[go: up one dir, main page]

JPH09283811A - Manufacture of pyroelectric sensor and pyroelectric-sensor manufacturing apparatus - Google Patents

Manufacture of pyroelectric sensor and pyroelectric-sensor manufacturing apparatus

Info

Publication number
JPH09283811A
JPH09283811A JP8085142A JP8514296A JPH09283811A JP H09283811 A JPH09283811 A JP H09283811A JP 8085142 A JP8085142 A JP 8085142A JP 8514296 A JP8514296 A JP 8514296A JP H09283811 A JPH09283811 A JP H09283811A
Authority
JP
Japan
Prior art keywords
crystal
growing
growth
tgs
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8085142A
Other languages
Japanese (ja)
Other versions
JP3206427B2 (en
Inventor
Hiroyuki Hatanaka
浩之 畠中
Junichi Kita
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP08514296A priority Critical patent/JP3206427B2/en
Publication of JPH09283811A publication Critical patent/JPH09283811A/en
Application granted granted Critical
Publication of JP3206427B2 publication Critical patent/JP3206427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a TGS crystal having a uniform characteristic in a growing direction by measuring the growing speed of the crystal in a specific axial direction, when growing the TGS single crystal in a solvent, and controlling super saturation of the solvent based on the measured value so as to maintain the growing speed of the crystal in the specific axial direction within a predetermined range. SOLUTION: Growing speed measuring means has a laser light source 3a for emitting a parallel laser beam to a crystal C, which grows in a constant-temperature chamber 1, a CCD sensor 3b and the like. A part of the parallel laser beam, emitted from the laser light source 3a, is blocked by the growing crystal C. The CCD sensor 3b detects the size of the blocked part of the laser beam so as to obtain the change of the length of the growing crystal C per unit period. The measured value is inputted into slow-cooling control means 4 which feed-back controls the speed of degradation of the temperature of a solvent L in the constant-temperature chamber 1 such that the growing speed of the crystal C stays within a predetermined range. This maintains the growing speed of the crystal in the constant-temperature reservoir 1 at a constant speed, therefore a TGB single crystal having a uniform character in a growing direction can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は焦電センサの製造方
法及び焦電センサの製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric sensor manufacturing method and a pyroelectric sensor manufacturing apparatus.

【0002】[0002]

【従来の技術】赤外線等の光パワーを検出するセンサと
してはTGS(Tri-Glycine Sulfate)系単結晶を用いた
高感度の焦電センサがある。このTGS系単結晶におい
ては結晶特性を改善・向上させるためにアミノ酸、金属
イオンあるいは他種の酸等をドープすることが行われて
いる。
2. Description of the Related Art As a sensor for detecting optical power of infrared rays or the like, there is a highly sensitive pyroelectric sensor using a TGS (Tri-Glycine Sulfate) type single crystal. This TGS-based single crystal is doped with an amino acid, a metal ion, or another type of acid in order to improve or improve the crystal characteristics.

【0003】例えば、アミノ酸をドープすると素子が内
部電界を持ち、自発分極が安定になるとともに比誘電体
が小さくなり、金属イオンのドープによっても比誘電体
が小さくなる。また弗化ベリリウム酸やリン酸をドープ
することによってキュリー温度を制御することができ
る。
For example, when an amino acid is doped, the device has an internal electric field, the spontaneous polarization becomes stable and the relative dielectric becomes small, and the relative dielectric becomes small even by doping with metal ions. The Curie temperature can be controlled by doping beryllium fluoride or phosphoric acid.

【0004】このような不純物ドープのTGS系単結晶
は、一般に、結晶となるべき成分(原料)と不純物を含
む溶液からの成長によって作製されている。また、この
種の結晶成長では、結晶成長時に温度降下速度あるいは
原料供給速度などを一定として溶液の過飽和度を一定に
保つといった制御が従来行われている。
Such an impurity-doped TGS type single crystal is generally produced by growing from a solution containing a component (raw material) to be a crystal and an impurity. Further, in this type of crystal growth, control is conventionally performed such that the temperature drop rate or the raw material supply rate is kept constant during crystal growth to keep the supersaturation degree of the solution constant.

