JP2023509892A - Temperature control system and method for semiconductor single crystal growth - Google Patents
Temperature control system and method for semiconductor single crystal growth Download PDFInfo
- Publication number
- JP2023509892A JP2023509892A JP2022539373A JP2022539373A JP2023509892A JP 2023509892 A JP2023509892 A JP 2023509892A JP 2022539373 A JP2022539373 A JP 2022539373A JP 2022539373 A JP2022539373 A JP 2022539373A JP 2023509892 A JP2023509892 A JP 2023509892A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- heating power
- width
- solid
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/206—Controlling or regulating the thermal history of growing the ingot
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/22—Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
- C30B15/26—Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本願は、半導体単結晶成長用の温度制御システム及び方法を開示する。温度制御システムは、固液界面で成長する結晶棒の稜線の画像を撮像することで、前記界面での前記稜線の幅を決定する画像収集装置と、坩堝を加熱する加熱装置と、前記加熱装置の加熱電力を制御する温度制御装置と、を備え、前記温度制御装置は、前記稜線の幅に基づき、前記加熱装置に対する電力制御を行う。本発明による温度制御システム及び方法は、成長する半導体単結晶の欠陥を著しく減少させるとともに、製造コストを減少させ、製造効率を向上させることができる。
The present application discloses a temperature control system and method for semiconductor single crystal growth. The temperature control system includes an image acquisition device that determines the width of the ridgeline at the interface by capturing an image of the ridgeline of the crystal rod growing at the solid-liquid interface, a heating device that heats the crucible, and the heating device. a temperature control device for controlling the heating power of the heating device, wherein the temperature control device performs power control for the heating device based on the width of the ridge line. The temperature control system and method according to the present invention can significantly reduce defects in growing semiconductor single crystals, reduce manufacturing costs, and improve manufacturing efficiency.
Description
本願は、半導体単結晶の成長技術、特に半導体単結晶成長用の温度制御システム及び方法に関する。 The present application relates to semiconductor single crystal growth techniques, and more particularly to temperature control systems and methods for semiconductor single crystal growth.
チョクラルスキー法は、半導体単結晶成長の主な方法である。図1は典型的なチョクラルスキー単結晶炉の模式図であり、主に坩堝、加熱ユニット、リフティングロープ、観測窓、及び結晶体融液などを含む。単結晶シリコンを例として、単結晶シリコン棒の成長過程は、図1のチョクラルスキー単結晶炉において、まず、不均一結晶核として、シリコン融液を収容している坩堝に種結晶を導入してから、加熱ユニットによって熱電界を制御し、リフティングロープを利用して、種結晶を回転させるとともに、ゆっくりと引き上げることで、結晶方向が種結晶と一致する半導体単結晶棒を成長させる。ここで、結晶方向は一般的に、<100>、<110>、<111>方向であり、半導体単結晶の成長にとって、熱電界の制御は非常に重要である。 The Czochralski method is the main method for growing semiconductor single crystals. FIG. 1 is a schematic diagram of a typical Czochralski single crystal furnace, which mainly includes a crucible, a heating unit, a lifting rope, an observation window, a crystal melt, and so on. Taking single crystal silicon as an example, the process of growing a single crystal silicon rod is as follows: In the Czochralski single crystal furnace of FIG. Then, the heating unit controls the thermal electric field, and the lifting rope is used to rotate and slowly pull up the seed crystal to grow a semiconductor single crystal rod whose crystal orientation is consistent with that of the seed crystal. Here, the crystal directions are generally <100>, <110>, and <111> directions, and control of the thermal electric field is very important for the growth of semiconductor single crystals.
半導体デバイスがますます小さくなっているに連れて、半導体ウェハの品質に対する要求もますます高くなり、特に、ウェハの表面欠陥、平坦度、及び表面金属不純物に対する要求は継続的に高くなっている。従って、固液界面での軸方向温度勾配を適切な範囲に制御することは、ますます重要になり、その理由は、成長する結晶棒の品質と密接につながっているからである。近年、研究したところ、チョクラルスキー法による半導体単結晶の成長過程で、固液界面での軸方向温度勾配は、成長する結晶棒の稜線の幅に関することが発見された。 As semiconductor devices are getting smaller and smaller, the requirements for the quality of semiconductor wafers are also getting higher and higher, especially the requirements for wafer surface defects, flatness and surface metal impurities are continuously increasing. Therefore, controlling the axial temperature gradient at the solid-liquid interface to an appropriate range becomes increasingly important, because it is closely linked to the quality of the growing crystal rod. In recent years, it has been found that the axial temperature gradient at the solid-liquid interface is related to the width of the ridgeline of the growing crystal bar during the growth of a semiconductor single crystal by the Czochralski method.
例示として、図2は、<100>結晶方向の結晶棒の断面図を示す。図2から分かるように、4本の稜線は結晶体の<110>方向にあり、stockmeierなどの研究者は、<100>結晶方向に成長する結晶棒の稜線の幅と、固液界面での軸方向温度勾配との間の関係「1」(L.Stockmeier et al. J.Cryst.Growth 515 26(2019))を与える。また、他の結晶方向に成長する結晶棒の稜線について、成長する結晶棒の稜線は異なる位置及び配向にあるが、稜線の幅と、固液界面での軸方向温度勾配との間にも対応する関係が存在する。ところが、いままで、固液界面での軸方向温度勾配を正確に決定し、効果的に制御できない。 By way of illustration, FIG. 2 shows a cross-sectional view of a crystal bar in the <100> crystal orientation. As can be seen from Fig. 2, the four ridges are in the <110> direction of the crystal. A relationship of '1' (L. Stockmeier et al. J. Cryst. Growth 515 26 (2019)) is given between the axial temperature gradient. Also, for the ridgeline of the crystal rod growing in other crystallographic directions, the ridgeline of the growing crystal rod is in a different position and orientation, but there is also correspondence between the width of the ridgeline and the axial temperature gradient at the solid-liquid interface. There is a relationship that However, until now, the axial temperature gradient at the solid-liquid interface cannot be accurately determined and effectively controlled.
本発明は、上記課題を解決するために、半導体単結晶成長用の温度制御システム及び方法を提供する。そのため、本発明は以下の技術案を採用する。 The present invention provides a temperature control system and method for semiconductor single crystal growth to solve the above problems. Therefore, the present invention adopts the following technical solutions.
半導体単結晶成長用の温度制御システムであって、前記システムは、固液界面で成長する結晶棒の稜線の画像を撮像することで、前記界面での前記稜線の幅を決定する画像収集装置と、坩堝を加熱する加熱装置と、前記加熱装置の加熱電力を制御する温度制御装置と、を備え、前記温度制御装置は、前記稜線の幅に基づき、前記加熱装置を制御する。 A temperature control system for semiconductor single crystal growth, said system comprising an image acquisition device for determining the width of said ridge at said interface by taking an image of the ridge of a crystal rod growing at said solid-liquid interface. a heating device for heating a crucible; and a temperature control device for controlling heating power of the heating device, wherein the temperature control device controls the heating device based on the width of the ridge line.
半導体単結晶成長用の温度制御方法であって、画像収集装置が固液界面で成長する結晶棒の稜線の画像を撮像するステップと、撮像された画像に基づき、前記稜線の幅を決定するステップと、を含み、前記稜線の幅に基づき、坩堝を加熱する。 A temperature control method for growing a semiconductor single crystal, comprising the steps of capturing an image of a ridgeline of a crystal bar growing at a solid-liquid interface with an image acquisition device, and determining the width of the ridgeline based on the captured image. and, heating the crucible based on the width of the ridge.
以下、図面を参照しながら、本発明の実施例を具体的に説明し、図面及び実施例は限定用のものではなく、単に説明するためのものである。 Embodiments of the invention will now be described in greater detail with reference to the drawings, which are intended to be illustrative rather than limiting.
本発明の実施例によれば、成長中の結晶体の稜線の幅を決定するために、まず、撮影を行う。カメラによる画像取得は、外部でトリガされるように設定される。輝度の明るすぎ、又は外部光源の干渉を避けるために、カメラレンズの外部にIRバンドパスフィルタを追加する。図3(a)は、カメラが撮影した、成長中の半導体単結晶の2D画像である。好ましくは、前記カメラは観測窓に配置されて、成長する結晶棒を撮影する。 According to an embodiment of the present invention, a photograph is first taken to determine the width of the ridgeline of the growing crystal. Image acquisition by the camera is set to be externally triggered. Add an IR bandpass filter external to the camera lens to avoid excessive brightness or interference from external light sources. FIG. 3(a) is a 2D image of a growing semiconductor single crystal captured by a camera. Preferably, the camera is placed in an observation window to photograph the growing crystal bar.
1つの実施例において、カメラはデュアルラインスキャンカメラ、又は他の任意の高解像度カメラを採用してもよい。別の実施例において、成長する結晶棒の直径を取得できる場合、シングルラインスキャンカメラを採用してもよく、その理由は、この時、成長する結晶棒の直径と結晶棒のリアルタイムの回転速度とを利用して、稜線の幅を決定できるからである。図3(a)から分かるように、種結晶を継続的に回転させ、引き上げるとともに、融体の表面から半導体結晶棒を生成し、矢印が示す位置は、稜線の対応位置である。 In one embodiment, the camera may employ a dual line scan camera, or any other high resolution camera. In another embodiment, if the diameter of the growing crystal rod can be obtained, a single line scan camera can be adopted, because then the diameter of the growing crystal rod and the real-time rotation speed of the crystal rod can be obtained. can be used to determine the width of the edge. As can be seen from FIG. 3(a), the seed crystal is continuously rotated and pulled up to produce a semiconductor crystal rod from the surface of the melt, and the positions indicated by the arrows are the corresponding positions of the ridges.
図3(b)は、図3(a)の画像から抽出された固液界面での対応する2D画像である。図3(b)に示すように、底部の白い部分は固液界面の画像であり、撮影の視野角のため、略弧状をなし、また、図面から分かるように、稜線位置での固液界面の曲率は異なる。また、処理及び算出を簡略化するために、図3(b)に示すように、固液界面の2D画像は、さらに短くトリミングされてもよいが、少なくとも稜線位置及びその付近領域を含むべきである。 FIG. 3(b) is the corresponding 2D image at the solid-liquid interface extracted from the image of FIG. 3(a). As shown in FIG. 3(b), the white part at the bottom is an image of the solid-liquid interface, which is almost arc-shaped due to the viewing angle of the photograph. have different curvatures. Also, to simplify processing and calculations, the 2D image of the solid-liquid interface may be cropped even shorter, as shown in FIG. be.
固液界面の2D画像を取得した後、以下のように画像を処理することで、稜線の位置及び幅を決定する。具体的に、画像から稜線の位置及び幅を決定することは、界面エッジ曲線の抽出ステップ、曲率算出ステップ、及び曲率変化と閾値との比較ステップを含む。図4は、本発明の実施例による、固液界面の2D画像を処理することで、稜線の対応位置と幅とを予測する原理図を示す。 After acquiring a 2D image of the solid-liquid interface, the position and width of the ridgeline is determined by processing the image as follows. Specifically, determining the position and width of the ridge from the image includes steps of extracting the interface edge curve, calculating the curvature, and comparing the curvature change with a threshold. FIG. 4 shows a principle diagram of predicting the corresponding position and width of a ridgeline by processing a 2D image of a solid-liquid interface according to an embodiment of the present invention.
説明の便宜上、図4の上部は、図3(b)の固液界面の2D画像を示す。当該2D画像に対して、複数の検索方法を利用して、界面エッジ曲線を探し出し、探し出した界面エッジ曲線に対して、曲率を算出する。図4に示すように、初期エッジ曲線を多項式でフィッティングし、フィッティングされた曲線に対して一次導関数を求めることで、エッジ曲線の曲率を取得し、多項式でフィッティングされた曲線は、初期曲線とよく一致するため、図面において、基本的に、同一線として重なっているが、これは例示として、限定的なものではない。 For convenience of explanation, the upper part of FIG. 4 shows a 2D image of the solid-liquid interface of FIG. 3(b). Multiple search methods are used for the 2D image to find interface edge curves, and curvatures are calculated for the found interface edge curves. As shown in FIG. 4, the curvature of the edge curve is obtained by fitting the initial edge curve with a polynomial and taking the first derivative of the fitted curve, and the curve fitted with the polynomial is the initial curve and In order to be in good agreement, the drawings are basically collinear and overlapped, but this is by way of illustration and not limitation.
また、図4から分かるように、当該エッジ曲線の曲率は、非稜線の位置での値が小さくて、稜線の対応位置での値が大きく、それは、稜線での曲率が大きいからである。そして、曲率の変化を決定し、図4に示すように、エッジ曲線に対して二次導関数を求めることで、エッジ曲線の曲率変化曲線を取得する。その後、エッジ曲線の曲率変化に基づき、閾値線を定義し、曲率変化曲線のピーク位置、及び前記閾値線との交差点位置を決定し、曲率変化曲線のピーク位置は、決定された稜線位置であり、それと前記閾値線の2つの交差点位置との間の距離は、決定された稜線の幅wである。 Also, as can be seen from FIG. 4, the curvature of the edge curve has a small value at the non-edge position and a large value at the corresponding position of the edge, because the curvature at the edge is large. Then, the curvature change curve of the edge curve is obtained by determining the curvature change and obtaining the second derivative with respect to the edge curve, as shown in FIG. Then, based on the curvature change of the edge curve, define a threshold line, determine the peak position of the curvature change curve and the intersection position with the threshold line, and the peak position of the curvature change curve is the determined ridge position. , and the two intersection locations of the threshold line is the width w of the determined edge.
稜線の幅は変わらないわけではなく、結晶棒の成長するに連れて、放熱領域はますます大きくなり、固液界面での温度勾配はますます高くなり、結果として、稜線の幅はますます小さくなる。従って、以上によれば、稜線の幅を決定した後、稜線の幅を適切な範囲に維持するために、所定の稜線の幅に基づき、理論的に確立した関係を利用して、固液界面での軸方向温度勾配を制御する。例示として、図5は<100>結晶方向の稜線の幅と、界面での軸方向温度勾配との間の関係の曲線図を示す。図5から分かるように、稜線の幅を2mm~6mmの範囲に安定に維持するために、固液界面での温度勾配を60~90K/cmに維持する必要がある。以下、本発明の実施例による温度制御装置及び方法を説明する。 The width of the ridge line does not remain unchanged. As the crystal bar grows, the heat dissipation area becomes larger and larger, the temperature gradient at the solid-liquid interface becomes higher and higher, and as a result, the width of the ridge line becomes smaller and smaller. Become. Therefore, according to the above, after determining the width of the ridgeline, in order to maintain the width of the ridgeline within an appropriate range, based on the predetermined width of the ridgeline, the theoretically established relationship is used to determine the solid-liquid interface to control the axial temperature gradient at By way of illustration, FIG. 5 shows a curve diagram of the relationship between the width of the <100> crystallographic direction ridges and the axial temperature gradient at the interface. As can be seen from FIG. 5, the temperature gradient at the solid-liquid interface must be maintained at 60-90 K/cm in order to stably maintain the ridge width within the range of 2 mm-6 mm. Hereinafter, a temperature control apparatus and method according to embodiments of the present invention will be described.
従来の加熱装置はメイン加熱部材及び底部加熱部材を備え、前記メイン加熱部材は坩堝の側壁に設けられることで、側壁から坩堝を加熱し、液面の凝結を防止するために、固液界面に跨って加熱する。従来の加熱装置は、メイン加熱部材と底部加熱部材との加熱を単独に制御しない。本発明は、メイン加熱部材は固液界面に跨って界面の両側を同時に加熱し、界面での軸方向温度勾配に対する変更は著しくなくて、底部加熱部材は界面から遠いため、界面での軸方向温度勾配に対する変更はより著しい状況を考える。 A conventional heating device comprises a main heating member and a bottom heating member, the main heating member being provided on the side wall of the crucible to heat the crucible from the side wall, and to prevent condensation on the liquid surface, the solid-liquid interface is heated. Heat across. Conventional heating devices do not independently control the heating of the main heating element and the bottom heating element. The present invention spans the solid-liquid interface and heats both sides of the interface simultaneously, with no significant change to the axial temperature gradient at the interface, and the bottom heating member is far from the interface, so the axial temperature at the interface is reduced. Consider the situation where the change to the temperature gradient is more pronounced.
図6は、本発明の1つの実施例による、固液界面での温度勾配を制御する加熱装置の模式図を示し、固液界面での軸方向温度勾配を効果的に制御するために、必要に応じて、メイン加熱部材及び底部加熱部材に対して、単独に異なる制御を行う。好ましくは、抵抗加熱によって熱を発生させ、放射の方式で、坩堝に放射し、さらに、坩堝から溶融物に伝導して、溶融物を加熱する。底部加熱部材は液面から遠いため、その電力を比較的に高くして、好ましくは、溶融物の電力の20~25%にし、メイン加熱部材は液面から近いため、電力は高すぎ又は低すぎると、液面に対する影響が大きいから、その電力を3~10%に制御する。 FIG. 6 shows a schematic diagram of a heating device for controlling the temperature gradient at the solid-liquid interface, according to one embodiment of the present invention, in which to effectively control the axial temperature gradient at the solid-liquid interface, the required , the main heating element and the bottom heating element are independently controlled differently. Heat is preferably generated by resistive heating and radiated in a radiant manner into the crucible and further conducted from the crucible to the melt to heat the melt. Since the bottom heating member is far from the liquid surface, its power is relatively high, preferably 20-25% of the power of the melt, and the main heating member is close to the liquid surface, so the power is either too high or too low. If it is too high, the influence on the liquid level is large, so the power is controlled to 3 to 10%.
図6において、側壁での加熱部材は熱を矢印Aの方向で伝達することで、側壁から坩堝内の溶融物を加熱し、底部での加熱部材は熱を矢印Bの方向で伝達することで、底部から坩堝内の溶融物を加熱する。そして、一部の熱は溶融物の対流及び拡散によって、溶融物の表面に伝達され、表面のアルゴンガスによって奪われて(C)、一部の熱は固液界面による相変化吸収を経て、結晶体に伝達されてから(D)、結晶体の表面からアルゴンガスに放射される(E)。底部での加熱部材は、固液界面の融体側に位置するため、固液界面での温度勾配をより効果的に変更できる。 In FIG. 6, the heating elements at the sidewalls transfer heat in the direction of arrow A to heat the melt in the crucible from the sidewalls, and the heating elements at the bottom transfer heat in the direction of arrow B. , heats the melt in the crucible from the bottom. Then, part of the heat is transferred to the surface of the melt by convection and diffusion of the melt, and is taken away by the argon gas on the surface (C), and part of the heat is absorbed by the solid-liquid interface through phase change absorption, After being transmitted to the crystal body (D), it is emitted from the surface of the crystal body into the argon gas (E). The heating element at the bottom is located on the melt side of the solid-liquid interface, so that the temperature gradient at the solid-liquid interface can be modified more effectively.
例えば、稜線の幅が大きくなった場合、固液界面での軸方向温度勾配が小さくなったことを意味し、この際、下部加熱装置の電力を増加させるとともに、側部加熱装置の電力を減少させることで、溶融物において坩堝の最高温度を下に移動させ、浮力渦流の経路を長くして、固液界面での軸方向温度勾配が大きくなる。逆に、稜線の幅が小さくなった場合、固液界面での軸方向温度勾配が大きくなり、つまり、放熱がよくなったことを意味し、この際、下部加熱装置の電力を減少させるとともに、側部加熱装置の電力を増加させることで、溶融物において坩堝壁の最高温度を上に移動させ、浮力渦の経路を短くして、固液界面での軸方向温度勾配は小さくなる。 For example, if the width of the ridge increases, it means that the axial temperature gradient at the solid-liquid interface has decreased, in which case the power of the bottom heater is increased and the power of the side heater is decreased. This moves the maximum temperature of the crucible down in the melt, lengthening the path of the buoyant vortices and increasing the axial temperature gradient at the solid-liquid interface. Conversely, when the width of the ridge becomes smaller, the axial temperature gradient at the solid-liquid interface becomes larger, which means that heat dissipation is improved. Increasing the power of the side heater moves the maximum crucible wall temperature up in the melt, shortening the path of the buoyant vortices and reducing the axial temperature gradient at the solid-liquid interface.
また、一般的に、従来の加熱装置には、一般的には、一定的に変化する電力が付与され、熱を固液界面に伝達するのに、長い時間を必要とする。熱平衡速度を速くして、単結晶構成を失わないように、本発明は、従来の加熱方法とは異なる段階型先行隙間加熱法を利用して、より迅速に熱平衡にする。前記段階型先行隙間加熱法は、加熱電力の増加速度に基づき、増加―減少―増加という交互型加熱電力の漸増を採用するか、又は加熱電力の減少速度に基づき、減少―増加―減少という交互型加熱電力の漸減を採用する。 Also, conventional heating devices are typically supplied with constantly varying power and require a long time to transfer heat to the solid-liquid interface. In order to increase the thermal equilibrium rate and not lose the single crystal configuration, the present invention utilizes a stepped pre-gap heating method, which is different from conventional heating methods, to achieve thermal equilibrium more quickly. The step-type pre-gap heating method adopts a gradual increase of alternating heating power of increase-decrease-increase based on the rate of increase of the heating power, or alternately of decrease-increase-decrease based on the rate of decrease of the heating power. A gradual reduction of the mold heating power is adopted.
以下、図7を参照しながら、本発明による段階型先行隙間加熱法を具体的に説明する。図7は、段階型先行隙間加熱法を使用する場合の、加熱電力の段階型上昇及び加熱電力の段階型下降を示す。以下では、図7の段階型降温を例として説明する。加熱装置の電力を84KWから72KWに減少させた場合、まず、電力変化速度及びステップ数を決定し、電力の変化が速すぎたり、遅すぎたりすると、結晶体の成長が不順になり、ステップ数も適切に選択すべきである。 Hereinafter, the stepwise pre-gap heating method according to the present invention will be specifically described with reference to FIG. FIG. 7 shows a stepped increase in heating power and a stepped decrease in heating power when using the stepped pre-gap heating method. The stepwise temperature drop in FIG. 7 will be described below as an example. When the power of the heating device is reduced from 84 KW to 72 KW, first determine the power change rate and the number of steps. should also be selected appropriately.
例示として、図7において、電力変化速度を1KW/MINに決定し、加熱電力の段階型下降を24個のステップに分ける。ここで、図7は。横座標がステップ数であり、縦座標が加熱電力である。そして、電力変化速度の斜線を基準線として、例えば、第10のステップの電力値を推定し、当該値を第1~第3のステップの固定値とする。その後、第6のステップの基準線の値を第4~第6のステップの固定値に決定する。 By way of example, in FIG. 7 the power change rate is determined to be 1 KW/MIN and the stepped ramp down of the heating power is divided into 24 steps. Here, FIG. The abscissa is the number of steps and the ordinate is the heating power. Then, using the oblique line of the power change speed as a reference line, for example, the power value of the tenth step is estimated, and the estimated value is set as the fixed value of the first to third steps. After that, the baseline value of the sixth step is determined to be the fixed value of the fourth to sixth steps.
次に、第6~第9のステップの固定値として、基準線を利用して、第16のステップの値を推定する。このように、後続の各ステップの値を決定することで、合計24個のステップの加熱電力の段階型下降を取得する。加熱電力の段階型上昇について、各ステップの電力値の決定は段階型下降に類似するため、ここでは説明を省略する。 Next, the value of the 16th step is estimated using the reference line as the fixed values of the 6th to 9th steps. Thus, by determining the value of each subsequent step, we obtain a total of 24 steps of stepped down heating power. Regarding the stepwise increase of the heating power, the determination of the power value in each step is similar to the stepwise decrease, so the description is omitted here.
以上のように、本発明は主に、成長する半導体単結晶の稜線の幅をリアルタイムに観測することで、固液界面での軸方向温度勾配を決定し、さらに制御し、これにより、無欠陥の半導体単結晶を製造する目的を達成する。本発明のシステム及び方法によって製造される半導体単結晶は、結晶欠陥がなく、半導体チップ工場がデバイスの製造過程で、シリコンウェハ表面の結晶欠陥による影響によって、良品率の損失を招くことはない。また、本発明のシステム及び方法は、さらに製造効率を向上させ、製造コストを減少させることができる。 As described above, the present invention mainly determines and controls the axial temperature gradient at the solid-liquid interface by observing the width of the ridgeline of the growing semiconductor single crystal in real time, thereby achieving defect-free To achieve the purpose of manufacturing a semiconductor single crystal of The semiconductor single crystal manufactured by the system and method of the present invention has no crystal defects, and the semiconductor chip factory does not suffer from the loss of yield due to crystal defects on the surface of the silicon wafer during the device manufacturing process. Also, the system and method of the present invention can further improve manufacturing efficiency and reduce manufacturing costs.
上記の実施例は、単に本発明の好適な実施として、本発明の技術案に対する限定ではなく、進歩性に値する労働を必要とせず、上記実施例に基づき実現できる技術案であれば、何れも本発明特許の請求項の範囲内に含まれるとみなすべきである。 The above examples are merely preferred implementations of the present invention, and are not limitations on the technical solution of the present invention. This invention should be considered to be within the scope of the claims of this patent.
例えば、稜線の幅が大きくなった場合、固液界面での軸方向温度勾配が小さくなったことを意味し、この際、底部での加熱装置の電力を増加させるとともに、側壁での加熱装置の電力を減少させることで、溶融物において坩堝の最高温度を下に移動させ、浮力渦流の経路を長くして、固液界面での軸方向温度勾配が大きくなる。逆に、稜線の幅が小さくなった場合、固液界面での軸方向温度勾配が大きくなり、つまり、放熱がよくなったことを意味し、この際、底部での加熱装置の電力を減少させるとともに、側壁での加熱装置の電力を増加させることで、溶融物において坩堝壁の最高温度を上に移動させ、浮力渦の経路を短くして、固液界面での軸方向温度勾配は小さくなる。 For example, if the width of the ridgeline increases, it means that the axial temperature gradient at the solid-liquid interface has decreased, increasing the power of the heater at the bottom and increasing the power of the heater at the side wall . Reducing the power moves the maximum crucible temperature down in the melt, lengthening the path of the buoyant vortices and increasing the axial temperature gradient at the solid-liquid interface. Conversely, when the width of the ridge becomes smaller, the axial temperature gradient at the solid-liquid interface becomes larger, which means better heat dissipation, and at this time the power of the heating device at the bottom is reduced. , increasing the power of the heating device at the sidewall moves the maximum crucible wall temperature up in the melt, shortens the path of the buoyant vortices, and reduces the axial temperature gradient at the solid-liquid interface. .
次に、第7~第9のステップの固定値として、基準線を利用して、第16のステップの値を推定する。このように、後続の各ステップの値を決定することで、合計24個のステップの加熱電力の段階型下降を取得する。加熱電力の段階型上昇について、各ステップの電力値の決定は段階型下降に類似するため、ここでは説明を省略する。 Next, the value of the 16th step is estimated using the reference line as the fixed value of the 7th to 9th steps. Thus, by determining the value of each subsequent step, we obtain a total of 24 steps of stepped down heating power. Regarding the stepwise increase of the heating power, the determination of the power value in each step is similar to the stepwise decrease, so the description is omitted here.
Claims (14)
坩堝を加熱する加熱装置と、
前記加熱装置の加熱電力を制御する温度制御装置と、を備える半導体単結晶成長用の温度制御システムであって、
前記温度制御装置は、前記稜線の幅に基づき、前記加熱装置に対する電力制御を行う、ことを特徴とするシステム。 an image acquisition device for determining the width of the ridgeline at the solid-liquid interface by capturing an image of the ridgeline of the crystal rod growing at the solid-liquid interface;
a heating device for heating the crucible;
A temperature control system for semiconductor single crystal growth, comprising: a temperature control device for controlling heating power of the heating device,
The system according to claim 1, wherein the temperature control device performs power control for the heating device based on the width of the ridge line.
前記稜線の幅が所定範囲よりも大きい場合、側壁での加熱部材の加熱電力を減少させるとともに、底部での加熱部材の加熱電力を増加させることで、固液界面での軸方向温度勾配を増加させる、ことを特徴とする請求項3に記載のシステム。 When the width of the ridge line is smaller than the predetermined range, the heating power of the heating member at the side wall is increased and the heating power of the heating member at the bottom is decreased, thereby reducing the axial temperature gradient at the solid-liquid interface. let
When the width of the ridgeline is larger than the predetermined range, the heating power of the heating member at the side wall is decreased and the heating power of the heating member at the bottom is increased, thereby increasing the axial temperature gradient at the solid-liquid interface. 4. The system of claim 3, wherein:
撮像された画像に基づき、前記稜線の幅を決定するステップと、を含む半導体単結晶成長用の温度制御方法であって、
前記稜線の幅に基づき、坩堝を加熱する、ことを特徴とする方法。 an image acquisition device capturing an image of a ridge line of a crystal rod growing at the solid-liquid interface;
determining the width of the ridge line based on the captured image, the temperature control method for semiconductor single crystal growth comprising:
A method, wherein the crucible is heated based on the width of the ridge.
前記稜線の幅が所定範囲よりも大きい場合、坩堝の側壁での加熱電力を減少させるとともに、坩堝底部での加熱電力を増加させることで、固液界面での軸方向温度勾配を増加させる、ことを特徴とする請求項9に記載の方法。 When the width of the ridgeline is smaller than a predetermined range, increasing the heating power at the side wall of the crucible and decreasing the heating power at the bottom of the crucible reduces the axial temperature gradient at the solid-liquid interface,
When the width of the ridge line is larger than a predetermined range, the heating power at the side wall of the crucible is decreased and the heating power at the bottom of the crucible is increased, thereby increasing the axial temperature gradient at the solid-liquid interface. 10. The method of claim 9, characterized by:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911346042.XA CN112080793B (en) | 2019-12-24 | 2019-12-24 | System and method for temperature control in semiconductor single crystal growth |
CN201911346042.X | 2019-12-24 | ||
PCT/CN2020/137853 WO2021129546A1 (en) | 2019-12-24 | 2020-12-21 | Temperature control system and method for semiconductor single crystal growth |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023509892A true JP2023509892A (en) | 2023-03-10 |
JP7506749B2 JP7506749B2 (en) | 2024-06-26 |
Family
ID=73734331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022539373A Active JP7506749B2 (en) | 2019-12-24 | 2020-12-21 | Temperature control system and method for semiconductor single crystal growth |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220411958A1 (en) |
EP (1) | EP4083277A4 (en) |
JP (1) | JP7506749B2 (en) |
KR (1) | KR102713807B1 (en) |
CN (1) | CN112080793B (en) |
WO (1) | WO2021129546A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112080793B (en) * | 2019-12-24 | 2022-06-03 | 徐州鑫晶半导体科技有限公司 | System and method for temperature control in semiconductor single crystal growth |
CN114411243B (en) * | 2021-12-01 | 2024-05-10 | 银川隆基硅材料有限公司 | Temperature control method and equipment, computer storage medium and single crystal furnace |
CN117966254B (en) * | 2023-12-29 | 2025-07-15 | 中国科学院物理研究所 | A precise temperature control method based on machine learning |
CN117552085B (en) * | 2024-01-11 | 2024-04-02 | 苏州晨晖智能设备有限公司 | Monocrystalline silicon shoulder adjusting method and device, electronic equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0692783A (en) * | 1992-09-10 | 1994-04-05 | Komatsu Denshi Kinzoku Kk | Apparatus for production of semiconductor single crystal and producing method therefor |
JP2007261846A (en) * | 2006-03-28 | 2007-10-11 | Sumco Techxiv株式会社 | Method for manufacturing defect-free silicon single crystal |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4943160A (en) * | 1988-07-25 | 1990-07-24 | Massachusetts Institute Of Technology | Interface angle estimation system |
US5162072A (en) * | 1990-12-11 | 1992-11-10 | General Electric Company | Apparatus and method for control of melt flow pattern in a crystal growth process |
US5656078A (en) * | 1995-11-14 | 1997-08-12 | Memc Electronic Materials, Inc. | Non-distorting video camera for use with a system for controlling growth of a silicon crystal |
JP2000203987A (en) * | 1999-01-14 | 2000-07-25 | Toshiba Ceramics Co Ltd | Single crystal manufacturing equipment |
EP1252375B1 (en) * | 2000-02-01 | 2003-09-17 | MEMC Electronic Materials, Inc. | Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations |
JP4853802B2 (en) * | 2005-06-15 | 2012-01-11 | ジルトロニック アクチエンゲゼルシャフト | Method for producing silicon single crystal |
JP2007176746A (en) * | 2005-12-28 | 2007-07-12 | Mitsubishi Materials Corp | Method for producing lithium tetraborate single crystal for optical application and wavelength conversion element |
JP4918897B2 (en) * | 2007-08-29 | 2012-04-18 | 株式会社Sumco | Silicon single crystal pulling method |
CN102134739A (en) * | 2011-03-08 | 2011-07-27 | 宁夏日晶新能源装备股份有限公司 | Automatic crystal guide system of single crystal furnace, and automatic crystal guide method |
CN102912429B (en) * | 2012-10-23 | 2016-08-17 | 云南北方驰宏光电有限公司 | Measurement control system for diameter of Czochralski grown monocrystalline germanium |
CN104073875A (en) * | 2013-03-28 | 2014-10-01 | 浙江特锐新能源有限公司 | Preparation method of large-size sapphire crystal dynamic temperature field |
CN104120488A (en) * | 2013-04-23 | 2014-10-29 | 浙江特锐新能源有限公司 | Dynamic-temperature-field preparation method for large-size C-axis sapphire crystal |
JP2016121023A (en) * | 2014-12-24 | 2016-07-07 | 株式会社Sumco | Production method of single crystal |
CN108221045A (en) * | 2018-01-24 | 2018-06-29 | 新疆工程学院 | A kind of crystal growing furnace temperature control system |
CN109750350A (en) * | 2019-03-20 | 2019-05-14 | 丽江隆基硅材料有限公司 | A kind of method and single crystal growing furnace adjusting single crystal furnace heater power |
CN112080793B (en) * | 2019-12-24 | 2022-06-03 | 徐州鑫晶半导体科技有限公司 | System and method for temperature control in semiconductor single crystal growth |
-
2019
- 2019-12-24 CN CN201911346042.XA patent/CN112080793B/en active Active
-
2020
- 2020-12-21 KR KR1020227023145A patent/KR102713807B1/en active Active
- 2020-12-21 EP EP20907594.4A patent/EP4083277A4/en active Pending
- 2020-12-21 WO PCT/CN2020/137853 patent/WO2021129546A1/en unknown
- 2020-12-21 US US17/787,600 patent/US20220411958A1/en active Pending
- 2020-12-21 JP JP2022539373A patent/JP7506749B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0692783A (en) * | 1992-09-10 | 1994-04-05 | Komatsu Denshi Kinzoku Kk | Apparatus for production of semiconductor single crystal and producing method therefor |
JP2007261846A (en) * | 2006-03-28 | 2007-10-11 | Sumco Techxiv株式会社 | Method for manufacturing defect-free silicon single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP7506749B2 (en) | 2024-06-26 |
CN112080793A (en) | 2020-12-15 |
CN112080793B (en) | 2022-06-03 |
EP4083277A1 (en) | 2022-11-02 |
US20220411958A1 (en) | 2022-12-29 |
KR20220110557A (en) | 2022-08-08 |
KR102713807B1 (en) | 2024-10-04 |
WO2021129546A1 (en) | 2021-07-01 |
EP4083277A4 (en) | 2023-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023509892A (en) | Temperature control system and method for semiconductor single crystal growth | |
JP4929817B2 (en) | Method for measuring distance between reference reflector and melt surface, method for controlling melt surface position using the same, and apparatus for producing silicon single crystal | |
CN111020691A (en) | System and control method for drawing crystal bar | |
CN107923065B (en) | Method and apparatus for producing single crystal | |
TWI656247B (en) | Method of manufacturing single-crystalline silicon | |
TWI675131B (en) | Method and device for manufacturing single crystal | |
CN115461500B (en) | Single crystal manufacturing apparatus and single crystal manufacturing method | |
US9970125B2 (en) | Method for achieving sustained anisotropic crystal growth on the surface of a silicon melt | |
TWI651441B (en) | Single crystal manufacturing method | |
KR20120030028A (en) | Single crystal pulling-up apparatus and single crystal pulling-up method | |
JP4293395B2 (en) | CZ method single crystal ingot manufacturing apparatus and method | |
KR102488064B1 (en) | Single-crystal ingot growth apparatus and method of controlling the same | |
JP4035924B2 (en) | Single crystal diameter control method and crystal growth apparatus | |
JP5716689B2 (en) | Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus | |
TWI782726B (en) | Manufacturing method of single crystal | |
TW202311580A (en) | Method and apparatus for manufacturing single crystal | |
TW202138634A (en) | System and method for producing single crystal | |
JP4078156B2 (en) | Single crystal pulling apparatus and single crystal pulling method | |
JPH09283811A (en) | Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus | |
US20240125006A1 (en) | Method for detecting surface state of raw material melt, method for producing single crystal, and apparatus for producing cz single crystal | |
Trötschler et al. | “GFVIS”: A NON-DESTRUCTIVE METHOD FOR PHASE FRONT ANALYSIS BASED ON PHOTOS OF BRICK SIDES | |
KR101390804B1 (en) | An apparatus for growing a single crystal ingot | |
KR101607162B1 (en) | Single crystal growing method | |
JPS6042296A (en) | Device for controlling diameter of single crystal during pulling up | |
CN118910717A (en) | Monocrystalline silicon ending control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220624 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220624 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20230524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20230524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7506749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |