については特に規定するものではないが、規格の観点から現実的に作り得る鋼のCr含有量の上限は一般的に30%程度である。C含有量を0.005%未満とするには、Cr含有量が前記の範囲では、過度の脱炭処理が必要で、クロムの歩留まりが酸化損失で低下するおそれがある。一方、C含有量の上限を規定するものではないが、一般的に想定しうる鋼のC含有量の上限は0.5%程度である。N含有量が0.05%を超えると低温靭性が劣化するおそれがある。その他の元素を必要に応じて含有させることができる。 When carrying out the combined hot-melt method in the manufacturing method of chromium-containing steel according to the present embodiment, there are no particular upper or lower limits on the contents of Cr, C, and N. However, it is preferable to apply the method to chromium-containing steel containing Cr: 7% or more, C: 0.005% or more, and N: 0.05% or less by mass. If the Cr content is less than 7%, it is cheaper to add the chromium raw material in a converter or ladle refining than to melt the chromium raw material using an electric furnace. Note that although there is no particular upper limit for the Cr content, the upper limit of the Cr content of steel that can be realistically produced from the standpoint of standards is generally about 30%. In order to make the C content less than 0.005%, excessive decarburization treatment is required when the Cr content is in the above range, and there is a risk that the chromium yield will decrease due to oxidation loss. On the other hand, although there is no particular upper limit for the C content, the upper limit of the C content of steel that can generally be assumed is about 0.5%. If the N content exceeds 0.05%, there is a risk that the low-temperature toughness will deteriorate. Other elements can be included as necessary.
(実施例1)
上記実施形態にかかるクロム含有鋼の製造方法に基づき、図1のフローに準拠し、13Cr鋼を製造した。13Cr鋼の目標成分組成は、[C]e:0.20質量%、[N]e:0.030質量%以下および[Cr]e:13.0質量%であった。高炉溶銑S1に溶銑予備処理工程S2を経て転炉吹錬S5を施し、240tの溶鋼を得た。溶鋼の成分組成は、Crを含まず、炭素濃度[C]が0.03質量%であった。第2の電気炉溶解工程S6では、1回あたり50t規模の容量の電気炉で、高炭素フェロクロムおよび13Crビレット屑を主原料としアーク溶解した。溶解後、大気圧下の送酸脱炭を行い溶湯中の炭素濃度を調整した。得られたクロム含有溶湯の成分組成は、[C]:2質量%、[Cr]:66質量%であった。第2の合わせ工程S7では、クロムを含まない溶鋼240tとクロム含有溶湯50tとを大気圧下で合わせ湯し、290tの溶湯とした。合わせ湯後の溶湯の成分組成は、[C]i:0.37質量%、[N]i:0.0458質量%および[Cr]i:11.38質量%であった。減圧脱炭工程S9では、この溶湯をRH式真空処理装置で減圧脱炭処理した。80~100Torr(10666~13332Pa)の減圧条件下で30分間送酸脱炭処理し、その後、5Torr(667Pa)以下の減圧条件下で真空脱炭処理を施した。減圧脱炭処理後の溶湯の成分組成は、[C]f:0.15質量%、[N]f:0.0098質量%および[Cr]f:11.02質量%であった。その後、取鍋精錬工程S10にて、クロム損失としてスラグに移行したクロム分を還元し、併せて、目標成分組成の規格を満たすように合金を投入し成分調整した。最後に鋳造工程S11にて連続鋳造し、半製品のビレットを製造した。
Example 1
Based on the manufacturing method of chromium-containing steel according to the embodiment, 13Cr steel was manufactured according to the flow chart of FIG. 1. The target composition of the 13Cr steel was [C] e : 0.20 mass%, [N] e : 0.030 mass% or less, and [Cr] e : 13.0 mass%. The blast furnace hot metal S1 was subjected to hot metal pretreatment step S2 and converter blowing S5 to obtain 240 t of molten steel. The composition of the molten steel did not contain Cr, and the carbon concentration [C] was 0.03 mass%. In the second electric furnace melting step S6, high carbon ferrochromium and 13Cr billet scrap were used as the main raw materials and arc melted in an electric furnace with a capacity of 50 t per melting. After melting, oxygen supply decarburization was performed under atmospheric pressure to adjust the carbon concentration in the molten metal. The composition of the obtained chromium-containing molten metal was [C]: 2 mass%, [Cr]: 66 mass%. In the second combining step S7, 240 t of chromium-free molten steel and 50 t of chromium-containing molten metal were combined under atmospheric pressure to obtain 290 t of molten metal. The composition of the molten metal after the combining was [C] i : 0.37 mass%, [N] i : 0.0458 mass%, and [Cr] i : 11.38 mass%. In the reduced pressure decarburization step S9, the molten metal was subjected to reduced pressure decarburization treatment using an RH type vacuum treatment device. The molten metal was subjected to oxygen supply decarburization treatment for 30 minutes under reduced pressure conditions of 80 to 100 Torr (10666 to 13332 Pa), and then to vacuum decarburization treatment under reduced pressure conditions of 5 Torr (667 Pa) or less. The composition of the molten metal after the reduced pressure decarburization treatment was [C] f : 0.15 mass%, [N] f : 0.0098 mass%, and [Cr] f : 11.02 mass%. Then, in the ladle refining process S10, the chromium content that had migrated to the slag as a chromium loss was reduced, and at the same time, an alloy was added to adjust the composition so as to satisfy the target composition standard. Finally, in the casting process S11, continuous casting was performed to produce a semi-finished billet.
本実施例において、クロムを意図的に添加しない高炉溶銑を転炉吹錬することで、転炉のCr汚染およびクロムの酸化損失を回避し、第2の電気炉溶解工程S6で13Crビレット屑を原料として合わせて溶解することで原料コストを低廉化した。したがって、13Cr鋼を高い生産能力で製造することができた。 In this embodiment, chromium contamination of the converter and oxidation loss of chromium were avoided by blowing blast furnace molten iron with no intentional addition of chromium, and raw material costs were reduced by melting 13Cr billet scraps together as raw materials in the second electric furnace melting process S6. Therefore, 13Cr steel could be manufactured with high production capacity.
(実施例2)
実施例1と同様のフローにて、13Cr鋼を製造した。13Cr鋼の目標成分組成は、[C]e:0.015質量%、[N]e:0.020質量%以下および[Cr]e:12.5質量%であった。高炉溶銑S1に溶銑予備処理工程S2を経て転炉吹錬S5を施し、200tの溶鋼を得た。溶鋼の成分組成は、Crを含まず、炭素濃度[C]が0.01質量%であった。第2の電気炉溶解工程S6では、1回あたり50t規模の容量の電気炉で、高炭素フェロクロムおよび13Crビレット屑を主原料としアーク溶解を2回行った。溶解後、大気圧下の送酸脱炭を行い溶湯中の炭素濃度を調整した。[C]:0.60質量%および[Cr]:28質量%のクロム含有溶湯を50t、[C]:1.31質量%および[Cr]:55質量%のクロム含有溶湯を40t、2回の溶解の合計溶湯は90tであった。第2の合わせ工程S7では、クロムを含まない溶鋼200tとクロム含有溶湯90tとを大気圧下で合わせ湯し、290tの溶湯とした。合わせ湯後の溶湯の成分組成は、[C]i:0.30質量%、[N]i:0.0645質量%および[Cr]i:12.41質量%であった。加熱工程S8では、式1に基づき、減圧脱炭処理前の必要炭素濃度[C]を計算し、加炭材を添加し、鋼中炭素濃度[C]i:0.36質量%とした。減圧脱炭工程S9では、この溶湯をRH式真空処理装置で減圧脱炭処理した。80~100Torr(10666~13332Pa)の減圧条件下で60分間送酸脱炭処理し、その後、5Torr(667Pa)以下の減圧条件下で真空脱炭処理を施した。減圧脱炭処理後の溶湯の成分組成は、[C]f:0.005質量%、[N]f:0.0070質量%および[Cr]f:11.02質量%であった。その後、取鍋精錬工程S10にて、クロム損失としてスラグに移行したクロム分を還元し、併せて、目標成分組成の規格を満たすように合金を投入し成分調整した。最後に鋳造工程S11にて連続鋳造し、半製品のビレットを製造した。
Example 2
13Cr steel was produced in the same flow as in Example 1. The target composition of the 13Cr steel was [C] e : 0.015 mass%, [N] e : 0.020 mass% or less, and [Cr] e : 12.5 mass%. The blast furnace hot metal S1 was subjected to hot metal pretreatment process S2 and converter blowing S5 to obtain 200 t of molten steel. The composition of the molten steel did not contain Cr, and the carbon concentration [C] was 0.01 mass%. In the second electric furnace melting process S6, arc melting was performed twice in an electric furnace with a capacity of 50 t per time, using high carbon ferrochromium and 13Cr billet scrap as the main raw materials. After melting, oxygen supply decarburization was performed under atmospheric pressure to adjust the carbon concentration in the molten metal. The total amount of molten metal from the two melting processes was 90 t, with 50 t of chromium-containing molten metal with [C]: 0.60 mass% and [Cr]: 28 mass%, and 40 t of chromium-containing molten metal with [C]: 1.31 mass% and [Cr]: 55 mass%. In the second combining process S7, 200 t of molten steel not containing chromium and 90 t of chromium-containing molten metal were combined under atmospheric pressure to obtain 290 t of molten metal. The composition of the molten metal after the combination was [C] i : 0.30 mass%, [N] i : 0.0645 mass%, and [Cr] i : 12.41 mass%. In the heating process S8, the required carbon concentration [C] before the reduced pressure decarburization process was calculated based on formula 1, and a recarburizer was added to obtain the carbon concentration in the steel [C] i : 0.36 mass%. In the reduced pressure decarburization process S9, the molten metal was subjected to reduced pressure decarburization treatment using an RH type vacuum treatment device. The molten metal was decarburized for 60 minutes under reduced pressure conditions of 80 to 100 Torr (10,666 to 13,332 Pa), and then decarburized in vacuum under reduced pressure conditions of 5 Torr (667 Pa) or less. The composition of the molten metal after the reduced pressure decarburization treatment was [C] f : 0.005 mass%, [N] f : 0.0070 mass%, and [Cr] f : 11.02 mass%. Then, in the ladle refining step S10, the chromium content that had moved to the slag as chromium loss was reduced, and at the same time, an alloy was added to adjust the composition so as to satisfy the standard of the target composition. Finally, the molten metal was continuously cast in the casting step S11 to produce a billet of a semi-finished product.
本実施例において、クロムを意図的に添加しない高炉溶銑を転炉吹錬することで、転炉のCr汚染およびクロムの酸化損失を回避し、第2の電気炉溶解工程S6で13Crビレット屑を原料として合わせて溶解することで原料コストを低廉化した。したがって、13Cr鋼を高い生産能力で製造することができた。 In this embodiment, chromium contamination of the converter and oxidation loss of chromium were avoided by blowing blast furnace molten iron with no intentional addition of chromium, and raw material costs were reduced by melting 13Cr billet scraps together as raw materials in the second electric furnace melting process S6. Therefore, 13Cr steel could be manufactured with high production capacity.
(比較例)
実施例2と同様のフローにて、13Cr鋼を製造した。転炉吹錬S5を施した200tの溶鋼の成分組成は、Crを含まず、炭素濃度[C]が0.01質量%であった。第2の電気炉溶解工程S6では、2回の電気炉溶解により、[C]:0.56質量%および[Cr]:29質量%のクロム含有溶湯を50t、[C]:1.25質量%および[Cr]:55質量%のクロム含有溶湯を40t、2回の溶解の合計溶湯は90tであった。第2の合わせ工程S7では、クロムを含まない溶鋼200tとクロム含有溶湯90tとを大気圧下で合わせ湯し、290tの溶湯とした。合わせ湯後の溶湯の成分組成は、[C]i:0.28質量%、[N]i:0.0610質量%および[Cr]i:12.59質量%であった。加熱工程S8では、加炭を行わず、そのまま、減圧脱炭工程S9を施した。減圧脱炭工程S9では、この溶湯をRH式真空処理装置で減圧脱炭処理した。80~100Torr(10666~13332Pa)の減圧条件下で60分間送酸脱炭処理し、その後、5Torr(667Pa)以下の減圧条件下で真空脱炭処理を施した。減圧脱炭処理後の溶湯の成分組成は、[C]f:0.007質量%、[N]f:0.0215質量%および[Cr]f:11.74質量%であった。その結果、窒素濃度が規格より高く、成分外れとなった。
Comparative Example
13Cr steel was produced in the same flow as in Example 2. The composition of the 200 t molten steel subjected to converter blowing S5 was Cr-free and had a carbon concentration [C] of 0.01 mass%. In the second electric furnace melting step S6, 50 t of chromium-containing molten metal with [C]: 0.56 mass% and [Cr]: 29 mass% was produced by two electric furnace meltings, and 40 t of chromium-containing molten metal with [C]: 1.25 mass% and [Cr]: 55 mass% was produced, and the total amount of molten metal from the two meltings was 90 t. In the second combining step S7, 200 t of molten steel not containing chromium and 90 t of chromium-containing molten metal were combined under atmospheric pressure to produce 290 t of molten metal. The composition of the molten metal after the combination was [C] i : 0.28 mass%, [N] i : 0.0610 mass%, and [Cr] i : 12.59 mass%. In the heating step S8, no carburization was performed, and the molten metal was subjected to the reduced pressure decarburization step S9 as it was. In the reduced pressure decarburization step S9, the molten metal was subjected to reduced pressure decarburization treatment in an RH type vacuum treatment device. The molten metal was subjected to oxygen supply decarburization treatment for 60 minutes under reduced pressure conditions of 80 to 100 Torr (10666 to 13332 Pa), and then subjected to vacuum decarburization treatment under reduced pressure conditions of 5 Torr (667 Pa) or less. The composition of the molten metal after the reduced pressure decarburization treatment was [C] f : 0.007 mass %, [N] f : 0.0215 mass %, and [Cr] f : 11.74 mass %. As a result, the nitrogen concentration was higher than the standard, and the composition was out of the range.
本明細書中で、[M]は、クロム含有溶鉄またはクロム含有合金中の成分元素Mを表す。圧力の単位「atm」は101325Paとする。また、圧力の単位「Torr」は、133.3Paとする。質量の単位「t」は103kgとする。
In this specification, [M] represents a component element M in the chromium-containing molten iron or chromium-containing alloy. The unit of pressure "atm" is 101325 Pa. The unit of pressure "Torr" is 133.3 Pa. The unit of mass "t" is 10 3 kg.
Claims (5)
[式1]
[N]i-[N]e≦0.28×([C]i-[C]e)-0.04 3. The method for producing a chromium-containing steel according to claim 2, wherein the carbon concentration [C]i (mass%) in the molten metal before the reduced pressure decarburization treatment is adjusted so as to satisfy the following formula 1 from the nitrogen concentration [N]i ( mass %) in the molten metal before the reduced pressure decarburization treatment, the target carbon concentration [C] e (mass%) in the molten metal after the reduced pressure decarburization treatment, and the target nitrogen concentration [N]e (mass%).
[Formula 1]
[N] i - [N] e ≦0.28×([C] i - [C] e ) -0.04
The method for producing a chromium-containing steel according to any one of claims 1 to 4, wherein the component composition of the chromium-containing steel contains, on a mass basis, Cr: 7% or more, C: 0.005% or more, and N: 0.05% or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023004878 | 2023-01-17 | ||
JP2023004878 | 2023-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024101527A true JP2024101527A (en) | 2024-07-29 |
Family
ID=91967440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023149461A Pending JP2024101527A (en) | 2023-01-17 | 2023-09-14 | Production method for chromium-containing steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024101527A (en) |
-
2023
- 2023-09-14 JP JP2023149461A patent/JP2024101527A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110093479B (en) | Bottom blowing CO2Method for smelting stainless steel | |
CN100436627C (en) | A kind of production process of carbon-manganese-aluminum killed steel | |
CN112877585B (en) | Method for smelting high-manganese TWIP steel by adopting AOD-VCR furnace | |
CN114317887A (en) | Full-process smelting method of low-sulfur low-phosphorus ultra-low carbon steel | |
JP3752801B2 (en) | Method for melting ultra-low carbon and ultra-low nitrogen stainless steel | |
CN113278871A (en) | Smelting method of super duplex stainless steel | |
US5514331A (en) | Method and device for producing stainless steel | |
JP2024101527A (en) | Production method for chromium-containing steel | |
JP3531218B2 (en) | Method for producing low carbon chromium-containing steel | |
JPH10140227A (en) | Manufacturing method of high alloy steel with combined hot water | |
CN113337669A (en) | Method for strengthening electric furnace smelting by bottom blowing hydrogen | |
JP3411220B2 (en) | Refining method of high nitrogen low oxygen chromium-containing molten steel | |
JP2003027128A (en) | Melting method of molten steel in vacuum degassing equipment | |
CN115404309B (en) | Molten steel deoxidizing method | |
US4436553A (en) | Process to produce low hydrogen steel | |
EP4495272A1 (en) | Method for producing a steel melt with a reduced carbon footprint and high-grade steel product produced thereby | |
KR100191010B1 (en) | Oxygen refining method of low carbon steel | |
JPH06306442A (en) | Production of extra low sulfur steel | |
JPH0488114A (en) | Method for producing high manganese steel | |
JP4667841B2 (en) | Method for melting chromium-containing steel | |
JP7480751B2 (en) | METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL | |
JPH08291319A (en) | Method for smelting dead-soft steel | |
JP2002322508A (en) | METHOD FOR PRODUCING EXTRA LOW Ti STEEL | |
JPS6010087B2 (en) | steel smelting method | |
JPH11343514A (en) | Melting method of high carbon molten steel using bottom blowing converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20250515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250708 |