【0005】[0005]

【発明が解決しようとする課題】ところで、TGS系単
結晶の成長においては、目的とする結晶方位(焦電セン
サでは一般にb軸方向)に単結晶を成長させるのが一般
的で、その成長方向における結晶特性の均一性が焦電セ
ンサを作製する上で重要なポイントとなる。
By the way, in the growth of a TGS-based single crystal, it is common to grow the single crystal in a desired crystal orientation (generally, the b-axis direction in a pyroelectric sensor). The uniformity of the crystal characteristics is important for manufacturing the pyroelectric sensor.

【0006】しかし、従来の成長方法では、成長方向の
結晶特性(内部電界等)が不均一になることが多く、こ
のため焦電センサを製作するにあたり、結晶内の使用可
能な領域が少なくなり、結果として歩留りが悪くなると
いう問題があった。
However, in the conventional growth method, the crystal characteristics (internal electric field, etc.) in the growth direction are often non-uniform, which reduces the usable area in the crystal when manufacturing a pyroelectric sensor. As a result, there is a problem that the yield is deteriorated.

【0007】本発明はそのような実情に鑑みてなされた
もので、成長方向の特性が均一なTGS系単結晶を得る
ことができ、もって焦電センサの歩留りを向上させるこ
とのできる方法と、このような方法を実施するのに適し
た装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a method capable of obtaining a TGS-based single crystal having uniform characteristics in the growth direction, thereby improving the yield of a pyroelectric sensor, The aim is to provide a device suitable for carrying out such a method.

【0008】[0008]

【課題を解決するための手段】まず、従来の成長方法に
おいて、成長方向の結晶特性が不均一になるのは、結晶
成長時に溶液の過飽和度を一定に制御していることか
ら、目的とする結晶軸方向(b軸方向)の成長速度が一
定にならず、そのため不純物のドープ量が均一にならな
いことに起因すると考えられる。
First, in the conventional growth method, the crystal characteristic in the growth direction becomes non-uniform because the supersaturation degree of the solution is controlled to be constant during crystal growth. It is considered that this is because the growth rate in the crystal axis direction (b-axis direction) is not constant and therefore the doping amount of impurities is not uniform.

【0009】そこで、本発明では、TGS系単結晶を溶
液中で成長させるときに、結晶の特定軸方向への成長速
度を測定し、その測定値に基づいて溶液の過飽和度を制
御して、結晶の特定軸方向の成長速度を所定の範囲内に
保つといった方法を採用することで、TGS系単結晶の
特定軸方向(b軸方向)における不純物のドープ量を均
一にすることにより所期の目的を達成する。
Therefore, in the present invention, when a TGS-based single crystal is grown in a solution, the growth rate of the crystal in a specific axis direction is measured, and the supersaturation degree of the solution is controlled based on the measured value. By adopting a method of keeping the growth rate of the crystal in the specific axis direction within a predetermined range, the desired amount of impurities can be made uniform in the specific axis direction (b-axis direction) of the TGS series single crystal. Achieve the purpose.

【0010】また、このような方法を実施するのに適し
た装置は、例えば図1に示すようにTGS系単結晶Cを
成長する溶液Lを収容する恒温槽1と、この恒温槽1内
での結晶成長時に、結晶Cの特定軸方向の成長速度を測
定する手段(レーザ光源3a及びCCDセンサ3b等)
と、その測定値に基づいて、結晶の特定軸方向の成長速
度が所定の範囲内に入るように恒温槽内の溶液Lの過飽
和度をフィードバック制御する手段(徐冷制御手段4)
を備えた構成とすればよい。
An apparatus suitable for carrying out such a method is, for example, as shown in FIG. 1, a thermostatic bath 1 containing a solution L for growing a TGS type single crystal C, and a thermostatic bath 1 in the thermostatic bath 1. Means for measuring the growth rate of the crystal C in the specific axis direction during the crystal growth (laser light source 3a, CCD sensor 3b, etc.)
And means for feedback-controlling the degree of supersaturation of the solution L in the thermostat so that the growth rate of the crystal in the specific axis direction falls within a predetermined range based on the measured value (slow cooling control means 4).
May be provided.

