[go: up one dir, main page]

JP2023179117A - Hydrogen supply system - Google Patents

Hydrogen supply system Download PDF

Info

Publication number
JP2023179117A
JP2023179117A JP2022092206A JP2022092206A JP2023179117A JP 2023179117 A JP2023179117 A JP 2023179117A JP 2022092206 A JP2022092206 A JP 2022092206A JP 2022092206 A JP2022092206 A JP 2022092206A JP 2023179117 A JP2023179117 A JP 2023179117A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
flow path
low
pressure hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022092206A
Other languages
Japanese (ja)
Inventor
陽 環貫
Yo Kannuki
淳 並木
Jun Namiki
康介 西端
Kosuke Nishihata
真誠 吉田
Makoto Yoshida
直也 茂手木
Naoya Motegi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2022092206A priority Critical patent/JP2023179117A/en
Publication of JP2023179117A publication Critical patent/JP2023179117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】高圧水素を減圧して燃料電池に直接供給可能な構成において、何らかの原因で直接供給が停止した場合でも、燃料電池への水素の供給が継続される構成を得る。【解決手段】水素供給システムは、高圧水素が供給されて高圧水素を減圧する減圧弁と、減圧弁によって減圧された低圧水素を燃料電池へ直接供給するための主流路が形成された管部材と、主流路の途中部分から分岐して低圧水素を貯蔵する水素貯蔵部へ供給する分岐流路が形成された分岐管部材と、水素貯蔵部から主流路の途中へ合流する合流流路が形成された合流管部材と、分岐流路の分岐点に設けられた一の三方弁と、合流流路の合流点に設けられた他の三方弁と、一の三方弁の開閉、及び他の三方弁の開閉を制御する制御部とを備える。【選択図】図1The present invention provides a configuration in which high-pressure hydrogen can be depressurized and directly supplied to a fuel cell, in which the supply of hydrogen to the fuel cell can be continued even if the direct supply is stopped for some reason. [Solution] The hydrogen supply system includes a pressure reducing valve to which high-pressure hydrogen is supplied and which reduces the pressure of the high-pressure hydrogen, and a pipe member in which a main flow path is formed to directly supply the low-pressure hydrogen reduced in pressure by the pressure reducing valve to a fuel cell. A branch pipe member is formed in which a branch channel is formed that branches from the middle of the main channel and supplies low-pressure hydrogen to a hydrogen storage section, and a merging channel is formed that joins from the hydrogen storage section to the middle of the main channel. a merging pipe member, a three-way valve provided at the branch point of the branch flow path, another three-way valve provided at the confluence point of the merge flow path, opening/closing of the one three-way valve, and the other three-way valve. and a control section that controls opening and closing of the. [Selection diagram] Figure 1

Description

本開示は、水素供給システムに関する。 The present disclosure relates to hydrogen supply systems.

特許文献1に記載の水素充填方法では、水素貯蔵源と低圧水素タンクとの間に水素吸蔵合金を収容した熱交換器を設け、水素貯蔵源に貯蔵されている水素を熱交換器を介して低圧水素タンクに充填する水素充填方法であって、水素吸蔵合金から水素を放出させ、放出された水素を低圧水素タンクへ導入する工程と、水素貯蔵源に貯蔵されている水素を、水素吸蔵合金から水素が放出された際の吸熱反応により冷却された水素吸蔵合金により冷却しながら、低圧水素タンクへ充填する工程と、を有する。 In the hydrogen filling method described in Patent Document 1, a heat exchanger containing a hydrogen storage alloy is provided between a hydrogen storage source and a low-pressure hydrogen tank, and hydrogen stored in the hydrogen storage source is transferred through the heat exchanger. A hydrogen filling method for filling a low-pressure hydrogen tank, which includes a step of releasing hydrogen from a hydrogen storage alloy and introducing the released hydrogen into the low-pressure hydrogen tank, and a process of releasing hydrogen stored in a hydrogen storage source into a hydrogen storage alloy. and filling the low-pressure hydrogen tank while being cooled by the hydrogen storage alloy cooled by an endothermic reaction when hydrogen is released from the hydrogen tank.

特開2007-303625号公報JP2007-303625A

従来、水素供給システムの一例であるオフサイト型水素システムでは、水素ステーションに貯蔵された高圧水素を低圧水素に減圧して低圧水素タンク及び水素吸蔵合金に低圧水素を貯蔵する。そして、低圧水素タンク及び水素吸蔵合金に貯蔵された低圧水素を燃料電池へ供給するようになっている。このため、低圧水素タンク及び水素吸蔵合金が占める広い領域が、必要とされていた。 Conventionally, in an off-site hydrogen system, which is an example of a hydrogen supply system, high-pressure hydrogen stored in a hydrogen station is reduced to low-pressure hydrogen, and the low-pressure hydrogen is stored in a low-pressure hydrogen tank and a hydrogen storage alloy. Then, the low pressure hydrogen stored in the low pressure hydrogen tank and the hydrogen storage alloy is supplied to the fuel cell. Therefore, a large area occupied by the low-pressure hydrogen tank and the hydrogen storage alloy was required.

一方、水素ステーションに貯蔵された高圧水素を減圧して燃料電池に直接供給しようとすると、何らかの要因で高圧水素の供給が停止した場合に、燃料電池に低圧水素を供給することができなくなってしまう。 On the other hand, if you try to reduce the pressure of high-pressure hydrogen stored at a hydrogen station and supply it directly to the fuel cell, if the supply of high-pressure hydrogen stops for some reason, you will not be able to supply low-pressure hydrogen to the fuel cell. .

本願の課題は、高圧水素を減圧して燃料電池に直接供給可能な構成において、何らかの原因で直接供給が停止した場合でも、燃料電池への低圧水素の供給が継続される構成を得ることである。 The problem of this application is to obtain a configuration in which high-pressure hydrogen can be depressurized and directly supplied to a fuel cell, and even if the direct supply is stopped for some reason, the low-pressure hydrogen can continue to be supplied to the fuel cell. .

第1態様に係る水素供給システムは、高圧水素が供給されて高圧水素を減圧する減圧弁と、前記減圧弁によって減圧された低圧水素を燃料電池へ直接供給するための主流路が形成された管部材と、前記主流路の途中部分から分岐して水素貯蔵部へ低圧水素を供給する分岐流路が形成された分岐管部材と、前記水素貯蔵部から前記主流路の途中へ合流する合流流路が形成された合流管部材と、前記分岐流路の分岐点に設けられた一の三方弁と、前記合流流路の合流点に設けられた他の三方弁と、前記一の三方弁の開閉、及び前記他の三方弁の開閉を制御する制御部と、を備えることを特徴とする。 The hydrogen supply system according to the first aspect includes a pressure reducing valve to which high pressure hydrogen is supplied and which reduces the pressure of the high pressure hydrogen, and a pipe in which a main flow path is formed to directly supply the low pressure hydrogen reduced in pressure by the pressure reducing valve to a fuel cell. a branch pipe member in which a branch channel is formed that branches from an intermediate portion of the main channel to supply low-pressure hydrogen to a hydrogen storage section; and a merging channel that joins from the hydrogen storage section to the middle of the main channel. a merging pipe member in which a merging pipe member is formed, a three-way valve provided at the branch point of the branch flow path, another three-way valve provided at the merging point of the merging flow path, and opening/closing of the one three-way valve. , and a control unit that controls opening and closing of the other three-way valve.

第1態様に係る構成によれば、高圧水素が減圧弁によって減圧され、減圧された低圧水素が主流路を流れて燃料電池へ供給される。 According to the configuration according to the first aspect, high pressure hydrogen is depressurized by the pressure reducing valve, and the depressurized low pressure hydrogen flows through the main flow path and is supplied to the fuel cell.

一方、制御部が、一の三方弁の開閉、及び他の三方弁の開閉を制御することで、低圧水素が分岐流路を流れて水素貯蔵部へ供給され、水素貯蔵部が供給された低圧水素を貯蔵する。また、制御部が、一の三方弁の開閉、及び他の三方弁の開閉を制御することで、水素貯蔵部に貯蔵された低圧水素が合流流路を流れて燃料電池へ供給される。 On the other hand, the control unit controls the opening and closing of the first three-way valve and the other three-way valve, so that low-pressure hydrogen flows through the branch flow path and is supplied to the hydrogen storage unit, and the low-pressure hydrogen that is supplied to the hydrogen storage unit Store hydrogen. Further, the control unit controls the opening and closing of one three-way valve and the other three-way valve, so that the low-pressure hydrogen stored in the hydrogen storage unit flows through the merging channel and is supplied to the fuel cell.

これにより、高圧水素を減圧して燃料電池に直接供給可能な構成において、何らかの原因で直接供給が停止した場合でも、燃料電池への低圧水素の供給を継続させることができる。 As a result, in a configuration in which high-pressure hydrogen can be reduced in pressure and directly supplied to the fuel cell, even if the direct supply is stopped for some reason, the supply of low-pressure hydrogen to the fuel cell can be continued.

第2態様に係る水素供給システムは、第1態様に係る水素供給システムにおいて、水素流れ方向において前記減圧弁の下流側で、かつ、前記分岐点の上流側には、高圧水素を減圧することで生じる熱を取得する熱交換器が設けられ、前記水素貯蔵部は、水素吸蔵合金を備え、前記制御部は、低圧水素を放出することで温度が低下した前記水素吸蔵合金を前記熱交換器で取得された熱によって加熱することを特徴とする。 The hydrogen supply system according to the second aspect is the hydrogen supply system according to the first aspect, in which high pressure hydrogen is reduced in pressure on the downstream side of the pressure reducing valve in the hydrogen flow direction and on the upstream side of the branch point. A heat exchanger for acquiring the generated heat is provided, the hydrogen storage unit includes a hydrogen storage alloy, and the control unit controls the hydrogen storage alloy whose temperature has been reduced by releasing low-pressure hydrogen to the heat exchanger. It is characterized by heating by the obtained heat.

第2態様に係る構成によれば、制御部は、低圧水素を放出することで温度が低下した水素吸蔵合金を熱交換器で取得された熱によって加熱する。このように、高圧水素を減圧することで生じた熱を有効に活用することができる。 According to the configuration according to the second aspect, the control unit heats the hydrogen storage alloy whose temperature has decreased by releasing low-pressure hydrogen using the heat acquired by the heat exchanger. In this way, the heat generated by reducing the pressure of high-pressure hydrogen can be effectively utilized.

第3態様に係る水素供給システムは、第1又は第2態様に係る水素供給システムにおいて、前記水素貯蔵部は、低圧水素タンクと水素吸蔵合金とを備え、前記分岐流路において水素流れ方向の下流側の部分には、前記低圧水素タンクへ低圧水素が供給される第一流路と、前記水素吸蔵合金へ低圧水素を供給する第二流路とが形成され、前記合流流路において水素流れ方向の上流側の部分には、前記低圧水素タンクからの低圧水素が流れる第三流路と、前記水素吸蔵合金からの低圧水素が流れる第四流路とが形成されていることを特徴とする。 A hydrogen supply system according to a third aspect is the hydrogen supply system according to the first or second aspect, wherein the hydrogen storage section includes a low-pressure hydrogen tank and a hydrogen storage alloy, and the hydrogen storage section is downstream in the hydrogen flow direction in the branch flow path. A first channel for supplying low-pressure hydrogen to the low-pressure hydrogen tank and a second channel for supplying low-pressure hydrogen to the hydrogen storage alloy are formed in the side portion, and in the merging channel, the flow direction of hydrogen is The upstream portion is characterized in that a third channel through which low-pressure hydrogen from the low-pressure hydrogen tank flows and a fourth channel through which low-pressure hydrogen from the hydrogen storage alloy flows are formed.

第3態様に係る構成によれば、低圧水素は、分岐流路の第一流路を流れて低圧水素タンクへ供給され、低圧水素タンクは、供給された低圧水素を貯蔵する。さらに、低圧水素は、分岐流路の第二流路を流れて水素吸蔵合金へ供給され、水素吸蔵合金は、供給された低圧水素を貯蔵する。 According to the configuration according to the third aspect, the low-pressure hydrogen flows through the first flow path of the branch flow path and is supplied to the low-pressure hydrogen tank, and the low-pressure hydrogen tank stores the supplied low-pressure hydrogen. Further, the low-pressure hydrogen flows through the second flow path of the branched flow path and is supplied to the hydrogen storage alloy, and the hydrogen storage alloy stores the supplied low-pressure hydrogen.

一方、低圧水素タンクから放出された低圧水素は、合流流路の第三流路を流れて燃料電池へ供給される。また、水素吸蔵合金から放出された低圧水素は、合流流路の第四流路を流れて燃料電池へ供給される。 On the other hand, the low-pressure hydrogen released from the low-pressure hydrogen tank flows through the third flow path of the merging flow path and is supplied to the fuel cell. Furthermore, the low-pressure hydrogen released from the hydrogen storage alloy flows through the fourth flow path of the merging flow path and is supplied to the fuel cell.

このように、低圧水素タンクと水素吸蔵合金とに低圧水素を直接供給することができ、かつ、低圧水素タンクから放出された低圧水素と水素吸蔵合金とから放出された低圧水素を燃料電池へ直接供給することができる。 In this way, low-pressure hydrogen can be directly supplied to the low-pressure hydrogen tank and the hydrogen storage alloy, and the low-pressure hydrogen released from the low-pressure hydrogen tank and the low-pressure hydrogen released from the hydrogen storage alloy can be directly supplied to the fuel cell. can be supplied.

本開示によれば、高圧水素を減圧して燃料電池に直接供給可能な構成において、何らかの原因で直接供給が停止した場合でも、燃料電池への低圧水素の供給が継続される構成を得ることができる。 According to the present disclosure, in a configuration in which high-pressure hydrogen can be depressurized and directly supplied to a fuel cell, it is possible to obtain a configuration in which the supply of low-pressure hydrogen to the fuel cell is continued even if the direct supply is stopped for some reason. can.

本開示の実施形態に係る水素供給システムを示した概略構成図である。1 is a schematic configuration diagram showing a hydrogen supply system according to an embodiment of the present disclosure. 本開示の実施形態に係る水素供給システムであって、高圧水素を減圧して燃料電池へ直接供給する水素の流れを示した図面である。1 is a diagram illustrating a flow of hydrogen supply system according to an embodiment of the present disclosure, in which high-pressure hydrogen is depressurized and hydrogen is directly supplied to a fuel cell. 本開示の実施形態に係る水素供給システムであって、高圧水素を減圧して燃料電池へ直接供給する水素の流れ、及び水素貯蔵部へ供給される水素の流れを示した図面である。1 is a diagram illustrating a hydrogen supply system according to an embodiment of the present disclosure, showing a flow of hydrogen that is directly supplied to a fuel cell by reducing the pressure of high-pressure hydrogen, and a flow of hydrogen that is supplied to a hydrogen storage unit. 本開示の実施形態に係る水素供給システムであって、高圧水素を減圧して燃料電池へ直接供給する水素の流れ、及び水素貯蔵部から燃料電池へ供給される水素の流れを示した図面である。1 is a diagram illustrating a hydrogen supply system according to an embodiment of the present disclosure, illustrating a flow of hydrogen that reduces the pressure of high-pressure hydrogen and supplies it directly to a fuel cell, and a flow of hydrogen that is supplied from a hydrogen storage section to a fuel cell. . 本開示の実施形態に係る水素供給システムであって、何らかの原因で高圧水素の直接供給が停止した場合における、水素貯蔵部から燃料電池へ供給される水素の流れを示した図面である。1 is a drawing showing the flow of hydrogen supplied from a hydrogen storage unit to a fuel cell in a hydrogen supply system according to an embodiment of the present disclosure, when direct supply of high-pressure hydrogen is stopped for some reason. 本開示の実施形態に係る水素供給システムに備えられた熱利用部を示した概略構成図である。1 is a schematic configuration diagram showing a heat utilization section provided in a hydrogen supply system according to an embodiment of the present disclosure. 本開示の実施形態に係る水素供給システムに備えられた熱利用部の熱交換媒体の流れであって、水素吸蔵合金を加熱するときの熱交換媒体の流れを示した図面である。1 is a drawing showing a flow of a heat exchange medium in a heat utilization unit provided in a hydrogen supply system according to an embodiment of the present disclosure, which is a flow of the heat exchange medium when heating a hydrogen storage alloy. 本開示の実施形態に係る水素供給システムに備えられた熱利用部の熱交換媒体の流れであって、水素吸蔵合金を冷却するときの熱交換媒体の流れを示した図面である。1 is a drawing showing a flow of a heat exchange medium in a heat utilization unit provided in a hydrogen supply system according to an embodiment of the present disclosure, which is a flow of the heat exchange medium when cooling a hydrogen storage alloy. 本開示の実施形態に係る水素供給システムに備えられた熱利用部の熱交換媒体の流れであって、水素吸蔵合金から低圧水素を放出させるときの熱交換媒体の流れを示した図面である。1 is a drawing showing the flow of a heat exchange medium in a heat utilization unit provided in a hydrogen supply system according to an embodiment of the present disclosure, which is a flow of the heat exchange medium when low-pressure hydrogen is released from a hydrogen storage alloy. 本開示の実施形態に係る水素供給システムに備えられた熱利用部の熱交換媒体の流れであって、水素吸蔵合金に低圧水素を吸蔵させるときの熱交換媒体の流れを示した図面である。1 is a drawing showing the flow of a heat exchange medium in a heat utilization unit provided in a hydrogen supply system according to an embodiment of the present disclosure, which is a flow of the heat exchange medium when low-pressure hydrogen is stored in a hydrogen storage alloy. 本開示の実施形態に係る水素供給システムに備えられた熱利用部の熱交換媒体の流れであって、主流路を流れる低圧水素を冷却するときの熱交換媒体の流れを示した図面である。2 is a drawing showing the flow of a heat exchange medium in a heat utilization unit provided in a hydrogen supply system according to an embodiment of the present disclosure, which is a flow of the heat exchange medium when cooling low-pressure hydrogen flowing through a main channel. 本開示の実施形態に係る水素供給システムに備えられた制御部の制御系を示したブロック図である。FIG. 2 is a block diagram showing a control system of a control unit included in the hydrogen supply system according to the embodiment of the present disclosure.

本開示の実施形態に係る水素供給システムの一例について図1~図12を用いて説明する。 An example of a hydrogen supply system according to an embodiment of the present disclosure will be described using FIGS. 1 to 12.

(全体構成)
水素供給システム100は、図1に示されるように、水素ステーション102から供給された高圧水素を減圧する減圧弁12と、減圧弁12によって減圧された低圧水素を燃料電池110へ直接供給するための主流路14が形成された管部材20とを備えている。さらに、水素供給システム100は、主流路14の途中部分から分岐して、水素貯蔵部60へ低圧水素を供給する分岐流路24が形成された分岐管部材30と、水素貯蔵部60から主流路14の途中へ合流する合流流路44が形成された合流管部材50とを備えている。また、水素供給システム100は、ジュールトムソン効果によって生じる熱、つまり、高圧水素を減圧することで生じる熱を利用する熱利用部80と、各部を制御する制御部68(図12参照)とを備えている。
(overall structure)
As shown in FIG. 1, the hydrogen supply system 100 includes a pressure reducing valve 12 for reducing the pressure of high pressure hydrogen supplied from a hydrogen station 102, and a pressure reducing valve 12 for directly supplying the low pressure hydrogen reduced in pressure by the pressure reducing valve 12 to a fuel cell 110. A tube member 20 in which a main flow path 14 is formed is provided. Further, the hydrogen supply system 100 includes a branch pipe member 30 in which a branch channel 24 is formed that branches from an intermediate portion of the main channel 14 and supplies low-pressure hydrogen to the hydrogen storage section 60, and a main channel from the hydrogen storage section 60. 14, and a merging pipe member 50 in which a merging channel 44 is formed. The hydrogen supply system 100 also includes a heat utilization section 80 that utilizes heat generated by the Joule-Thomson effect, that is, heat generated by reducing the pressure of high-pressure hydrogen, and a control section 68 (see FIG. 12) that controls each section. ing.

なお、本実施形態では、燃料電池110は、一例として、建物に電力を供給するために用いられる。すなわち、本実施形態に係る水素供給システム100は、建物運用に用いられるシステムである。 Note that in this embodiment, the fuel cell 110 is used, for example, to supply power to a building. That is, the hydrogen supply system 100 according to this embodiment is a system used for building operation.

〔管部材20〕
主流路14が形成された管部材20は、図1に示されるように、減圧弁12から燃料電池110まで延びている。また、管部材20において、分岐流路24が分岐する分岐点には、三方弁16が設けられている。さらに、管部材20において、合流流路44が合流する合流点には、三方弁18が設けられている。そして、三方弁16と三方弁18とは、水素流れ方向の上流側から下流側に向けてこの順番で並んでいる。三方弁16は一の三方弁の一例であって、三方弁18は他の三方弁の一例である。
[Pipe member 20]
The pipe member 20 in which the main flow path 14 is formed extends from the pressure reducing valve 12 to the fuel cell 110, as shown in FIG. Further, in the pipe member 20, a three-way valve 16 is provided at a branch point where the branch flow path 24 branches. Furthermore, in the pipe member 20, a three-way valve 18 is provided at the confluence point where the confluence channels 44 merge. The three-way valve 16 and the three-way valve 18 are arranged in this order from the upstream side to the downstream side in the hydrogen flow direction. The three-way valve 16 is an example of one three-way valve, and the three-way valve 18 is an example of another three-way valve.

〔水素貯蔵部60、分岐管部材30、合流管部材50〕
水素貯蔵部60は、低圧水素を一次的に貯蔵する機能の有し、図1に示されるように、低圧水素タンク62と水素吸蔵合金64とを備えている。さらに、水素貯蔵部60は、水素吸蔵合金64の温度を検出する検出部64a(図12参照)を備えている。
[Hydrogen storage section 60, branch pipe member 30, merging pipe member 50]
The hydrogen storage section 60 has a function of temporarily storing low-pressure hydrogen, and includes a low-pressure hydrogen tank 62 and a hydrogen storage alloy 64, as shown in FIG. Further, the hydrogen storage section 60 includes a detection section 64a (see FIG. 12) that detects the temperature of the hydrogen storage alloy 64.

また、三方弁16を介して主流路14から分岐する分岐流路24が形成された分岐管部材30は、水素流れ方向の下流側の部分で分岐している。具体的には、低圧水素タンク62へ供給される低圧水素が流れる第一流路32が形成された管部材34と、水素吸蔵合金64へ供給される低圧水素が流れる第二流路36が形成された管部材38とに分岐している。 Further, the branch pipe member 30 in which the branch passage 24 branching from the main passage 14 via the three-way valve 16 is formed is branched at a downstream portion in the hydrogen flow direction. Specifically, a pipe member 34 is formed with a first passage 32 through which low-pressure hydrogen is supplied to the low-pressure hydrogen tank 62, and a second passage 36 is formed through which low-pressure hydrogen is supplied to the hydrogen storage alloy 64. It branches into a pipe member 38.

そして、管部材34の途中には、第一流路32を開閉する開閉弁72が設けられ、管部材38の途中には、第二流路36を開閉する開閉弁74が設けられている。 An on-off valve 72 that opens and closes the first flow path 32 is provided in the middle of the pipe member 34, and an on-off valve 74 that opens and closes the second flow path 36 is provided in the middle of the pipe member 38.

さらに、三方弁18を介して主流路14に合流する合流流路44が形成された合流管部材50は、水素流れ方向の上流側の部分で分岐している。具体的には、低圧水素タンク62からの低圧水素が流れる第三流路52が形成された管部材54と、水素吸蔵合金64からの低圧水素が流れる第四流路56が形成された管部材58とに分岐している。 Furthermore, the merging pipe member 50 in which the merging flow path 44 that merges with the main flow path 14 via the three-way valve 18 is formed is branched at an upstream portion in the hydrogen flow direction. Specifically, a pipe member 54 is formed with a third flow path 52 through which low-pressure hydrogen from the low-pressure hydrogen tank 62 flows, and a pipe member is formed with a fourth flow path 56 through which low-pressure hydrogen from the hydrogen storage alloy 64 flows. It is branched into 58.

そして、管部材54の途中には、第三流路52を開閉する開閉弁76が設けられ、管部材58の途中には、第四流路56を開閉する開閉弁78が設けられている。 An on-off valve 76 that opens and closes the third flow path 52 is provided in the middle of the pipe member 54, and an on-off valve 78 that opens and closes the fourth flow path 56 is provided in the middle of the pipe member 58.

〔熱利用部80〕
熱利用部80は、図1、図6に示されるように、管部材20において減圧弁12と三方弁16との間の部分に取り付けられ、高圧水素を減圧することで生じる熱を取得する熱交換器82と、冷温水チラー84(以下「チラー84」)とを備えている。
[Heat utilization section 80]
As shown in FIGS. 1 and 6, the heat utilization section 80 is attached to a portion of the pipe member 20 between the pressure reducing valve 12 and the three-way valve 16, and is a heat utilization section that acquires heat generated by reducing the pressure of high-pressure hydrogen. It includes an exchanger 82 and a cold/hot water chiller 84 (hereinafter referred to as "chiller 84").

さらに、熱利用部80は、熱交換媒体が流れる流路を備えている。具体的には、熱利用部80は、チラー84と水素吸蔵合金64との間を流れる循環流路88が形成された循環管部材90を備えている。この循環流路88は、チラー84から水素吸蔵合金64へ向かう循環流路88aと、水素吸蔵合金64からチラー84へ向かう循環流路88bとを備えている。 Furthermore, the heat utilization section 80 includes a flow path through which a heat exchange medium flows. Specifically, the heat utilization section 80 includes a circulation pipe member 90 in which a circulation flow path 88 flowing between the chiller 84 and the hydrogen storage alloy 64 is formed. The circulation passage 88 includes a circulation passage 88a going from the chiller 84 to the hydrogen storage alloy 64, and a circulation passage 88b going from the hydrogen storage alloy 64 to the chiller 84.

さらに、熱利用部80は、循環流路88aの途中から分岐して熱交換器82へ向かうと共に、熱交換器82から循環流路88bの途中へ合流する交換流路92が形成された交換管部材94を備えている。この交換流路92は、循環流路88aの途中から熱交換器82へ向かう交換流路92aと、熱交換器82から循環流路88bへ向かう交換流路92bとを備えている。 Further, the heat utilization section 80 includes an exchange pipe in which an exchange flow path 92 is formed, which branches off from the middle of the circulation flow path 88a and heads toward the heat exchanger 82, and joins from the heat exchanger 82 to the middle of the circulation flow path 88b. A member 94 is provided. The exchange flow path 92 includes an exchange flow path 92a extending from the middle of the circulation flow path 88a toward the heat exchanger 82, and an exchange flow path 92b extending from the heat exchanger 82 toward the circulation flow path 88b.

また、循環流路88aの途中に設けられた分岐点には、三方弁96が設けられ、循環流路88bの途中に設けられた合流点には、三方弁98が設けられている。さらに、循環管部材90において三方弁98とチラー84との間には、ポンプ70が設けられている。また、交換管部材94において三方弁96と熱交換器82との間には、ポンプ71が設けられている。 Further, a three-way valve 96 is provided at a branch point provided in the middle of the circulation flow path 88a, and a three-way valve 98 is provided at a confluence point provided in the middle of the circulation flow path 88b. Furthermore, a pump 70 is provided between the three-way valve 98 and the chiller 84 in the circulation pipe member 90. Furthermore, a pump 71 is provided between the three-way valve 96 and the heat exchanger 82 in the exchange pipe member 94 .

〔制御部68〕
制御部68は、図12に示されるように、各部を制御するようになっている。なお、制御部68による各部の制御については、後述する作用と共に説明する。
[Control unit 68]
The control section 68 is configured to control each section, as shown in FIG. 12. Note that the control of each section by the control section 68 will be explained together with the functions described later.

(作用)
次に、水素供給システム100の作用について説明する。具体的には、先ず、水素の流れについて場合を分けて一例を説明し、次に、熱利用部80を用いた熱交換媒体の流れについて、場合を分けて一例を説明する。
(effect)
Next, the operation of the hydrogen supply system 100 will be explained. Specifically, first, an example of the flow of hydrogen will be explained in different cases, and then an example of the flow of the heat exchange medium using the heat utilization section 80 will be explained in different cases.

〔水素の流れについて〕
-第一の場合分け-
低圧水素タンク62が満タンで、かつ、水素吸蔵合金64によって水素が充分に吸蔵されている場合は、制御部68は、図2に示されるように、三方弁16及び三方弁18を制御する。具体的には、制御部68は、主流路14から分岐流路24への低圧水素の流れを閉じ、かつ、合流流路44から主流路14への低圧水素の流れを閉じる。
[About hydrogen flow]
-First case-
When the low-pressure hydrogen tank 62 is full and hydrogen is sufficiently stored in the hydrogen storage alloy 64, the control unit 68 controls the three-way valve 16 and the three-way valve 18, as shown in FIG. . Specifically, the control unit 68 closes the flow of low-pressure hydrogen from the main flow path 14 to the branch flow path 24 and closes the flow of low-pressure hydrogen from the combined flow path 44 to the main flow path 14 .

これにより、水素ステーション102から供給された高圧水素は、減圧弁12によって減圧される。さらに、減圧弁12によって減圧された低圧水素は、主流路14を流れて燃料電池110へ直接供給される。燃料電池110は、低圧水素が供給されることで発電し、発電した電力が建物へ供給される。 Thereby, the pressure of the high-pressure hydrogen supplied from the hydrogen station 102 is reduced by the pressure reducing valve 12. Further, the low pressure hydrogen whose pressure has been reduced by the pressure reducing valve 12 flows through the main flow path 14 and is directly supplied to the fuel cell 110 . The fuel cell 110 generates electricity by being supplied with low-pressure hydrogen, and the generated electricity is supplied to the building.

-第二の場合分け-
また、低圧水素タンク62が満タン以外で、水素吸蔵合金64による水素の吸蔵に余裕がある場合で、かつ、燃料電池110を用いて使用される電力が多量でない場合は、制御部68は、図3に示されるように、各部を制御する。
-Second case classification-
Further, when the low-pressure hydrogen tank 62 is not full, when there is sufficient hydrogen storage capacity by the hydrogen storage alloy 64, and when the electric power used by the fuel cell 110 is not large, the control unit 68: As shown in FIG. 3, each part is controlled.

具体的には、制御部68は、三方弁16、及び三方弁18を制御し、主流路14から分岐流路24への低圧水素の流れを開放し、かつ、合流流路44から主流路14への低圧水素の流れを遮断する。さらに、制御部68は、開閉弁72及び開閉弁74を制御し、第一流路32を開放し、かつ、第二流路36を開放する。また、制御部68は、開閉弁76及び開閉弁78を制御し、第三流路52を閉じ、かつ、第四流路56を閉じる。 Specifically, the control unit 68 controls the three-way valve 16 and the three-way valve 18 to open the flow of low-pressure hydrogen from the main channel 14 to the branch channel 24, and to open the flow of low-pressure hydrogen from the merging channel 44 to the main channel 14. shut off the flow of low pressure hydrogen to the Further, the control unit 68 controls the on-off valve 72 and the on-off valve 74 to open the first flow path 32 and open the second flow path 36. Further, the control unit 68 controls the on-off valve 76 and the on-off valve 78 to close the third flow path 52 and close the fourth flow path 56.

これにより、水素ステーション102から供給された高圧水素は、減圧弁12によって減圧される。さらに、減圧弁12によって減圧された低圧水素は、主流路14を流れて燃料電池110へ供給される。燃料電池110は、低圧水素が供給されることで発電し、発電した電力が建物へ供給される。 Thereby, the pressure of the high-pressure hydrogen supplied from the hydrogen station 102 is reduced by the pressure reducing valve 12. Furthermore, the low-pressure hydrogen whose pressure has been reduced by the pressure reducing valve 12 flows through the main channel 14 and is supplied to the fuel cell 110. The fuel cell 110 generates electricity by being supplied with low-pressure hydrogen, and the generated electricity is supplied to the building.

また、三方弁16を介して分岐流路24に流入した低圧水素は、第一流路32を流れて低圧水素タンク62へ供給される。そして、低圧水素タンク62へ供給された低圧水素は、低圧水素タンク62に貯蔵される。 Furthermore, the low-pressure hydrogen that has flowed into the branch flow path 24 via the three-way valve 16 flows through the first flow path 32 and is supplied to the low-pressure hydrogen tank 62 . The low-pressure hydrogen supplied to the low-pressure hydrogen tank 62 is stored in the low-pressure hydrogen tank 62.

さらに、三方弁16を介して分岐流路24に流入した低圧水素は、第二流路36を流れて水素吸蔵合金64へ供給される。そして、水素吸蔵合金64へ供給された低圧水素は、水素吸蔵合金64に吸蔵される。 Furthermore, the low-pressure hydrogen that has flowed into the branch flow path 24 via the three-way valve 16 flows through the second flow path 36 and is supplied to the hydrogen storage alloy 64. The low-pressure hydrogen supplied to the hydrogen storage alloy 64 is stored in the hydrogen storage alloy 64.

-第三の場合分け-
また、低圧水素タンク62に低圧水素が貯蔵され、水素吸蔵合金64によって低圧水素が吸蔵されている場合で、かつ、燃料電池110を用いて使用される電力が多量である場合は、制御部68は、図4に示されるように、各部を制御する。
-Third case-
In addition, when low-pressure hydrogen is stored in the low-pressure hydrogen tank 62 and stored in the hydrogen-absorbing alloy 64, and when a large amount of electric power is used using the fuel cell 110, the control unit 68 controls each part as shown in FIG.

具体的には、制御部68は、三方弁16、及び三方弁18を制御し、主流路14から分岐流路24への低圧水素の流れを閉じ、かつ、合流流路44から主流路14への低圧水素の流れを開放する。さらに、制御部68は、開閉弁72及び開閉弁74を制御し、第一流路32を閉じ、かつ、第二流路36を閉じる。また、制御部68は、開閉弁76及び開閉弁78を制御し、第三流路52を開放し、かつ、第四流路56を開放する。 Specifically, the control unit 68 controls the three-way valve 16 and the three-way valve 18 to close the flow of low-pressure hydrogen from the main channel 14 to the branch channel 24, and to close the flow of low-pressure hydrogen from the merging channel 44 to the main channel 14. of low pressure hydrogen flow. Further, the control unit 68 controls the on-off valve 72 and the on-off valve 74 to close the first flow path 32 and close the second flow path 36. Further, the control unit 68 controls the on-off valve 76 and the on-off valve 78 to open the third flow path 52 and open the fourth flow path 56.

これにより、水素ステーション102から供給された高圧水素は、減圧弁12によって減圧される。さらに、減圧弁12によって減圧された低圧水素は、主流路14を流れて燃料電池110へ供給される。 Thereby, the pressure of the high-pressure hydrogen supplied from the hydrogen station 102 is reduced by the pressure reducing valve 12. Furthermore, the low-pressure hydrogen whose pressure has been reduced by the pressure reducing valve 12 flows through the main channel 14 and is supplied to the fuel cell 110.

また、低圧水素タンク62に貯蔵された低圧水素は、第三流路52へ放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。 Further, the low-pressure hydrogen stored in the low-pressure hydrogen tank 62 is released to the third flow path 52, flows through the merge flow path 44, and joins the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110.

さらに、水素吸蔵合金64に貯蔵された低圧水素は、第四流路56へ放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。燃料電池110は、低圧水素が供給されることで発電し、発電した電力が建物へ供給される。 Further, the low-pressure hydrogen stored in the hydrogen storage alloy 64 is released to the fourth flow path 56, flows through the merge flow path 44, and joins the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110. The fuel cell 110 generates electricity by being supplied with low-pressure hydrogen, and the generated electricity is supplied to the building.

-第四の場合分け-
また、何らかの原因で水素ステーション102からの高圧水素の直接供給が停止された場合は、制御部68は、図5に示されるように、各部を制御する。
-Fourth case classification-
Further, if the direct supply of high-pressure hydrogen from the hydrogen station 102 is stopped for some reason, the control section 68 controls each section as shown in FIG. 5.

具体的には、制御部68は、三方弁16を制御し、低圧水素の流れを閉じ、三方弁18を制御し、合流流路44から主流路14において燃料電池110側の部分への低圧水素の流れを開放する。さらに、制御部68は、開閉弁72及び開閉弁74を制御し、第一流路32を閉じ、かつ、第二流路36を閉じる。また、制御部68は、開閉弁76及び開閉弁78を制御し、第三流路52を開放し、かつ、第四流路56を開放する。 Specifically, the control unit 68 controls the three-way valve 16 to close the flow of low-pressure hydrogen, controls the three-way valve 18, and controls the flow of low-pressure hydrogen from the merging flow path 44 to the portion of the main flow path 14 on the fuel cell 110 side. Open the flow of. Further, the control unit 68 controls the on-off valve 72 and the on-off valve 74 to close the first flow path 32 and close the second flow path 36. Further, the control unit 68 controls the on-off valve 76 and the on-off valve 78 to open the third flow path 52 and open the fourth flow path 56.

これより、低圧水素タンク62に貯蔵された低圧水素は、第三流路52に放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。 As a result, the low-pressure hydrogen stored in the low-pressure hydrogen tank 62 is released into the third flow path 52, flows through the merging flow path 44, and joins the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110.

さらに、水素吸蔵合金64に貯蔵された低圧水素は、第四流路56に放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。燃料電池110は、低圧水素が供給されることで発電し、発電した電力が建物へ供給される。 Furthermore, the low-pressure hydrogen stored in the hydrogen storage alloy 64 is released into the fourth flow path 56, flows through the merging flow path 44, and merges into the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110. The fuel cell 110 generates electricity by being supplied with low-pressure hydrogen, and the generated electricity is supplied to the building.

〔熱交換媒体の流れについて〕
-第一の場合分け-
検出部64aによって検出された水素吸蔵合金64の温度が予め決められた温度範囲に対して低い場合は、制御部68は、三方弁96、三方弁98及びポンプ71を制御する。
[About the flow of heat exchange medium]
-First case-
When the temperature of the hydrogen storage alloy 64 detected by the detection unit 64a is lower than the predetermined temperature range, the control unit 68 controls the three-way valve 96, the three-way valve 98, and the pump 71.

具体的には、制御部68は、図7に示されるように、三方弁98を制御し、交換流路92bから循環流路88bの水素吸蔵合金64側の部分への熱交換媒体の流れを許容し、三方弁96を制御し、循環流路88aの水素吸蔵合金64側の部分から交換流路92aへの熱交換媒体の流れを許容する。さらに、制御部68は、ポンプ71を稼動させる。 Specifically, as shown in FIG. 7, the control unit 68 controls the three-way valve 98 to control the flow of the heat exchange medium from the exchange flow path 92b to the portion of the circulation flow path 88b on the hydrogen storage alloy 64 side. and controls the three-way valve 96 to allow the flow of the heat exchange medium from the portion of the circulation flow path 88a on the hydrogen storage alloy 64 side to the exchange flow path 92a. Further, the control unit 68 operates the pump 71.

これにより、熱交換器82によって取得された熱によって温められた熱交換媒体が、各流路を流れる(図中矢印参照)。そして、熱交換器82によって取得された熱が、熱交換媒体を介して水素吸蔵合金64へ伝達されることで、水素吸蔵合金64が加熱され、水素吸蔵合金64の温度が予め決められた温度範囲内となる。 Thereby, the heat exchange medium warmed by the heat acquired by the heat exchanger 82 flows through each flow path (see arrows in the figure). The heat acquired by the heat exchanger 82 is transferred to the hydrogen storage alloy 64 via the heat exchange medium, whereby the hydrogen storage alloy 64 is heated and the temperature of the hydrogen storage alloy 64 is set to a predetermined temperature. Within the range.

-第二の場合分け-
検出部64aによって検出された水素吸蔵合金64の温度が予め決められた温度範囲に対して高い場合は、制御部68は、三方弁96、三方弁98及びポンプ70を制御する。
-Second case classification-
When the temperature of the hydrogen storage alloy 64 detected by the detection unit 64a is higher than the predetermined temperature range, the control unit 68 controls the three-way valve 96, the three-way valve 98, and the pump 70.

具体的には、制御部68は、図8に示されるように、三方弁96を制御し、チラー84側の循環流路88aから水素吸蔵合金64側の循環流路88aへの熱交換媒体の流れを許容し、三方弁98を制御し、水素吸蔵合金64側の循環流路88bからチラー84側の循環流路88bへの熱交換媒体の流れを許容する。さらに、制御部68は、ポンプ70を稼動させる。 Specifically, as shown in FIG. 8, the control unit 68 controls the three-way valve 96 to flow the heat exchange medium from the circulation passage 88a on the chiller 84 side to the circulation passage 88a on the hydrogen storage alloy 64 side. The three-way valve 98 is controlled to allow the heat exchange medium to flow from the circulation passage 88b on the hydrogen storage alloy 64 side to the circulation passage 88b on the chiller 84 side. Further, the control unit 68 operates the pump 70.

これにより、チラー84によって生成された冷えた熱交換媒体が各流路を流れ(図中矢印参照)、水素吸蔵合金64が冷却される。そして、水素吸蔵合金64の温度が予め決められた温度範囲内となる。 As a result, the cooled heat exchange medium generated by the chiller 84 flows through each flow path (see arrows in the figure), and the hydrogen storage alloy 64 is cooled. Then, the temperature of the hydrogen storage alloy 64 falls within a predetermined temperature range.

-第三の場合分け-
水素吸蔵合金64から低圧水素を放出させる場合は、図9に示されるように、開閉弁74を閉じて開閉弁78を開放する。これにより、水素吸蔵合金64に負荷される圧力が低くなり、水素吸蔵合金64から低圧水素が放出される。また、水素吸蔵合金64から低圧水素が放出されることで、水素吸蔵合金64が吸熱し、水素吸蔵合金64の温度が低下する。そこで、制御部68は、三方弁96、三方弁98及びポンプ71を制御する。
-Third case-
When low-pressure hydrogen is released from the hydrogen storage alloy 64, the on-off valve 74 is closed and the on-off valve 78 is opened, as shown in FIG. As a result, the pressure applied to the hydrogen storage alloy 64 is reduced, and low-pressure hydrogen is released from the hydrogen storage alloy 64. Further, as low-pressure hydrogen is released from the hydrogen storage alloy 64, the hydrogen storage alloy 64 absorbs heat, and the temperature of the hydrogen storage alloy 64 decreases. Therefore, the control unit 68 controls the three-way valve 96, the three-way valve 98, and the pump 71.

具体的には、制御部68は、三方弁98を制御し、交換流路92bから循環流路88bの水素吸蔵合金64側の部分への熱交換媒体の流れを許容し、三方弁96を制御し、循環流路88aの水素吸蔵合金64側の部分から交換流路92aへの熱交換媒体の流れを許容する。さらに、制御部68は、ポンプ71を稼動させる。 Specifically, the control unit 68 controls the three-way valve 98, allows the heat exchange medium to flow from the exchange flow path 92b to the portion of the circulation flow path 88b on the hydrogen storage alloy 64 side, and controls the three-way valve 96. However, the heat exchange medium is allowed to flow from the portion of the circulation flow path 88a on the hydrogen storage alloy 64 side to the exchange flow path 92a. Further, the control unit 68 operates the pump 71.

これにより、熱交換器82によって取得された熱によって温められた熱交換媒体が、各流路を流れる(図中矢印参照)。そして、熱交換器82によって取得された熱が、熱交換媒体を介して水素吸蔵合金64へ伝達されることで、低圧水素を放出することで温度が低下した水素吸蔵合金64が加熱され、水素吸蔵合金64の温度が予め決められた温度範囲内となる。 Thereby, the heat exchange medium warmed by the heat acquired by the heat exchanger 82 flows through each flow path (see arrows in the figure). Then, the heat acquired by the heat exchanger 82 is transferred to the hydrogen storage alloy 64 via the heat exchange medium, so that the hydrogen storage alloy 64, whose temperature has decreased by releasing low-pressure hydrogen, is heated, and the hydrogen storage alloy 64 is heated. The temperature of the storage alloy 64 falls within a predetermined temperature range.

-第四の場合分け-
水素吸蔵合金64に低圧水素を貯蔵する場合は、図10に示されるように、開閉弁74を開放して開閉弁78を閉じる。これにより、水素吸蔵合金64に負荷される圧力が高くなり、水素吸蔵合金64に低圧水素が吸蔵される。また、水素吸蔵合金64に低圧水素が吸蔵されることで、水素吸蔵合金64が発熱し、水素吸蔵合金64の温度が高くなる。そこで、制御部68は、三方弁96、三方弁98及びポンプ70を制御する。
-Fourth case classification-
When storing low-pressure hydrogen in the hydrogen storage alloy 64, as shown in FIG. 10, the on-off valve 74 is opened and the on-off valve 78 is closed. As a result, the pressure applied to the hydrogen storage alloy 64 increases, and low-pressure hydrogen is stored in the hydrogen storage alloy 64. Further, by storing low-pressure hydrogen in the hydrogen storage alloy 64, the hydrogen storage alloy 64 generates heat, and the temperature of the hydrogen storage alloy 64 increases. Therefore, the control unit 68 controls the three-way valve 96, the three-way valve 98, and the pump 70.

具体的には、制御部68は、三方弁96を制御し、チラー84側の循環流路88aから水素吸蔵合金64側の循環流路88aへの熱交換媒体の流れを許容し、三方弁98を制御し、水素吸蔵合金64側の循環流路88bからチラー84側の循環流路88bへの熱交換媒体の流れを許容する。さらに、制御部68は、ポンプ70を稼動させる。 Specifically, the control unit 68 controls the three-way valve 96 to allow the heat exchange medium to flow from the circulation passage 88a on the chiller 84 side to the circulation passage 88a on the hydrogen storage alloy 64 side. is controlled, and the heat exchange medium is allowed to flow from the circulation passage 88b on the hydrogen storage alloy 64 side to the circulation passage 88b on the chiller 84 side. Further, the control unit 68 operates the pump 70.

これにより、チラー84によって生成された冷えた熱交換媒体が各流路を流れ(図中矢印参照)、水素吸蔵合金64が冷却される。そして、低圧水素を吸蔵することで温度が高くなった水素吸蔵合金64の温度が予め決められた温度範囲内となる。 As a result, the cooled heat exchange medium generated by the chiller 84 flows through each flow path (see arrows in the figure), and the hydrogen storage alloy 64 is cooled. Then, the temperature of the hydrogen storage alloy 64, which has increased in temperature by storing low-pressure hydrogen, falls within a predetermined temperature range.

-第五の場合分け-
検出部64aによって検出された水素吸蔵合金64の温度が予め決められた温度範囲内である場合は、制御部68は、三方弁96、三方弁98及びポンプ70を制御する。
-Fifth case classification-
When the temperature of the hydrogen storage alloy 64 detected by the detection unit 64a is within a predetermined temperature range, the control unit 68 controls the three-way valve 96, the three-way valve 98, and the pump 70.

具体的には、制御部68は、図11に示されるように、三方弁96を制御し、循環流路88aのチラー84側の部分から交換流路92aへの熱交換媒体の流れを許容し、三方弁98を制御し、交換流路92bから循環流路88bのチラー84側の部分への熱交換媒体の流れを許容する。さらに、制御部68は、ポンプ70を稼動させる。 Specifically, as shown in FIG. 11, the control unit 68 controls the three-way valve 96 to allow the heat exchange medium to flow from the portion of the circulation flow path 88a on the chiller 84 side to the exchange flow path 92a. , controls the three-way valve 98 to allow the heat exchange medium to flow from the exchange flow path 92b to the portion of the circulation flow path 88b on the chiller 84 side. Further, the control unit 68 operates the pump 70.

これにより、チラー84によって生成された冷えた熱交換媒体が各流路を流れ(図中矢印参照)、高圧水素を減圧することで生じた熱によって高温となった低圧水素が熱交換器82によって冷却される。 As a result, the cooled heat exchange medium generated by the chiller 84 flows through each flow path (see the arrows in the figure), and the low-pressure hydrogen heated to a high temperature by the heat generated by reducing the pressure of the high-pressure hydrogen is transferred to the heat exchanger 82. cooled down.

(まとめ)
以上説明したように、水素供給システム100では、何らかの原因で水素ステーション102からの高圧水素の供給が停止された場合は、図5に示されるように、低圧水素タンク62に貯蔵された低圧水素は、第三流路52へ放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。さらに、水素吸蔵合金64に貯蔵された低圧水素は、第四流路56に放出されて合流流路44を流れて主流路14に合流する。そして、主流路14に合流した低圧水素は、主流路14を流れて燃料電池110へ供給される。
(summary)
As explained above, in the hydrogen supply system 100, when the supply of high-pressure hydrogen from the hydrogen station 102 is stopped for some reason, the low-pressure hydrogen stored in the low-pressure hydrogen tank 62 is , is discharged into the third flow path 52, flows through the merging flow path 44, and joins the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110. Furthermore, the low-pressure hydrogen stored in the hydrogen storage alloy 64 is released into the fourth flow path 56, flows through the merging flow path 44, and merges into the main flow path 14. The low-pressure hydrogen that has joined the main flow path 14 then flows through the main flow path 14 and is supplied to the fuel cell 110.

このように、何らかの原因で高圧水素の直接供給が停止した場合でも、燃料電池110への低圧水素の供給を継続することができる。 In this way, even if the direct supply of high-pressure hydrogen is stopped for some reason, the supply of low-pressure hydrogen to the fuel cell 110 can be continued.

また、水素供給システム100においては、水素吸蔵合金64から低圧水素が放出されることで、水素吸蔵合金64が吸熱し、水素吸蔵合金64の温度が低下する。そこで、制御部68は、各部を制御し、図9に示されるように、高圧水素を減圧することで生じた熱によって、水素吸蔵合金64を加熱する。このように、高圧水素を減圧することで生じた熱を有効に活用することができる。 Furthermore, in the hydrogen supply system 100, low-pressure hydrogen is released from the hydrogen storage alloy 64, so that the hydrogen storage alloy 64 absorbs heat, and the temperature of the hydrogen storage alloy 64 decreases. Therefore, the control section 68 controls each section and heats the hydrogen storage alloy 64 with the heat generated by reducing the pressure of high-pressure hydrogen, as shown in FIG. In this way, the heat generated by reducing the pressure of high-pressure hydrogen can be effectively utilized.

また、水素供給システム100においては、分岐流路24において水素流れ方向の下流側の部分は、低圧水素タンク62へ供給される低圧水素が流れる第一流路32が形成された管部材34と、水素吸蔵合金64へ供給される低圧水素が流れる第二流路36とが形成された管部材38とに分岐している。これにより、低圧水素タンク62と水素吸蔵合金64とに低圧水素を直接供給することができる。 In addition, in the hydrogen supply system 100, the downstream portion of the branch flow path 24 in the hydrogen flow direction includes a pipe member 34 in which the first flow path 32 through which low-pressure hydrogen to be supplied to the low-pressure hydrogen tank 62 flows, and a hydrogen It branches into a second channel 36 through which low-pressure hydrogen supplied to the storage alloy 64 flows and a pipe member 38 in which a pipe member 38 is formed. Thereby, low pressure hydrogen can be directly supplied to the low pressure hydrogen tank 62 and the hydrogen storage alloy 64.

また、水素供給システム100においては、合流流路44において水素流れ方向の上流側の部分は、低圧水素タンク62からの低圧水素が流れ込む第三流路52が形成された管部材54と、水素吸蔵合金64からの低圧水素が流れ込む第四流路56とが形成された管部材58とに分岐している。これにより、低圧水素タンク62から放出された低圧水素と、水素吸蔵合金64から放出された低圧水素とを、燃料電池110へ直接供給することができる。 In addition, in the hydrogen supply system 100, the upstream portion of the merging flow path 44 in the hydrogen flow direction includes a pipe member 54 in which a third flow path 52 into which low-pressure hydrogen from the low-pressure hydrogen tank 62 flows, and a hydrogen storage It branches into a fourth flow path 56 into which low-pressure hydrogen from alloy 64 flows and a pipe member 58 in which a pipe member 58 is formed. Thereby, the low-pressure hydrogen released from the low-pressure hydrogen tank 62 and the low-pressure hydrogen released from the hydrogen storage alloy 64 can be directly supplied to the fuel cell 110.

なお、本開示を特定の実施形態について詳細に説明したが、本開示は係る実施形態に限定されるものではなく、本開示の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。上記実施形態では、特に説明しなかったが、高圧水素を減圧することで生じた熱によって、燃料電池110を加熱し、燃料電池110の温度が低下するのを抑制してもよい。 Note that although the present disclosure has been described in detail with respect to a specific embodiment, the present disclosure is not limited to such embodiment, and various other embodiments can be taken within the scope of the present disclosure. This is clear to those skilled in the art. Although not specifically described in the above embodiment, the fuel cell 110 may be heated by heat generated by reducing the pressure of high-pressure hydrogen to suppress a decrease in the temperature of the fuel cell 110.

また、上記実施形態では、特に説明しなかったが、チラー84によって熱交換媒体を温め、この温められた熱交換媒体を用いて水素吸蔵合金を加熱してもよい。 Although not specifically described in the above embodiment, the heat exchange medium may be warmed by the chiller 84, and the hydrogen storage alloy may be heated using the warmed heat exchange medium.

12 減圧弁
14 主流路
16 三方弁(一の三方弁の一例)
18 三方弁(他の三方弁の一例)
20 管部材
24 分岐流路
30 分岐管部材
32 第一流路
36 第二流路
44 合流流路
50 合流管部材
52 第三流路
56 第四流路
60 水素貯蔵部
62 低圧水素タンク
64 水素吸蔵合金
68 制御部
82 熱交換器
100 水素供給システム
110 燃料電池
12 Pressure reducing valve 14 Main flow path 16 Three-way valve (an example of one three-way valve)
18 Three-way valve (an example of other three-way valve)
20 Pipe member 24 Branch flow path 30 Branch pipe member 32 First flow path 36 Second flow path 44 Merging flow path 50 Merging pipe member 52 Third flow path 56 Fourth flow path 60 Hydrogen storage section 62 Low pressure hydrogen tank 64 Hydrogen storage alloy 68 Control unit 82 Heat exchanger 100 Hydrogen supply system 110 Fuel cell

Claims (3)

高圧水素が供給されて高圧水素を減圧する減圧弁と、
前記減圧弁によって減圧された低圧水素を燃料電池へ直接供給するための主流路が形成された管部材と、
前記主流路の途中部分から分岐して水素貯蔵部へ低圧水素を供給する分岐流路が形成された分岐管部材と、
前記水素貯蔵部から前記主流路の途中へ合流する合流流路が形成された合流管部材と、
前記分岐流路の分岐点に設けられた一の三方弁と、
前記合流流路の合流点に設けられた他の三方弁と、
前記一の三方弁の開閉、及び前記他の三方弁の開閉を制御する制御部と、
を備える水素供給システム。
a pressure reducing valve that is supplied with high pressure hydrogen and reduces the pressure of the high pressure hydrogen;
a pipe member in which a main flow path is formed for directly supplying the low-pressure hydrogen reduced in pressure by the pressure reducing valve to the fuel cell;
a branch pipe member in which a branch flow path is formed that branches from an intermediate portion of the main flow path and supplies low-pressure hydrogen to a hydrogen storage section;
a merging pipe member formed with a merging flow path that merges from the hydrogen storage section to the middle of the main flow path;
a three-way valve provided at a branch point of the branch flow path;
another three-way valve provided at the confluence point of the confluence flow path;
a control unit that controls opening and closing of the first three-way valve and opening and closing of the other three-way valve;
A hydrogen supply system equipped with
水素流れ方向において前記減圧弁の下流側で、かつ、前記分岐点の上流側には、高圧水素を減圧することで生じる熱を取得する熱交換器が設けられ、
前記水素貯蔵部は、水素吸蔵合金を備え、
前記制御部は、低圧水素を放出することで温度が低下した前記水素吸蔵合金を前記熱交換器で取得された熱によって加熱する、
請求項1に記載の水素供給システム。
A heat exchanger is provided downstream of the pressure reducing valve in the hydrogen flow direction and upstream of the branch point to obtain heat generated by reducing the pressure of high pressure hydrogen,
The hydrogen storage section includes a hydrogen storage alloy,
The control unit heats the hydrogen storage alloy whose temperature has decreased by releasing low-pressure hydrogen using the heat acquired by the heat exchanger.
The hydrogen supply system according to claim 1.
前記水素貯蔵部は、低圧水素タンクと水素吸蔵合金とを備え、
前記分岐流路において水素流れ方向の下流側の部分には、前記低圧水素タンクへ低圧水素が供給される第一流路と、前記水素吸蔵合金へ低圧水素を供給する第二流路とが形成され、
前記合流流路において水素流れ方向の上流側の部分には、前記低圧水素タンクからの低圧水素が流れる第三流路と、前記水素吸蔵合金からの低圧水素が流れる第四流路とが形成されている、
請求項1又は2に記載の水素供給システム。
The hydrogen storage unit includes a low-pressure hydrogen tank and a hydrogen storage alloy,
A first flow path through which low-pressure hydrogen is supplied to the low-pressure hydrogen tank, and a second flow path through which low-pressure hydrogen is supplied to the hydrogen storage alloy are formed in a downstream portion of the branch flow path in the hydrogen flow direction. ,
A third flow path through which low-pressure hydrogen from the low-pressure hydrogen tank flows and a fourth flow path through which low-pressure hydrogen from the hydrogen storage alloy flows are formed in the upstream portion of the merged flow path in the hydrogen flow direction. ing,
The hydrogen supply system according to claim 1 or 2.
JP2022092206A 2022-06-07 2022-06-07 Hydrogen supply system Pending JP2023179117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022092206A JP2023179117A (en) 2022-06-07 2022-06-07 Hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092206A JP2023179117A (en) 2022-06-07 2022-06-07 Hydrogen supply system

Publications (1)

Publication Number Publication Date
JP2023179117A true JP2023179117A (en) 2023-12-19

Family

ID=89199397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092206A Pending JP2023179117A (en) 2022-06-07 2022-06-07 Hydrogen supply system

Country Status (1)

Country Link
JP (1) JP2023179117A (en)

Similar Documents

Publication Publication Date Title
US10218012B2 (en) Solid oxide fuel cell system including heat exchanger disposed of exhaust-gas and loop circulation paths
JP3741009B2 (en) Fuel cell system
JP5202261B2 (en) Water heater
KR101652267B1 (en) Apparatus and Method for Regasification of Liquefied Gas
US20080044704A1 (en) Fuel Cell System
JP3883125B2 (en) Fuel cell system and method for stopping fuel cell system
JP2011247465A (en) Hot water supply system
JP3918639B2 (en) Fuel cell system
KR20160088266A (en) Apparatus and Method for Regasification of Liquefied Gas
JP2004253258A (en) Fuel cell system and its control method
JP2023179117A (en) Hydrogen supply system
JP2007157468A (en) Fuel cell system
JP6954177B2 (en) Fuel cell system
CN110350218B (en) Vehicle-mounted cryogenic high-pressure hydrogen supply system with energy optimization design
JP2019035479A (en) Hydrogen storage system, control program and energy supply system
JP2019036467A (en) Fuel cell system
JP3933543B2 (en) Heat medium supply device
JP6897426B2 (en) Fuel cell system
JP4656994B2 (en) Hot water storage hot water supply device
JP6651370B2 (en) BOG heating system for low temperature liquefied gas
CN114447474B (en) Power battery thermal management system and method thereof
JP6906432B2 (en) Heat storage system
JP6973318B2 (en) Fuel cell system
JP4673617B2 (en) Fuel cell system and control method thereof
JP7669966B2 (en) High Pressure Gas Charging System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250317