【0011】ここで、本発明において、結晶成長時に特
定軸(b軸)の成長速度は、結晶に不純物が均一にドー
プされること、また成長速度が遅すぎると良質な結晶が
得られない等の点を考慮すると、 0.6mm/day〜1.5mm/da
y が適当で、好ましくは 1.0mm/day〜1.2mm/day が良
い。
Here, in the present invention, the growth rate of the specific axis (b axis) during crystal growth is that the crystal is uniformly doped with impurities, and if the growth rate is too slow, a good quality crystal cannot be obtained. Considering the point, 0.6mm / day ~ 1.5mm / da
y is appropriate, preferably 1.0 mm / day to 1.2 mm / day.

【0012】また、溶液の過飽和度を制御する方法とし
ては、溶液の温度降下速度を調整する溶液徐冷方式、ま
たは、結晶成長を行う溶液よりも高い濃度の溶液を足し
てゆく原料供給方式が挙げられる。
Further, as a method for controlling the supersaturation degree of the solution, there is a solution gradual cooling method for adjusting the temperature decrease rate of the solution or a raw material supply method for adding a solution having a higher concentration than the solution for crystal growth. Can be mentioned.

【0013】その溶液徐冷方式を採用する場合、結晶の
成長速度が上記した規定値よりも大きいときには温度降
下速度を小さくし、逆に成長速度が規定値よりも小さい
ときには温度降下速度を大きくするような制御を行えば
よい。
When the solution gradual cooling method is adopted, the temperature decrease rate is decreased when the crystal growth rate is higher than the specified value, and conversely, the temperature decrease rate is increased when the growth rate is smaller than the specified value. Such control may be performed.

【0014】一方、原料供給方式を採用する場合、成長
速度が規定値よりも大きいときには原料供給速度を大き
くするか原料供給量を多くし、成長速度が規定値よりも
小さいときには原料供給速度を小さくするか原料供給量
を少なくするといった制御を行えばよい。
On the other hand, when the raw material supply method is adopted, the raw material supply rate is increased or the raw material supply amount is increased when the growth rate is higher than the specified value, and the raw material supply rate is decreased when the growth rate is lower than the specified value. Alternatively, control may be performed such that the raw material supply amount is reduced.

【0015】なお、本発明は、結晶のb軸方向への成長
の場合に限られることなく、結晶のa軸方向またはc軸
方向への成長の際にも適用可能である。
The present invention is not limited to the case of growing a crystal in the b-axis direction, but can be applied to the case of growing a crystal in the a-axis direction or the c-axis direction.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を、以下、図
面に基づいて説明する。まず、この実施の形態は、図1
に示すように、結晶となるべき成分及びアミノ酸等の不
純物を含んだ溶液Lを恒温槽1内に入れ、その溶液L中
でTGS系単結晶Cの成長を行う結晶成長装置を使用し
て焦電センサを製造する場合の例を示している。
Embodiments of the present invention will be described below with reference to the drawings. First, this embodiment is shown in FIG.
As shown in, a solution L containing a component to be a crystal and impurities such as amino acids is put in a constant temperature bath 1, and a crystal growth apparatus for growing a TGS-based single crystal C in the solution L is used. The example in the case of manufacturing an electric sensor is shown.

【0017】この図1に示す装置において、結晶成長
は、図2(A),(B) に示すように、目的の結晶方位(b
軸)の種結晶C′を支持部材2の下端に装着して槽内の
溶液L中に浸し、その種結晶C′を基にしてTGS系単
結晶Cをb軸方向つまり恒温槽1の下方向へと成長させ
るという操作によって行われる。そして、このような結
晶成長で作製したTGS系単結晶に所定の加工、例えば
結晶からのセンサ素子の切り出し・電極形成等の加工を
行うことによって焦電センサを得ることができる。
In the apparatus shown in FIG. 1, crystal growth is carried out in the desired crystal orientation (b) as shown in FIGS. 2 (A) and 2 (B).
The seed crystal C'of (axis) is attached to the lower end of the support member 2 and immersed in the solution L in the bath. Based on the seed crystal C ', the TGS single crystal C is b-axis direction It is performed by the operation of growing in the direction. A pyroelectric sensor can be obtained by subjecting the TGS-based single crystal produced by such crystal growth to predetermined processing, for example, processing such as cutting out a sensor element from the crystal and forming electrodes.

【0018】さて、この実施の形態では、図1に示すよ
うに成長速度測定手段3及び徐冷制御手段4を設け、溶
液徐冷方式に基づく制御により、単結晶Cのb軸方向の
成長速度を所定の範囲内に保つようにしたところに特徴
がある。
In this embodiment, the growth rate measuring means 3 and the slow cooling control means 4 are provided as shown in FIG. 1, and the growth rate of the single crystal C in the b-axis direction is controlled by the solution slow cooling method. It is characterized in that is kept within a predetermined range.

【0019】成長速度測定手段3は、恒温槽1内で成長
する結晶Cに平行レーザ光を照射するレーザ光源3a
と、恒温槽1を挟んでレーザ光源3aと対向する位置に
配置されるCCDセンサ3bなどを備え、レーザ光源3
aから出力された平行レーザ光のうち、成長結晶Cで遮
られた部分の大きさ、つまり成長結晶Cのb軸方向の長
さをCCDセンサ3bで検出し、その成長結晶Cの長さ
の単位時間(day) あたりの変化を求めるように構成され
ている。なお、この測定系において、レーザ光源3aか
らCCDセンサ3bへの平行レーザ光の進行を妨げない
ため、恒温槽1の壁体の一部もしくは全部は透明材料で
構成されていることは言うまでもない。
The growth rate measuring means 3 is a laser light source 3a for irradiating a crystal C growing in the constant temperature bath 1 with parallel laser light.
The laser light source 3 is provided with a CCD sensor 3b and the like arranged at a position facing the laser light source 3a with the constant temperature bath 1 interposed therebetween.
Of the parallel laser light output from a, the size of the portion blocked by the growth crystal C, that is, the length of the growth crystal C in the b-axis direction is detected by the CCD sensor 3b, and the length of the growth crystal C It is configured to calculate the change per unit time (day). In this measuring system, it goes without saying that a part or all of the wall of the constant temperature bath 1 is made of a transparent material so that the parallel laser light from the laser light source 3a to the CCD sensor 3b is not hindered.

【0020】そして、徐冷制御手段4は、成長速度測定
手段3の測定値を採り込み、その測定値に基づいて、結
晶の成長速度が規定範囲(0.6mm/day〜1.5mm/day)の範囲
内に入るように、恒温槽1内の溶液Lの温度降下速度を
フィードバック制御する。
Then, the slow cooling control means 4 takes in the measured value of the growth rate measuring means 3, and based on the measured value, the crystal growth rate is within a specified range (0.6 mm / day to 1.5 mm / day). The temperature decrease rate of the solution L in the constant temperature bath 1 is feedback-controlled so that it falls within the range.

【0021】その制御は、成長速度が規定範囲の上限値
よりも大きいときには温度降下速度を小さくし、逆に成
長速度が規定範囲の下限値よりも小さいときには温度降
下速度を大きくするといった動作で行われ、このような
制御によって恒温槽1内での結晶成長の速度を一定に保
つことができる結果、成長方向の特性が均一なTGS系
単結晶を得ることができる。
The control is performed by decreasing the temperature drop rate when the growth rate is larger than the upper limit value of the specified range and conversely increasing the temperature drop rate when the growth rate is smaller than the lower limit value of the specified range. By such control, the rate of crystal growth in the constant temperature bath 1 can be kept constant, and as a result, it is possible to obtain a TGS-based single crystal having uniform growth direction characteristics.

【0022】その具体的な実施例を述べると、図1の結
晶成長装置を使用し、TGS系単結晶にアミノ酸Lアラ
ニンをドープした結晶を、b軸方向の成長速度を 0.8mm
/day〜1.2mm/day の値に保った状態で成長させたとこ
ろ、均一な内部電界2.5kV/cm〜5kV/cmを持つ単結晶を得
ることができた。
A specific example will be described. Using the crystal growth apparatus shown in FIG. 1, a TGS-based single crystal doped with the amino acid L-alanine was grown at a growth rate of 0.8 mm in the b-axis direction.
When grown at a value of / day to 1.2 mm / day, a single crystal with a uniform internal electric field of 2.5 kV / cm to 5 kV / cm was obtained.

【0023】以上の実施の形態では、溶液徐冷方式によ
る結晶成長の場合の例を示したが、成長方式として原料
供給方式を採用する場合、図3または図4に示すような
形態を採ることによって本発明を実施できる。
In the above embodiment, an example of the case of crystal growth by the solution slow cooling method has been shown, but when adopting the raw material supply method as the growth method, the mode as shown in FIG. 3 or 4 is adopted. The present invention can be implemented by.

【0024】まず、図3の実施の形態では、恒温槽1内
の溶液Lよりも高い濃度の溶液L′を収容する原料供給
槽11と、その供給用のポンプ12及び駆動制御手段1
3を設け、成長速度測定手段3からの測定値に基づいて
ポンプ12の吐出量をフィードバック制御することで、
恒温槽1内への溶液L′の流入量つまり原料供給速度を
調整するようにしている。この例の場合、成長速度が規
定範囲の上限値よりも大きいときには、ポンプ12の吐
出量を大として原料供給速度を大きくし、逆に成長速度
が規定範囲の上限値よりも小さいときには、ポンプ12
の吐出量を小として原料供給速度を小さくするといった
制御を行う。
First, in the embodiment shown in FIG. 3, a raw material supply tank 11 containing a solution L'having a higher concentration than the solution L in the constant temperature tank 1, a pump 12 for supplying the same, and a drive control means 1 are provided.
3 is provided, and the discharge amount of the pump 12 is feedback-controlled based on the measurement value from the growth rate measuring means 3,
The inflow amount of the solution L ′ into the constant temperature bath 1, that is, the raw material supply rate is adjusted. In the case of this example, when the growth rate is higher than the upper limit value of the specified range, the discharge amount of the pump 12 is increased to increase the raw material supply rate, and conversely, when the growth rate is smaller than the upper limit value of the specified range, the pump 12 is increased.
The control is performed such that the discharge amount of is reduced to reduce the raw material supply rate.

【0025】一方、図4の実施の形態においては、ポン
プ12の吐出量は一定とし、恒温槽1に供給する溶液
L′の濃度を調整することによって原料の供給量を制御
するようにしている。
On the other hand, in the embodiment shown in FIG. 4, the discharge amount of the pump 12 is constant, and the supply amount of the raw material is controlled by adjusting the concentration of the solution L'supplied to the constant temperature bath 1. .

【0026】すなわち、図4の実施の形態では、成長速
度測定手段3の測定値に基づいて原料供給槽11内の溶
液L′の温度をフィードバック制御する温度制御手段1
4を設け、成長速度が規定範囲の上限値よりも大きいと
きには、原料供給槽11内の溶液L′の温度を高くし
て、濃度を高めた溶液L′を恒温槽1に供給することで
原料の供給量を多くし、逆に、成長速度が規定範囲の上
限値よりも大きいときには、原料供給槽11内の溶液
L′の温度を低くして原料の供給量を少なくするといっ
た制御を行う。
That is, in the embodiment shown in FIG. 4, the temperature control means 1 for feedback-controlling the temperature of the solution L'in the raw material supply tank 11 based on the value measured by the growth rate measurement means 3.
4 is provided, and when the growth rate is higher than the upper limit of the specified range, the temperature of the solution L'in the raw material supply tank 11 is increased and the concentrated solution L'is supplied to the constant temperature bath 1. When the growth rate is larger than the upper limit of the specified range, the temperature of the solution L'in the raw material supply tank 11 is lowered to reduce the supply amount of the raw material.

【0027】なお、本発明で用いる成長速度測定手段と
しては、図1に示したような平行レーザ光をCCDセン
サで捉える方式のほか、例えば読み取り望遠鏡で結晶の
成長を捉える方式、またはCCDカメラ等で結晶成長を
撮影しその画像処理により成長速度を求める方式であっ
てもよい。また、このような光学的な方式に代えて、例
えば超音波を用いた測定法を採用してもよい。
As the growth rate measuring means used in the present invention, in addition to the method of capturing parallel laser light with a CCD sensor as shown in FIG. 1, for example, a method of capturing crystal growth with a reading telescope, a CCD camera, or the like. Alternatively, a method may be used in which the crystal growth is photographed and the growth rate is obtained by image processing. Further, instead of such an optical method, for example, a measuring method using ultrasonic waves may be adopted.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
焦電センサに用いるTGS系単結晶を成長する際に、結
晶の成長速度を速度を所定の範囲に保つことで、結晶の
特定軸方向における不純物のドープ量が均一となるよう
にしたから、均一な特性を持つ単結晶を得ることができ
る。これにより、結晶内の使用可能な領域が大きくなる
結果、焦電センサの歩留りが従来に比して向上する。
As described above, according to the present invention,
When growing a TGS-based single crystal used for a pyroelectric sensor, the growth rate of the crystal is kept within a predetermined range so that the doping amount of impurities in the crystal in the specific axis direction becomes uniform. A single crystal having various characteristics can be obtained. As a result, the usable area in the crystal is increased, and as a result, the yield of the pyroelectric sensor is improved as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】TGS系単結晶の成長状態を示す図FIG. 2 is a diagram showing a growth state of a TGS-based single crystal.

【図3】本発明の他の実施の形態の構成図FIG. 3 is a configuration diagram of another embodiment of the present invention.

【図4】本発明の更に別の実施の形態の構成図FIG. 4 is a configuration diagram of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 恒温槽 2 支持部材 3 成長速度測定手段 3a レーザ光源 3b CCDセンサ 4 徐冷制御手段 11 原料供給槽 12 供給ポンプ 13 駆動制御手段 14 温度制御手段 1 Constant Temperature Tank 2 Support Member 3 Growth Rate Measuring Means 3a Laser Light Source 3b CCD Sensor 4 Slow Cooling Control Means 11 Raw Material Supply Tank 12 Supply Pump 13 Drive Control Means 14 Temperature Control Means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶液中での結晶成長によりTGS系単結
晶を作製し、その単結晶から焦電センサを得る方法にお
いて、TGS系単結晶を溶液中で成長させるときに、結
晶の特定軸方向への成長速度を測定し、その測定値に基
づいて溶液の過飽和度を制御して結晶の特定軸方向の成
長速度を所定の範囲内に保つことを特徴とする焦電セン
サの製造方法。
1. A method for producing a TGS-based single crystal by growing a crystal in a solution and obtaining a pyroelectric sensor from the single-crystal, wherein when the TGS-based single crystal is grown in the solution, a specific axis direction of the crystal is obtained. A method for manufacturing a pyroelectric sensor, characterized in that the growth rate in the specific axis direction of the crystal is maintained within a predetermined range by controlling the growth rate of the crystal on the basis of the measured value.
【請求項2】 上記TGS系単結晶の成長において、目
的の結晶方位における成長速度を 0.6mm/day〜1.5mm/da
y の範囲に保つことを特徴とする請求項1に記載の焦電
センサの製造方法。
2. In the growth of the TGS-based single crystal, the growth rate in a target crystal orientation is 0.6 mm / day to 1.5 mm / da.
The method for manufacturing a pyroelectric sensor according to claim 1, wherein the pyroelectric sensor is maintained in the range of y.
【請求項3】 TGS系単結晶の成長に用いる溶液を収
容する恒温槽と、この恒温槽内での結晶成長時に結晶の
特定軸方向の成長速度を測定する手段と、その測定値に
基づいて、結晶の特定軸方向の成長速度が所定の範囲内
に入るように恒温槽内の溶液の過飽和度をフィードバッ
ク制御する手段を備えてなる焦電センサの製造装置。
3. A thermostatic bath containing a solution used for growing a TGS-based single crystal, a means for measuring the growth rate of a crystal in a specific axis direction during crystal growth in the thermostatic bath, and the measured value based on the measured value. A device for manufacturing a pyroelectric sensor, comprising means for feedback-controlling the degree of supersaturation of a solution in a thermostat so that the growth rate of crystals in a specific axis direction falls within a predetermined range.
JP08514296A 1996-04-08 1996-04-08 Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus Expired - Fee Related JP3206427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08514296A JP3206427B2 (en) 1996-04-08 1996-04-08 Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08514296A JP3206427B2 (en) 1996-04-08 1996-04-08 Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH09283811A true JPH09283811A (en) 1997-10-31
JP3206427B2 JP3206427B2 (en) 2001-09-10

Family

ID=13850420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08514296A Expired - Fee Related JP3206427B2 (en) 1996-04-08 1996-04-08 Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3206427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036614A (en) * 2004-07-30 2006-02-09 Shimadzu Corp Method and apparatus for producing crystal

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739471B2 (en) 1996-03-01 2006-01-25 富士通株式会社 Variable optical attenuator
US6025947A (en) 1996-05-02 2000-02-15 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US6369938B1 (en) 1996-05-28 2002-04-09 Fujitsu Limited Multi-wavelength light amplifier
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
US6496300B2 (en) 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
US6603596B2 (en) 1998-03-19 2003-08-05 Fujitsu Limited Gain and signal level adjustments of cascaded optical amplifiers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036614A (en) * 2004-07-30 2006-02-09 Shimadzu Corp Method and apparatus for producing crystal
JP4548031B2 (en) * 2004-07-30 2010-09-22 株式会社島津製作所 Crystal manufacturing method and crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP3206427B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US7682452B2 (en) Apparatus and methods of growing void-free crystalline ceramic products
JP2826589B2 (en) Single crystal silicon growing method
US4973377A (en) Crystal diameter controlling method
JPH0777996B2 (en) Cone part growing control method and device
JP3206427B2 (en) Pyroelectric sensor manufacturing method and pyroelectric sensor manufacturing apparatus
JP3466948B2 (en) Heat treatment method for fluoride crystal and method for producing optical component
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
US5271795A (en) Method of growing crystals
KR102051024B1 (en) Ingot growing temperature controller and ingot growing apparatus with it
KR20210117780A (en) Apparatus and method for growing silicon single crystal ingot
JP4738174B2 (en) Method for producing fluoride crystals
JPH0952788A (en) Manufacture of single crystal and manufacturing apparatus
JP2004035353A (en) Process for preparing silicon single crystal
CN106687625A (en) Single crystal production method
KR102607580B1 (en) Method and apparatus for growing silicon single crystal ingot
KR0140320B1 (en) Method for manufacturing tantalum lithium single crystal thin film
JPS59223293A (en) Molecular beam epitaxial growth equipment
JP3142893B2 (en) Thin film semiconductor device
KR20220048552A (en) Ingot grower
JPH0597586A (en) Method for growing rutile single crystal
RU2519410C2 (en) Monocrystal growing by crucibleless zone melting and device to this end
KR100416738B1 (en) APPARATUS FOR FABRICATING ZnSe SINGLE CRYSTAL BY VAPOR CRYSTAL GROWTH METHOD
JP2005089204A (en) Apparatus and method for producing crystal
RU2094549C1 (en) Method for heat treatment of highly alloyed monocrystals of silicium
RU2278912C1 (en) Method of production of the single-crystal silicon (versions)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees