[go: up one dir, main page]

JP2023139586A - Reinforcement structure and reinforcement method for cylindrical body for underwater installation - Google Patents

Reinforcement structure and reinforcement method for cylindrical body for underwater installation Download PDF

Info

Publication number
JP2023139586A
JP2023139586A JP2022045181A JP2022045181A JP2023139586A JP 2023139586 A JP2023139586 A JP 2023139586A JP 2022045181 A JP2022045181 A JP 2022045181A JP 2022045181 A JP2022045181 A JP 2022045181A JP 2023139586 A JP2023139586 A JP 2023139586A
Authority
JP
Japan
Prior art keywords
cylindrical body
reinforcing
underwater
installation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022045181A
Other languages
Japanese (ja)
Inventor
隆宏 熊谷
Takahiro Kumagai
勝哉 池野
Katsuya Ikeno
成久 三浦
Narihisa Miura
亮 木村
Makoto Kimura
陽介 肥後
Yosuke Higo
慎一郎 音田
Shinichiro Onda
康生 澤村
Yasuo Sawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Kyoto University NUC
Original Assignee
Penta Ocean Construction Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd, Kyoto University NUC filed Critical Penta Ocean Construction Co Ltd
Priority to JP2022045181A priority Critical patent/JP2023139586A/en
Publication of JP2023139586A publication Critical patent/JP2023139586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

To provide a reinforcement structure of underwater installation cylindrical body capable of being easily constructed and suitably reinforcing a cylindrical body such as a steel pipe pile for supporting mono-pile foundations, piers, and the like, and a reinforcement method.SOLUTION: A reinforcement structure of an underwater installation cylindrical body 3 includes a reinforcement cylindrical body 7 that is placed outside the underwater installation cylindrical body 3. The reinforcement cylindrical body 7 includes: an inner tube 8 placed along the outer periphery of the underwater installation cylindrical body 3; an outer tube 9 placed outside the inner tube; and an upper lid 11 that closes the upper surface of a compartment 10 formed between the inner tube 8 and the outer tube 9. The reinforcement cylindrical body 7 is designed to penetrate underwater ground 1 by depressurizing the compartment 11.SELECTED DRAWING: Figure 2

Description

本発明は、洋上風力発電設備の基礎や杭支持構造物の支持杭等に使用する筒状体を補強する水底設置用筒状体の補強構造及び補強方法に関する。 The present invention relates to a reinforcement structure and method for reinforcing a cylindrical body for underwater installation, which reinforces a cylindrical body used for the foundation of an offshore wind power generation facility, a support pile of a pile support structure, or the like.

着床式洋上風力発電設備では、水底地盤に貫入させた筒状体からなるモノパイル式基礎に風車設備等を支持させるものが知られている。また、桟橋等の杭支持構造物では、水底地盤に貫入させた筒状体(鋼管杭)からなる下部工基礎に上部工を支持させたものが知られている。 BACKGROUND OF THE INVENTION As a ground-mounted offshore wind power generation system, one in which wind turbine equipment and the like are supported on a monopile foundation made of a cylindrical body penetrated into the underwater ground is known. Furthermore, in pile support structures such as piers, structures in which a superstructure is supported by a substructure foundation made of a cylindrical body (steel pipe pile) penetrated into the underwater ground are known.

この種の筒状体を設置する方法には、陸上の工場や製作ヤードで製作されたモノパイル等の筒状体を基地港に移送し、当該基地港において昇降式作業船(以下、SEP船という)のクレーンを用いてSEP船上に積込み、SEP船にて筒状体を設置海域まで海上輸送から設置までを行うものが知られている(例えば、特許文献1を参照)。 The method of installing this type of cylindrical body involves transporting the cylindrical body, such as a monopile, manufactured in a factory or production yard on land to a base port, and then transporting it to a base port on an elevating work vessel (hereinafter referred to as a SEP vessel). ) is used to load the cylindrical body onto a SEP ship, and the SEP ship transports the cylindrical body by sea to the installation sea area and then installs it (for example, see Patent Document 1).

具体的には、筒状体を積み込んだSEP船で設置海域まで海上輸送した後、設置海域にてSEP船のレグを降下して着底させ、レグに支持されたSEP船本体を水上に上昇させ、SEP船本体を波浪等に対し安定した状態とする。 Specifically, after transporting the cylindrical body by sea to the installation area using a SEP ship, the legs of the SEP ship are lowered to the bottom of the installation area, and the SEP ship supported by the legs is raised above the water. to keep the SEP ship in a stable state against waves, etc.

次に、SEP船のクレーンを用いてSEP船上に積載されたモノパイル等の筒状体を吊り上げて起立させ、その状態で水底地盤まで吊り下ろし着底させる。 Next, using the SEP ship's crane, the cylindrical body such as a monopile loaded on the SEP ship is hoisted up and erected, and in this state, it is lowered to the underwater ground and allowed to land on the bottom.

そして、水底地盤に着底させた筒状体の頭部をハンマ等で打ち込み、筒状体を水底地盤に貫入させて設置する。 Then, the head of the cylindrical body that has landed on the bottom of the water is driven in with a hammer or the like, and the cylindrical body is installed by penetrating the bottom of the water.

一方、着床式洋上風力発電設備等の構造物の水中基礎構造としては、サクション式基礎も知られている(例えば、特許文献2を参照)。 On the other hand, a suction type foundation is also known as an underwater foundation structure for a structure such as a fixed-type offshore wind power generation facility (for example, see Patent Document 2).

このサクション式基礎は、上部構造物と接合された頂版と、頂版の周縁より下向きに延出したスカート部とを備え、スカート部を水底地盤に着底させた後、上面が頂版によって閉鎖されたスカート部内の水を排水管を通して排出することによって、構造物全体の自重とともにサクション荷重が作用し、スカート部が水底地盤に貫入されるようになっている。 This suction type foundation is equipped with a top plate connected to the superstructure and a skirt part extending downward from the periphery of the top plate. By discharging the water in the closed skirt section through the drain pipe, a suction load acts together with the weight of the entire structure, causing the skirt section to penetrate into the submerged ground.

特開2014-227966号公報JP2014-227966A 特開2020-023838号公報JP2020-023838A

しかしながら、上述の如き従来の洋上風力発電装置の風車を支持するモノパイル式基礎を構成する筒状体や上部工を支持する筒状体(以下、水底設置用筒状体という)では、下部が水底地盤に貫入・支持されており、地震発生時等に大きな曲げモーメントやせん断力が作用することから、安全性を確保するため、当該曲げモーメントやせん断力に対抗できるように予め水底設置用筒状体の外径や肉厚を大きくする必要がある。 However, in the cylindrical body that constitutes the monopile foundation that supports the wind turbine of the conventional offshore wind power generation equipment as described above, and the cylindrical body that supports the superstructure (hereinafter referred to as the cylindrical body for underwater installation), the lower part is at the bottom of the water. It penetrates and is supported by the ground, and is subject to large bending moments and shearing forces in the event of an earthquake, so to ensure safety, a cylindrical structure for installation on the bottom of the water is prepared in advance to withstand the bending moments and shearing forces. It is necessary to increase the outer diameter and wall thickness of the body.

また、近年では、風車等の風力発電装置や桟橋等の水中・水上構造物の大型化、設置場所の大水深化に伴い、風車を支持するモノパイル式基礎を構成する筒状体や上部工を支持する筒状体も大重量化・長尺化している。 In addition, in recent years, as wind turbines and other wind power generators and underwater and floating structures such as piers have become larger and their installation locations have become deeper, the cylindrical bodies and superstructures that make up the monopile foundations that support wind turbines have become smaller. The supporting cylindrical body has also become heavier and longer.

よって、従来の技術だけでは、大径化、大重量化した水底設置用筒状体の施工に際し、調達したSEP船のクレーンでは吊り上げ能力が不足し、船体への筒状体の積込み、積み込んだ筒状体の建て込み作業が困難となる場合がある。 Therefore, when constructing a cylindrical body for installation on the bottom, which has a large diameter and a large weight, using conventional technology alone, the crane of the procured SEP ship lacked the lifting capacity, and it was difficult to load the cylindrical body onto the ship's hull. It may be difficult to erect the cylindrical body.

その場合には、SEP船のクレーンより吊り上げ能力が大きいクレーンを有する大型起重機船を別途手配する必要があり、その分、費用が嵩む、作業工程の調整が煩雑となる等、作業が大掛かりになる等の問題があった。 In that case, it is necessary to separately arrange a large hoist ship with a crane that has a higher lifting capacity than the SEP ship's crane, which increases the cost, makes it complicated to adjust the work process, and makes the work more extensive. There were other problems.

また、近年では、耐震性等の基準が厳格化される傾向にあり、既設の水底設置用筒状体がこの種の基準に満たない場合に補強する方法が確立されていないという問題もある。 Furthermore, in recent years, standards for earthquake resistance and the like have tended to become stricter, and there is also the problem that there is no established method for reinforcing existing cylindrical bodies for underwater installation if they do not meet these standards.

一方、従来のサクション式基礎では、基礎としての安全性を確保するため、曲げモーメントやせん断力に対抗できるよう深い深度まで貫入する必要がある場合、地中部の障害物の存在や壁面摩擦の増大などにより施工が困難となるおそれがあった。 On the other hand, with conventional suction type foundations, in order to ensure safety as a foundation, it is necessary to penetrate to a deep depth to resist bending moments and shear forces. There was a risk that construction would be difficult due to such factors.

そこで、本発明は、このような従来の問題に鑑み、モノパイル式基礎や桟橋等を支持する鋼管杭等の筒状体を好適に補強し、容易に施工可能な水底設置用筒状体の補強構造及び補強方法の提供を目的としてなされたものである。 In view of these conventional problems, the present invention aims to suitably reinforce cylindrical bodies such as steel pipe piles that support monopile foundations, piers, etc., and to provide reinforcement for cylindrical bodies for underwater installation that can be easily constructed. This was done for the purpose of providing a structure and reinforcement method.

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、水底地盤に貫入された状態で前記水底地盤に立設されてなる水底設置用筒状体の補強構造であって、前記水底設置用筒状体の外側に配置される補強用筒状体を備え、該補強用筒状体は、前記水底設置用筒状体の外周に沿って配置された内管と、該内管の外側に配置された外管と、前記内管と前記外管との間に形成される隔室の上面部を閉鎖する上蓋とを備え、前記隔室内を減圧することによって前記水底地盤に貫入されるようにしたことにある。 A feature of the invention as set forth in claim 1 for solving the above-mentioned conventional problems is a reinforcing structure for a cylindrical body for underwater installation, which is erected on the underwater ground while penetrating into the underwater ground. The reinforcing cylindrical body is provided with a reinforcing cylindrical body disposed outside the cylindrical body for underwater bottom installation, and the reinforcing cylindrical body includes an inner pipe disposed along the outer periphery of the cylindrical body for underwater bottom installation; an outer tube disposed outside the inner tube; and an upper lid that closes an upper surface of a compartment formed between the inner tube and the outer tube; The reason is that it is designed to penetrate into the ground.

請求項2に記載の発明の特徴は、請求項1の構成に加え、前記補強用筒状体は、周方向に間隔をおいて前記内管と前記外管とを連結する複数の補強用リブを備えていることにある。 A feature of the invention according to claim 2 is that, in addition to the structure of claim 1, the reinforcing cylindrical body includes a plurality of reinforcing ribs connecting the inner tube and the outer tube at intervals in the circumferential direction. The reason is that it is equipped with the following.

請求項3に記載の発明の特徴は、請求項2の構成に加え、前記補強用リブは、前記隔室を周方向に隔てる板状に形成され、板厚方向に貫通した挿通孔を有していることにある。 A feature of the invention according to claim 3 is that, in addition to the configuration of claim 2, the reinforcing rib is formed in a plate shape that separates the compartment in the circumferential direction, and has an insertion hole penetrating in the thickness direction. It is in the fact that

請求項4に記載の発明の特徴は、請求項1~3の何れか一の構成に加え、前記補強用筒状体は、上部に前記補強用筒状体よりも曲げ剛性の低い剛性変化抑制部材を備えていることにある。 The feature of the invention according to claim 4 is that, in addition to the configuration according to any one of claims 1 to 3, the reinforcing cylindrical body has a rigidity change suppressing member at the upper part that has lower bending rigidity than the reinforcing cylindrical body. The reason lies in the fact that it is equipped with parts.

請求項5に記載の発明の特徴は、請求項1~4の何れか一の構成に加え、前記補強用筒状体は、縦断面で分割した複数の分割筒体によって構成されていることにある。 A feature of the invention according to claim 5 is that, in addition to the structure according to any one of claims 1 to 4, the reinforcing cylindrical body is constituted by a plurality of divided cylindrical bodies divided in a longitudinal section. be.

請求項6に記載の発明の特徴は、請求項1~5の何れか一の構成に加え、前記補強用筒状体は、前記上蓋を貫通し、前記隔室と連通した排水管が取り付けられていることにある。 A feature of the invention described in claim 6 is that, in addition to the configuration of any one of claims 1 to 5, the reinforcing cylindrical body is provided with a drain pipe that penetrates the upper lid and communicates with the compartment. It is in the fact that

請求項7に記載の発明の特徴は、請求項1~6の何れか一の構成に加え、前記内管と前記水底設置用筒状体の外周面との隙間に充填材が充填されていることにある。 A feature of the invention according to claim 7 is that, in addition to the configuration according to any one of claims 1 to 6, a filler is filled in a gap between the inner pipe and the outer circumferential surface of the cylindrical body for installation on the bottom of the water. There is a particular thing.

請求項8に記載の発明の特徴は、水底地盤に貫入された状態で前記水底地盤に立設されてなる水底設置用筒状体の補強方法であって、前記水底設置用筒状体の外周に沿って配置される内管と、該内管の外側に配置された外管と、前記内管と前記外管との間に形成される隔室の上面部を閉鎖する上蓋とを備えてなる補強用筒状体を使用し、該補強用筒状体を前記水底設置用筒状体の外側に配置した状態で前記水底地盤上に下端を着底させた後、前記隔室内を減圧して前記補強用筒状体を前記水底地盤に貫入させることにある。 The feature of the invention according to claim 8 is a method for reinforcing a cylindrical body for underwater bottom installation, which is erected on the underwater bottom ground in a state of penetrating the underwater bottom ground, the outer periphery of the cylindrical body for underwater bottom installation being an inner tube disposed along the inner tube, an outer tube disposed outside the inner tube, and an upper lid closing an upper surface of a compartment formed between the inner tube and the outer tube. Using a reinforcing cylindrical body of The purpose of the present invention is to penetrate the reinforcing cylindrical body into the underwater ground.

請求項9に記載の発明の特徴は、請求項8の構成に加え、前記補強用筒状体を縦断面で分割した複数の分割筒体に分割しておき、各分割筒体を前記水底地盤上で前記水底設置用筒状体の外周面に沿わせて接合させることにある。 In addition to the structure of claim 8, a feature of the invention according to claim 9 is that the reinforcing cylindrical body is divided into a plurality of divided cylindrical bodies divided in longitudinal section, and each divided cylindrical body is separated from the underwater ground. At the top, the parts are joined along the outer peripheral surface of the cylindrical body for installation on the bottom of the water.

請求項10に記載の発明の特徴は、請求項8又は9の構成に加え、前記補強用筒状体を前記水底地盤に貫入させた後、前記内管と前記水底設置用筒状体との間の土砂を除去して隙間を形成し、該隙間に充填材を充填することにある。 The feature of the invention according to claim 10 is that, in addition to the configuration of claim 8 or 9, after the reinforcing cylindrical body penetrates into the underwater ground, the inner pipe and the underwater bottom installation cylindrical body are connected to each other. The purpose is to remove the earth and sand between them to form a gap, and then fill the gap with a filler.

請求項11に記載の発明の特徴は、請求項8~10の何れか一の構成に加え、前記水底設置用筒状体に作用するせん断力及び曲げモーメントを解析し、深度毎に得られた解析結果に基づいて前記補強用筒状体の貫入長を設定することにある。 The feature of the invention according to claim 11 is that, in addition to the configuration according to any one of claims 8 to 10, the shear force and bending moment acting on the cylindrical body for installation on the underwater bottom are analyzed and obtained for each depth. The purpose is to set the penetration length of the reinforcing cylindrical body based on the analysis results.

請求項12に記載の発明の特徴は、請求項8~11の何れか一の構成に加え、前記補強用筒状体を前記水底地盤に貫入する前に、該補強用筒状体の上部外周に洗掘防止用部材を取り付けておくことにある。 The feature of the invention according to claim 12 is that, in addition to the structure according to any one of claims 8 to 11, before the reinforcing cylindrical body penetrates into the underwater ground, the upper outer periphery of the reinforcing cylindrical body is The purpose is to attach scour prevention members to the area.

本発明に係る水底設置用筒状体の補強構造は、請求項1の構成を具備することによって、地震時に作用する曲げモーメントやせん断力が大きくなる条件においても、水底設置用筒状体の外径や肉厚を大きくすることなく、安全性を確保することができる。 The reinforcing structure for the cylindrical body for installation on the water bottom according to the present invention has the structure of claim 1, so that even under conditions where the bending moment and shear force acting during an earthquake become large, the cylindrical body for installation on the water bottom can be reinforced. Safety can be ensured without increasing the diameter or wall thickness.

また、本発明において、請求項2乃至3の構成を具備することによって、中空構造を有する補強用筒状体の強度を確保することができる。 Moreover, in the present invention, by providing the configurations of claims 2 and 3, the strength of the reinforcing cylindrical body having a hollow structure can be ensured.

また、本発明において、請求項4の構成を具備することによって、水底用筒状体と補強用筒状体との外径差、或いは肉厚差によって水底設置用筒状体に生じる曲げ剛性の急激な変化を抑制することができる。 Moreover, in the present invention, by having the structure of claim 4, the bending rigidity caused in the cylindrical body for underwater bottom installation due to the difference in outer diameter or wall thickness between the cylindrical body for underwater bottom and the reinforcing cylindrical body can be reduced. Rapid changes can be suppressed.

また、本発明において、請求項5の構成を具備することによって、水底設置用筒状体を打設した後に確実に補強用筒状体を施工することができ、既設の水底設置用筒状体の補強にも対応することができる。 In addition, in the present invention, by having the structure of claim 5, the reinforcing cylindrical body can be reliably constructed after the cylindrical body for underwater bottom installation is cast, and the reinforcing cylindrical body can be reliably installed on the existing cylindrical body for underwater bottom installation. It can also be used for reinforcement.

また、本発明において、請求項6の構成を具備することによって、補強用筒状体内の水を排出し、負圧を発生させることができる。 Further, in the present invention, by providing the structure of claim 6, water in the reinforcing cylindrical body can be discharged and negative pressure can be generated.

また、本発明において、請求項7の構成を具備することによって、水底設置用筒状体と補強用筒状体とを一体化することができる。 Moreover, in the present invention, by providing the structure of claim 7, the cylindrical body for installation on the bottom of the water and the cylindrical body for reinforcement can be integrated.

本発明に係る水底設置用筒状体の補強方法は、請求項8の構成を具備することによって、地震時に作用する曲げモーメントやせん断力が大きくなる条件においても、水底設置用筒状体の外径や肉厚を大きくすることなく、安全性を確保することができる。 The method for reinforcing a cylindrical body for installation on the underwater bottom according to the present invention is provided with the structure of claim 8, so that even under conditions where the bending moment and shear force acting during an earthquake become large, the cylindrical body for installation on the underwater bottom can be reinforced. Safety can be ensured without increasing the diameter or wall thickness.

また、本発明において、請求項9の構成を具備することによって、水底設置用筒状体を打設した後に確実に補強用筒状体を施工することができ、既設の水底設置用筒状体の補強にも対応することができる。 Further, in the present invention, by having the structure of claim 9, the reinforcing cylindrical body can be reliably constructed after the cylindrical body for underwater bottom installation is cast, and the reinforcing cylindrical body can be reliably installed on the existing cylindrical body for underwater bottom installation It can also be used for reinforcement.

また、本発明において、請求項10の構成を具備することによって、水底設置用筒状体と補強用筒状体との隙間を確実に形成し、当該隙間に充填材を充填することによって水底設置用筒状体と補強用筒状体とを一体化することができる。 Further, in the present invention, by having the structure of claim 10, a gap is reliably formed between the cylindrical body for underwater installation and the reinforcing cylindrical body, and by filling the gap with a filler, the underwater installation is carried out. The cylindrical body and the reinforcing cylindrical body can be integrated.

また、本発明において、請求項11の構成を具備することによって、曲げモーメントやせん断力の影響が大きい部分を確実に補強することができ、補強用筒状体を不必要に長くしなくてよい。 Further, in the present invention, by providing the structure of claim 11, it is possible to reliably reinforce the portions that are largely affected by bending moments and shear forces, and there is no need to make the reinforcing cylindrical body unnecessarily long. .

また、本発明において、請求項12の構成を具備することによって、後工程での洗掘防止用部材の施工の手間を省き、効率的に作業を行うことができる。 Moreover, in the present invention, by providing the configuration of claim 12, the work can be performed efficiently without the need for constructing the scour prevention member in a subsequent process.

本発明に係る水底設置用筒状体の補強構造の実施態様を示す正面図である。FIG. 2 is a front view showing an embodiment of a reinforcing structure for a cylindrical body for installation on the bottom of water according to the present invention. (a)は同上の補強部分を示すA-A線矢視断面図、(b)は同部分拡大縦断面図である。(a) is a cross-sectional view taken along the line AA showing the same reinforced portion as above, and (b) is an enlarged vertical cross-sectional view of the same portion. (a)は同上の補強用筒状体を構成する分割筒状体を示す正面図、(b)は同平面図、(c)は同底面図、(d)は図3(b)中のB-B線矢視断面図である。(a) is a front view showing the divided cylindrical body constituting the same reinforcing cylindrical body as above, (b) is the same top view, (c) is the same bottom view, and (d) is the same as in FIG. 3(b). It is a sectional view taken along the line B-B. 同上の水底設置用筒状体を用いた構造物の曲げモーメント及びせん断力を測定した結果を示すグラフである。It is a graph which shows the result of measuring the bending moment and shear force of the structure using the cylindrical body for underwater installation same as the above. (a)は本発明に係る水底設置用筒状体の補強方法における補強用筒状体を構成する分割筒状体の接合作業の状態を示す平面図、(b)は同側面図である。(a) is a plan view showing the state of the joining work of the divided cylindrical bodies constituting the reinforcing cylindrical body in the method for reinforcing a cylindrical body for underwater installation according to the present invention, and (b) is a side view of the same. (a)は同上の補強用筒状体を接合させ着底させた状態を示す平面図、(b)は同部分破断断面図である。(a) is a plan view showing a state in which the reinforcing cylindrical body is joined to the bottom, and (b) is a partially cutaway sectional view of the same. 同上の補強用筒状体内の排水開始した状態を示す部分破断断面図である。FIG. 3 is a partially cutaway sectional view showing a state in which drainage has started in the reinforcing cylindrical body same as above. 同上の補強用筒状体の貫入作業の状態を示す部分破断断面図である。It is a partially broken sectional view showing the state of the penetration work of the reinforcing cylindrical body same as the above. (a)は同上の補強用筒状体を水底地盤に貫入した状態を示すA-A線矢視断面図、(b)は同部分破断断面図である。(a) is a sectional view taken along the line AA showing the reinforcing cylindrical body as described above penetrated into the underwater ground, and (b) is a partially broken sectional view of the same. (a)は同上の補強用筒状体と水底設置用筒状体とを一体化した状態を示すA-A線矢視断面図、(b)は同部分破断断面図である。(a) is a sectional view taken along the line AA showing a state in which the reinforcing cylindrical body and the bottom installation cylindrical body are integrated, and (b) is a partially broken sectional view thereof.

次に、本発明に係る水底設置用筒状体の補強構造の実施態様を図1~図4に示した実施例に基づいて説明する。尚、図中符号1は水底地盤1、符号2は水面である。 Next, embodiments of the reinforcing structure for a cylindrical body for installation on the underwater bottom according to the present invention will be described based on the embodiments shown in FIGS. 1 to 4. In the figure, reference numeral 1 indicates the underwater ground 1, and reference numeral 2 indicates the water surface.

本実施例は、水底設置用筒状体3として、洋上風力発電設備4のモノパイル式基礎を例に説明する。 This embodiment will be described using a monopile foundation of an offshore wind power generation facility 4 as an example of the cylindrical body 3 for installation on the bottom of the water.

洋上風力発電設備4は、図1に示すように、水底地盤1に貫入された状態で水底地盤1に立設されてなる水底設置用筒状体3(モノパイル式基礎)と、水底設置用筒状体3に支持された中空塔型の塔本体部5と、塔本体部5の上端部に支持された風車設備(ナセル・ロータ)6とを備え、水底設置用筒状体3と塔本体部5とで塔型を成している。 As shown in FIG. 1, the offshore wind power generation facility 4 includes a cylindrical body 3 for underwater installation (monopile type foundation) that is erected in the underwater ground 1 while penetrating into the underwater ground 1, and a tube for underwater installation. It is equipped with a hollow tower-type tower main body part 5 supported by a shaped body 3, and a wind turbine equipment (nacelle/rotor) 6 supported at the upper end of the tower main body part 5. Together with part 5, it forms a tower shape.

水底設置用筒状体3は、鋼管等によって構成され、上下端が開口した円筒状等の筒状に形成されている。尚、水底設置用筒状体3の態様は、円筒状に限定されず、例えば、角筒状等であってもよい。 The cylindrical body 3 for installation on the bottom of the water is made of a steel pipe or the like, and is formed into a cylindrical shape with open upper and lower ends. In addition, the aspect of the cylindrical body 3 for underwater bottom installation is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape or the like.

この水底設置用筒状体3は、図1、図2に示すように、下側が所定の深さまで水底地盤1に貫入され、上側が所定の高さ分だけ水底地盤1より突出した状態で打設されている。 As shown in FIGS. 1 and 2, this cylindrical body 3 for installation on the underwater bottom is struck with its lower side penetrating into the underwater ground 1 to a predetermined depth and its upper side protruding from the underwater ground 1 by a predetermined height. It is set up.

また、この水底設置用筒状体3は、水底設置用筒状体3の外側に配置される補強用筒状体7を備え、地震時等に生じる曲げモーメントやせん断力に対抗できるよう補強されている。 The cylindrical body 3 for installation on the underwater bottom also includes a reinforcing cylindrical body 7 disposed outside the cylindrical body 3 for installation on the underwater bottom, and is reinforced to withstand bending moments and shearing forces generated during earthquakes. ing.

補強用筒状体7は、水底設置用筒状体3の外周に沿って配置された内管8と、内管8の外側に配置された外管9と、内管8と外管9との間に形成される隔室10の上面部を閉鎖する上蓋11とを備え、隔室10内の水を排出し、隔室10内を減圧することによって自重とサクション荷重とによって水底地盤1に貫入されるようになっている。 The reinforcing cylindrical body 7 includes an inner tube 8 disposed along the outer periphery of the cylindrical body 3 for installation on the bottom, an outer tube 9 disposed outside the inner tube 8, and an inner tube 8 and an outer tube 9. It is equipped with an upper lid 11 that closes the upper surface of the compartment 10 formed between the compartments 10 and 11, and drains the water in the compartment 10 and reduces the pressure inside the compartment 10, thereby causing water to flow into the water bottom ground 1 due to its own weight and suction load. It is meant to be penetrated.

補強用筒状体7の長さは、洋上風力発電設備4全体、又は水底設置用筒状体3に作用する曲げモーメント及びせん断力を構造解析用モデル等で解析し、その解析結果(図4を参照)から所定の曲げモーメント及びせん断力を超える範囲に合わせて貫入長を設定し、当該貫入長に水底より突出する部分の高さ等を考慮した余裕を加えて設定する。 The length of the reinforcing cylindrical body 7 is determined by analyzing the bending moment and shear force acting on the entire offshore wind power generation equipment 4 or the cylindrical body 3 for installation on the bottom using a structural analysis model, etc., and the analysis results (Fig. 4 Set the penetration length according to the range exceeding the predetermined bending moment and shear force from (see ), and set the penetration length by adding a margin that takes into account the height of the part protruding from the water bottom, etc.

尚、補強用筒状体7の貫入長は、対象となる洋上風力発電設備用に解析した結果に基づいて設定する場合に限定されず、同様の構造様式の他の洋上風力発電設備に対して過去に行った解析の結果や、実際の洋上風力発電設備4全体又は水底設置用筒状体3に作用する曲げモーメント及びせん断力を計測した結果に基づいて設定してもよい。 The penetration length of the reinforcing cylindrical body 7 is not limited to the case where it is set based on the analysis results for the target offshore wind power generation equipment, but it is set based on the results of analysis for the target offshore wind power generation equipment, and it is also set for other offshore wind power generation equipment with a similar structural style. It may be set based on the results of past analyzes or the results of measuring the bending moment and shear force acting on the entire offshore wind power generation facility 4 or the cylindrical body 3 for installation on the bottom.

また、この補強用筒状体7は、内管8の内側面、即ち、水底設置用筒状体3の外周面と対向する面と水底設置用筒状体3の外周面との隙間にモルタル等の充填材12が充填され、水底設置用筒状体3と一体化させてもよい。 Moreover, this reinforcing cylindrical body 7 is provided with mortar in the gap between the inner surface of the inner tube 8, that is, the surface facing the outer peripheral surface of the cylindrical body 3 for installation on the bottom of the water, and the outer peripheral surface of the cylindrical body 3 for installation on the bottom of the water. It may be filled with a filler 12 such as the like, and integrated with the cylindrical body 3 for installation on the bottom of the water.

この補強用筒状体7は、縦断面で分割した複数(本実施例では一対)の分割筒状体13,13によって構成され、両分割筒状体13,13を水底設置用筒状体3の外側から組付け、互いに接合させることによって、一つの二重管構造を有する筒状を成すようになっている。 This reinforcing cylindrical body 7 is composed of a plurality of divided cylindrical bodies 13, 13 (in this embodiment, a pair) divided in the longitudinal section, and both divided cylindrical bodies 13, 13 are connected to the bottom installation cylindrical body 3. By assembling them from the outside and joining them together, they form a cylindrical shape with a double-pipe structure.

各分割筒状体13,13は、図3に示すように、断面半円状に形成された鋼板からなる内管用板8aと、内管用板8aと半径方向外側に間隔をおいて対向する断面半円状に形成された鋼板からなる外管用板9aと、内管用板8aと外管用板9aとの間に形成される隔室10の上面部を閉鎖する扇形状の上蓋板11aと、内管用板8aの周方向端縁と外管用板9aの周方向端縁との間の開口部を閉鎖する端板14,14とを備え、内管用板8a、外管用板9a、上蓋板11a及び両端板14,14に囲まれた下面が開口した隔室10が形成されている。 As shown in FIG. 3, each of the divided cylindrical bodies 13, 13 includes an inner tube plate 8a made of a steel plate having a semicircular cross section, and a cross section facing the inner tube plate 8a at a distance from the inner tube plate 8a on the outside in the radial direction. an outer tube plate 9a made of a semicircular steel plate; a fan-shaped upper cover plate 11a that closes the upper surface of the compartment 10 formed between the inner tube plate 8a and the outer tube plate 9a; It includes end plates 14, 14 that close the opening between the circumferential edge of the inner tube plate 8a and the circumferential edge of the outer tube plate 9a, and includes the inner tube plate 8a, the outer tube plate 9a, and the upper cover plate. 11a and both end plates 14, 14, a compartment 10 whose lower surface is open is formed.

そして、この両分割筒状体13,13が接合されることによって、互いに接合された両内管用板8a,8aによって円筒状の内管8が、両外管用板9a,9aによって円筒状の外管9が、上蓋板11a,11aによって円環板状の上蓋11が形成される。 By joining these two divided cylindrical bodies 13, 13, the cylindrical inner pipe 8 is formed by the two inner pipe plates 8a, 8a, which are joined to each other, and the cylindrical outer pipe is formed by the two outer pipe plates 9a, 9a. An annular plate-shaped upper lid 11 of the tube 9 is formed by the upper lid plates 11a, 11a.

また、各分割筒状体13,13は、周方向に間隔をおいて細板状の複数の補強用リブ15,15…を備え、補強用リブ15,15…の水平方向両側縁がそれぞれ内管用板8aと外管用板9aとの対向する面に溶接等によって固定され、内管8と外管9とが補強用リブ15,15…を介して連結され、構造的に補強されている。 Each of the divided cylindrical bodies 13, 13 is provided with a plurality of thin plate-shaped reinforcing ribs 15, 15... at intervals in the circumferential direction, and both horizontal edges of the reinforcing ribs 15, 15... It is fixed to opposing surfaces of the tube plate 8a and the outer tube plate 9a by welding or the like, and the inner tube 8 and outer tube 9 are connected via reinforcing ribs 15, 15, . . . and are structurally reinforced.

各補強用リブ15,15…には、縦方向に間隔をおいて複数の板厚方向に貫通した挿通孔15a,15a…を有し、補強用リブ15,15…によって隔てられた隔室10内部が互いに連通している。 Each of the reinforcing ribs 15, 15... has a plurality of insertion holes 15a, 15a... that pass through the plate thickness direction at intervals in the longitudinal direction, and the compartments 10 are separated by the reinforcing ribs 15, 15... The insides are interconnected.

また、排水管19が上蓋板11a,11aを貫通し、隔室10,10…と連通するように取り付けられている。 Further, a drain pipe 19 is installed so as to pass through the upper cover plates 11a, 11a and communicate with the compartments 10, 10, . . . .

また、各分割筒状体13,13の両側縁には、端板14,14と連続して一体に形成されたフランジ16,16を備え、両分割筒状体13,13を互いに組み付けるとともに、両側縁のフランジ16,16を互いに重ね合わせ、重ねた両フランジ16,16をボルト締結することにより両分割筒状体13,13が接合され、補強用筒状体7が形成されるようになっている。尚、図中符号は締結用のボルトを貫通させるボルト挿通孔16a,16a…、符号16bは締結用のボルトである。 Further, both side edges of each divided cylindrical body 13, 13 are provided with flanges 16, 16 which are continuously formed integrally with the end plates 14, 14, and both the divided cylindrical bodies 13, 13 are assembled to each other. By overlapping the flanges 16, 16 on both side edges with each other and fastening the overlapping flanges 16, 16 with bolts, both the divided cylindrical bodies 13, 13 are joined, and the reinforcing cylindrical body 7 is formed. ing. Incidentally, the reference numerals in the figure indicate bolt insertion holes 16a, 16a, . . . , through which fastening bolts pass, and the reference numeral 16b indicates a fastening bolt.

また、補強用筒状体7は、上蓋11に円環状の剛性変化抑制部材17が固定され、水底設置用筒状体3と補強用筒状体7との外径差によって生じる剛性の急激な変化を抑制するようになっている。 Further, in the reinforcing cylindrical body 7, an annular rigidity change suppressing member 17 is fixed to the upper lid 11, and the rigidity changes rapidly due to the difference in outer diameter between the bottom installation cylindrical body 3 and the reinforcing cylindrical body 7. It is designed to suppress change.

剛性変化抑制部材17は、鋼材等によって上蓋11よりも横断面積が小さい、又は補強用筒状体7よりも肉厚の薄い円筒状に形成され、水底設置用筒状体3を把持するようになっている。 The rigidity change suppressing member 17 is formed of a steel material or the like into a cylindrical shape with a smaller cross-sectional area than the upper lid 11 or thinner than the reinforcing cylindrical body 7, and is configured to grip the cylindrical body 3 for installation on the bottom of the water. It has become.

尚、剛性変化抑制部材17は、縦断面で分割した複数(本実施例では一対)の分割剛性変化抑制部材17a,17aによって構成してもよい。 Note that the rigidity change suppressing member 17 may be constituted by a plurality of divided rigidity change suppressing members 17a, 17a (a pair in this embodiment) divided along the longitudinal section.

また、補強用筒状体7は、補強用筒状体7が水底1に貫入した後、水底面上に位置する上部外周に砕石等からなる洗掘防止用部材18を設け、補強用筒状体7の周囲が潮流等によって洗掘されることを防止するようにしてもよい。 Further, after the reinforcing cylindrical body 7 penetrates into the water bottom 1, a scouring prevention member 18 made of crushed stone or the like is provided on the upper outer periphery of the reinforcing cylindrical body 7 located on the water bottom surface. The surroundings of the body 7 may be prevented from being scoured by tidal currents or the like.

次に、本発明に係る水底設置用筒状体3の補強方法について図5~図10に基づいて説明する。尚、上述の実施例と同様の構成には同一符号を付して説明を省略する。 Next, a method for reinforcing the cylindrical body 3 for installation on the underwater bottom according to the present invention will be explained based on FIGS. 5 to 10. Note that the same components as those in the above-described embodiment are given the same reference numerals, and the description thereof will be omitted.

先ず、既存の工法に基づいて水底設置用筒状体3及び洋上風力発電設備4を構築する。 First, the cylindrical body 3 for underwater installation and the offshore wind power generation facility 4 are constructed based on existing construction methods.

具体的には、特に図示しないが、先ず、陸上の工場や製作ヤードで製作されたモノパイル等の水底設置用筒状体3を基地港に移送し、当該基地港において昇降式作業船(以下、SEP船という)のクレーンを用いてSEP船上に積込む。 Specifically, although not particularly shown, first, a cylindrical body 3 for installation on the bottom, such as a monopile, manufactured in an onshore factory or production yard is transferred to a base port, and at the base port, an elevating work boat (hereinafter referred to as Load onto the SEP ship using the crane of the SEP ship.

次に、水底設置用筒状体3を積み込んだSEP船で設置海域まで海上輸送した後、設置海域にてSEP船のレグを降下して着底させ、レグに支持されたSEP船本体を水上に上昇させ、SEP船本体を波浪等に対し安定した状態とする。 Next, the SEP ship loaded with the cylindrical body 3 for underwater installation is transported by sea to the installation area, and then the legs of the SEP ship are lowered and landed on the bottom in the installation area, and the SEP ship body supported by the legs is lifted out of the water. The main body of the SEP ship will be raised to a stable state against waves, etc.

次に、SEP船のクレーンを用いてSEP船上に積載された水底設置用筒状体3を吊り上げて起立させ、その状態で水底地盤1まで吊り下ろし着底させる。 Next, using the crane of the SEP ship, the cylindrical body 3 for underwater installation loaded on the SEP ship is lifted up and erected, and in this state, it is lowered to the underwater ground 1 and placed on the bottom.

そして、水底地盤1に着底させた筒状体の頭部をハンマ等で打ち込み、筒状体を水底地盤1に貫入させて設置する。 Then, the head of the cylindrical body that has landed on the bottom of the water 1 is driven in with a hammer or the like, and the cylindrical body is installed by penetrating into the bottom of the water 1.

水底設置用筒状体3の打設が完了したら、上端部に風車設備(ナセル・ロータ)6が固定された塔本体部5を施工水域に移送し、上端部に風車設備(ナセル・ロータ)6が固定された塔本体部5を起重機船等によって吊り上げ、塔本体部5の下端を水底設置用筒状体3に連結し、洋上風力発電設備4を構築する。 When the casting of the cylindrical body 3 for installation on the water bottom is completed, the tower main body 5 with the wind turbine equipment (nacelle/rotor) 6 fixed to the upper end is transferred to the construction water area, and the wind turbine equipment (nacelle/rotor) is attached to the upper end. The tower main body 5 to which 6 is fixed is lifted up by a crane boat or the like, and the lower end of the tower main body 5 is connected to the cylindrical body 3 for installation on the bottom of the water, thereby constructing the offshore wind power generation facility 4.

尚、補強対象は、上述した新設の設備に限定されず、既設の洋上風力発電設備4等でもよい。また、補強用筒状体7の設置は、水底設置用筒状体3を水底に打設した後に実施してもよい。 Note that the object to be reinforced is not limited to the newly installed equipment described above, but may also be the existing offshore wind power generation equipment 4 or the like. Further, the reinforcing cylindrical body 7 may be installed after the bottom installation cylindrical body 3 is cast on the water bottom.

次に、構築された洋上風力発電設備4全体に作用する曲げモーメント及びせん断力を構造解析用モデル等を用いて解析し、深度毎に得られた解析結果(図を参照)に基づいて補強用筒状体7の貫入長を設定し、それに基づいて補強用筒状体7の長さを決定する。 Next, the bending moment and shear force acting on the entire constructed offshore wind power generation facility 4 are analyzed using a structural analysis model, and based on the analysis results obtained for each depth (see the figure), reinforcement The penetration length of the cylindrical body 7 is set, and the length of the reinforcing cylindrical body 7 is determined based on it.

補強用筒状体7の長さが決定したら、陸上の製作ヤード等で補強用筒状体7を構成する分割筒状体13,13を製作し、施工水域まで搬送し、補強用筒状体7を設置する。 Once the length of the reinforcing cylindrical body 7 is determined, the divided cylindrical bodies 13, 13 that make up the reinforcing cylindrical body 7 are manufactured in a production yard on land, etc., and transported to the construction area, and the reinforcing cylindrical body Install 7.

尚、補強用筒状体7を構成する分割筒状体13,13には、その上部外周に洗掘防止用部材18を取り付けておいてもよい。 Incidentally, a scour prevention member 18 may be attached to the upper outer periphery of the divided cylindrical bodies 13, 13 constituting the reinforcing cylindrical body 7.

補強用筒状体7を設置するには、図5~図6に示すように、水底設置用筒状体3の外側からクレーン等(図示せず)で吊り上げた各分割筒状体13,13を、内周側を対向させて互いに近接させ、水底地盤1より上方で仮吊り、又は水底地盤1上で仮置きして水底設置用筒状体3を挟んで両分割筒状体13,13を互いに組み合わせ、両側縁のフランジ16,16を重ね合わせる。 To install the reinforcing cylindrical body 7, as shown in FIGS. 5 and 6, each divided cylindrical body 13, 13 is lifted from the outside of the cylindrical body 3 for installation on the bottom with a crane or the like (not shown). are placed close to each other with their inner circumferential sides facing each other, and either temporarily suspended above the water bottom ground 1 or temporarily placed on the water bottom ground 1 and sandwiching the water bottom installation tubular body 3 between the two divided cylindrical bodies 13,13. are combined with each other, and the flanges 16, 16 on both side edges are overlapped.

次に、重ね合わせたフランジ16,16をボルトで締結し、両分割筒状体13,13を接合させ、水底設置用筒状体3の外周に沿って補強用筒状体7を組み立て、組み立てた補強用筒状体7の下端を位置調整しつつ水底地盤1に着底させる。尚、水底地盤1の上方で仮吊りした状態で両分割筒状体13,13をボルト止めする都度、順次水底地盤1に向けて下降させるようにしてもよい。 Next, the overlapping flanges 16, 16 are fastened with bolts, the two divided cylindrical bodies 13, 13 are joined, and the reinforcing cylindrical body 7 is assembled along the outer periphery of the cylindrical body 3 for underwater installation. The lower end of the reinforcing cylindrical body 7 is brought to the bottom of the water bottom 1 while adjusting its position. Incidentally, each time the two divided cylindrical bodies 13, 13 are bolted together while temporarily suspended above the water bottom ground 1, they may be sequentially lowered toward the water bottom ground 1.

補強用筒状体7は、着底するとその自重によって下端部がある程度水底地盤1に貫入され、水底地盤1によって補強筒状体の下端開口が閉鎖される。 When the reinforcing cylindrical body 7 reaches the bottom, its lower end penetrates into the water bottom ground 1 to some extent due to its own weight, and the bottom opening of the reinforcing cylindrical body is closed by the water bottom ground 1.

次に、図7に示すように、先端が上蓋11を貫通し、隔室10内と連通するように予め取り付けられた1又は複数の排水管19を通して隔室10内の水を排水する。尚、図中符号20は排水用ポンプである。 Next, as shown in FIG. 7, the water in the compartment 10 is drained through one or more drain pipes 19 that are installed in advance so as to penetrate the upper lid 11 and communicate with the interior of the compartment 10. Note that the reference numeral 20 in the figure is a drainage pump.

排水管19の材質は、特に限定されず、鋼製でもポリエチレン等の樹脂製でもよく、水圧に耐えられる強度があるものであればよい。 The material of the drain pipe 19 is not particularly limited, and may be made of steel or resin such as polyethylene, as long as it has the strength to withstand water pressure.

その際、隔室10内は、補強用リブ15,15…によって複数に隔てられているが、補強用リブ15,15…に挿通孔15a,15a…が設けられ、内部間が互いに連通しているので好適に隔室10内の水を排出させることができる。 At that time, the inside of the compartment 10 is divided into a plurality of parts by reinforcing ribs 15, 15..., but the reinforcing ribs 15, 15... are provided with insertion holes 15a, 15a..., so that the insides communicate with each other. Therefore, the water in the compartment 10 can be appropriately discharged.

隔室10内の水が排出され、隔室10内が減圧されると、図8に示すように、補強用筒状体7に自重による荷重とともにサクション荷重が作用し、補強用筒状体7が水底地盤1に貫入される。 When the water in the compartment 10 is discharged and the pressure in the compartment 10 is reduced, as shown in FIG. penetrates into the underwater ground 1.

その際、補強用筒状体7の上蓋11の上面に周方向に間隔をおいて複数の水圧計を設置しておき、当該水圧計より得られる各位置の深度情報に基づき補強用筒状体7が水底地盤1に貫入される時の傾斜角を確認し、その結果に基づいて複数の排水管19による排水量や排水用ポンプ20のオン・オフを調整することが望ましい。 At that time, a plurality of water pressure gauges are installed at intervals in the circumferential direction on the upper surface of the upper lid 11 of the reinforcing cylindrical body 7, and the reinforcing cylindrical body is It is desirable to check the angle of inclination when the drain pipe 7 penetrates into the underwater ground 1, and adjust the amount of water discharged by the plurality of drain pipes 19 and the on/off state of the drainage pump 20 based on the result.

尚、補強用筒状体7の貫入時の傾斜角を計測する手段は、上記の水圧計に限定されず、例えば、傾斜計等を用いてもよい。 Note that the means for measuring the inclination angle at the time of penetration of the reinforcing cylindrical body 7 is not limited to the above-mentioned water pressure gauge, and for example, an inclinometer or the like may be used.

そして、図9に示すように、補強用筒状体7が水底地盤1の所定の深さまで貫入されたら、排水管19を撤去し、貫入作業が完了する。 Then, as shown in FIG. 9, once the reinforcing cylindrical body 7 has penetrated into the underwater ground 1 to a predetermined depth, the drain pipe 19 is removed and the penetration work is completed.

その際、補強用筒状体7の上部外周に洗掘防止用部材18が取り付けられているので、補強用筒状体7の貫入作業完了と同時に洗掘防止用部材18の設置が完了する。 At this time, since the scour prevention member 18 is attached to the upper outer periphery of the reinforcing cylindrical body 7, the installation of the scour prevention member 18 is completed at the same time as the penetration work of the reinforcing cylindrical body 7 is completed.

補強用筒状体7の貫入が完了した時点では、補強用筒状体7の内管8と水底設置用筒状体3の外周との間に土砂が残った状態にあるので、必要に応じて補強用筒状体7の内管8と水底設置用筒状体3との間に向けてウォータージェットを噴射し、残存した土砂を除去して隙間を形成し、図10に示すように、隙間にモルタル等の充填材12を充填して水底設置用筒状体3と補強用筒状体7とを一体化させる。 When the penetration of the reinforcing cylindrical body 7 is completed, dirt remains between the inner pipe 8 of the reinforcing cylindrical body 7 and the outer periphery of the underwater bottom installation cylindrical body 3. A water jet is injected between the inner pipe 8 of the reinforcing cylindrical body 7 and the cylindrical body 3 for installation on the bottom, and the remaining earth and sand are removed to form a gap, as shown in FIG. A filling material 12 such as mortar is filled in the gap to integrate the underwater bottom installation cylindrical body 3 and the reinforcing cylindrical body 7.

最後に、図2に示すように、必要に応じて補強用筒状体7の上部に上蓋11よりも横断面積の小さい、又は補強用筒状体7よりも肉厚の薄い筒状の剛性変化抑制部材17を取り付け、必要に応じて剛性変化抑制部材17と水底設置用筒状体3の外周との間にモルタル等の充填材12を充填して補強作業が完了する。 Finally, as shown in FIG. 2, if necessary, a cylindrical shape having a smaller cross-sectional area than the upper cover 11 or thinner than the reinforcing cylindrical body 7 is provided on the upper part of the reinforcing cylindrical body 7 to change the rigidity. The suppressing member 17 is attached, and if necessary, a filler material 12 such as mortar is filled between the rigidity change suppressing member 17 and the outer periphery of the cylindrical body 3 for installation on the bottom of the water, and the reinforcing work is completed.

このように構成された水底設置用筒状体3の補強方法では、水底設置用筒状体3の外側に補強用筒状体7が設置されることにより、大きな曲げモーメントやせん断力が作用する部分の断面積を大きくすることができ、曲げモーメントやせん断力に対し高い耐力を得ることができる。 In the method for reinforcing the cylindrical body 3 for installation on the underwater bottom configured as described above, the reinforcing cylindrical body 7 is installed outside the cylindrical body 3 for installation on the underwater bottom, so that a large bending moment and shearing force act on the cylindrical body 7. The cross-sectional area of the part can be increased, and high resistance to bending moment and shear force can be obtained.

よって、水底設置用筒状体3の外径や肉厚を大きくすることなく、安全性を確保することができるので、水底設置用筒状体3の新設に際し、吊り上げ能力が大きいクレーンを有する大型起重機船を別途手配せずとも、調達したSEP船のクレーンでは吊り上げ能力で対応することができ、その分、施工費用を抑え、効率的に作業を行うことができる。 Therefore, safety can be ensured without increasing the outer diameter or wall thickness of the cylindrical body 3 for installation on the underwater bottom, so when installing a new cylindrical body 3 for installation on the underwater bottom, it is possible to use a large-sized crane with a large lifting capacity. The crane of the procured SEP ship can handle the lifting with its lifting capacity without separately arranging a hoist ship, which reduces construction costs and allows the work to be carried out more efficiently.

この水底設置用筒状体3の補強方法では、ハンマ等による打設に依らず、サクション荷重によって補強用筒状体7を確実に貫入させることができるので、新設の場合のみならず既設の水底設置用筒状体3の補強にも対応することができる。 In this method of reinforcing the cylindrical body 3 for installation on the water bottom, the reinforcing cylindrical body 7 can be reliably penetrated by suction load without relying on driving with a hammer or the like. It can also be used to reinforce the installation tubular body 3.

尚、上述の実施例では、洋上風力発電設備4のモノパイル基礎を例に説明したが、本願発明は、桟橋等の杭支持構造物を支持する鋼管杭等にも適用することができる。 In addition, although the above-mentioned Example demonstrated the monopile foundation of the offshore wind power generation facility 4 as an example, this invention can also be applied to the steel pipe pile etc. which support the pile support structure, such as a pier.

また、上述の実施例では、補強用筒状体7を二分割した分割筒状体13,13によって構成した場合について説明したが、3分割以上に分割した分割筒状体によって構成してもよく、分割筒状体を用いずに補強用筒状体7を一体に形成してもよい。 Furthermore, in the above embodiment, the reinforcing cylindrical body 7 is constructed by two divided cylindrical bodies 13, 13, but it may be constructed by a divided cylindrical body divided into three or more parts. Alternatively, the reinforcing cylindrical body 7 may be integrally formed without using the divided cylindrical body.

さらに、補強用筒状体7には、貫入時に水底地盤1内の障害物を排除するために、内管8および外管9の下端部にウォータージェットを設置するようにしてもよい。 Furthermore, water jets may be installed in the reinforcing cylindrical body 7 at the lower ends of the inner tube 8 and the outer tube 9 in order to eliminate obstacles in the underwater ground 1 during penetration.

また、隔室内10内の水を排水するための排水用ポンプ20の排水口に減圧装置としてエジェクターを取り付けるようにしてもよい。エジェクターを取り付けることによって噴流で排水することにより負圧を駆動させることができる。 Further, an ejector may be attached as a pressure reducing device to the drain port of the drain pump 20 for draining water in the compartment 10. By attaching an ejector, it is possible to drive negative pressure by discharging water with a jet stream.

1 水底地盤
2 水面
3 水底設置用筒状体
4 洋上風力発電設備
5 塔本体部
6 風車設備
7 補強用筒状体
8 内管
9 外管
10 隔室
11 上蓋
12 充填材
13 分割筒状体
14 端板
15 補強用リブ
16 フランジ
17 剛性変化抑制部材
18 洗掘防止用部材
19 排水管
20 排水用ポンプ
1 Underwater ground 2 Water surface 3 Cylindrical body for underwater installation 4 Offshore wind power generation equipment 5 Tower main body 6 Wind turbine equipment 7 Reinforcing cylindrical body 8 Inner pipe 9 Outer pipe 10 Compartment 11 Upper cover 12 Filler 13 Divided cylindrical body 14 End plate 15 Reinforcing rib 16 Flange 17 Rigidity change suppressing member 18 Scour prevention member 19 Drain pipe 20 Drain pump

Claims (12)

水底地盤に貫入された状態で前記水底地盤に立設されてなる水底設置用筒状体の補強構造であって、
前記水底設置用筒状体の外側に配置される補強用筒状体を備え、
該補強用筒状体は、前記水底設置用筒状体の外周に沿って配置された内管と、該内管の外側に配置された外管と、前記内管と前記外管との間に形成される隔室の上面部を閉鎖する上蓋とを備え、
前記隔室内を減圧することによって前記水底地盤に貫入されるようにしたことを特徴とする水底設置用筒状体の補強構造。
A reinforcing structure for a cylindrical body for underwater installation, which is erected in the underwater ground in a state where it penetrates into the underwater ground,
comprising a reinforcing cylindrical body disposed outside the cylindrical body for installation on the underwater bottom;
The reinforcing cylindrical body includes an inner tube disposed along the outer periphery of the cylindrical body for underwater installation, an outer tube disposed outside the inner tube, and a space between the inner tube and the outer tube. and an upper lid that closes the upper surface of the compartment formed in the
A reinforcing structure for a cylindrical body for installation on the underwater bottom, characterized in that the structure penetrates into the underwater ground by reducing the pressure inside the compartment.
前記補強用筒状体は、周方向に間隔をおいて前記内管と前記外管とを連結する複数の補強用リブを備えている請求項1に記載の水底設置用筒状体の補強構造。 The reinforcement structure for a cylindrical body for underwater bottom installation according to claim 1, wherein the reinforcing cylindrical body includes a plurality of reinforcing ribs connecting the inner tube and the outer tube at intervals in the circumferential direction. . 前記補強用リブは、前記隔室を周方向に隔てる板状に形成され、板厚方向に貫通した挿通孔を有している請求項2に記載の水底設置用筒状体の補強構造。 The reinforcing structure for a cylindrical body for underwater bottom installation according to claim 2, wherein the reinforcing rib is formed in a plate shape that circumferentially separates the compartment, and has an insertion hole penetrating in the thickness direction. 前記補強用筒状体は、上部に前記補強用筒状体よりも曲げ剛性の低い剛性変化抑制部材を備えている請求項1~3の何れか一に記載の水底設置用筒状体の補強構造。 Reinforcement of a cylindrical body for underwater bottom installation according to any one of claims 1 to 3, wherein the reinforcing cylindrical body is provided with a rigidity change suppressing member having lower bending rigidity than the reinforcing cylindrical body at the upper part. structure. 前記補強用筒状体は、縦断面で分割した複数の分割筒体によって構成されている請求項1~4の何れか一に記載の水底設置用筒状体の補強構造。 The reinforcing structure for a cylindrical body for underwater bottom installation according to any one of claims 1 to 4, wherein the reinforcing cylindrical body is constituted by a plurality of divided cylindrical bodies divided in a longitudinal section. 前記補強用筒状体は、前記上蓋を貫通し、前記隔室と連通した排水管が取り付けられている請求項1~5の何れか一に記載の水底設置用筒状体の補強構造。 6. The reinforcing structure for a cylindrical body for underwater bottom installation according to any one of claims 1 to 5, wherein the reinforcing cylindrical body is attached with a drain pipe that penetrates the upper lid and communicates with the compartment. 前記内管と前記水底設置用筒状体の外周面との隙間に充填材が充填されている請求項1~6の何れか一に記載の水底設置用筒状体の補強構造。 The reinforcing structure for a cylindrical body for underwater bottom installation according to any one of claims 1 to 6, wherein a filler is filled in a gap between the inner tube and the outer peripheral surface of the cylindrical body for underwater bottom installation. 水底地盤に貫入された状態で前記水底地盤に立設されてなる水底設置用筒状体の補強方法であって、
前記水底設置用筒状体の外周に沿って配置される内管と、該内管の外側に配置された外管と、前記内管と前記外管との間に形成される隔室の上面部を閉鎖する上蓋とを備えてなる補強用筒状体を使用し、
該補強用筒状体を前記水底設置用筒状体の外側に配置した状態で前記水底地盤上に下端を着底させた後、
前記隔室内を減圧して前記補強用筒状体を前記水底地盤に貫入させることを特徴とする水底設置用筒状体の補強方法。
A method for reinforcing a cylindrical body for underwater installation, which is erected in the underwater ground in a state where it penetrates into the underwater ground,
an inner pipe arranged along the outer periphery of the cylindrical body for installation on the underwater bottom, an outer pipe arranged outside the inner pipe, and an upper surface of a compartment formed between the inner pipe and the outer pipe. Using a reinforcing cylindrical body comprising an upper lid that closes the
After the lower end of the reinforcing cylindrical body is placed on the outside of the cylindrical body for installation on the water bottom, and the lower end thereof is placed on the bottom of the water,
A method for reinforcing a cylindrical body for installation on the underwater bottom, characterized in that the pressure inside the compartment is reduced and the reinforcing cylindrical body penetrates into the underwater ground.
前記補強用筒状体を縦断面で分割した複数の分割筒体に分割しておき、各分割筒体を前記水底地盤上で前記水底設置用筒状体の外周面に沿わせて接合させる請求項8に記載の水底設置用筒状体の補強方法。 The reinforcing cylindrical body is divided into a plurality of divided cylindrical bodies divided in longitudinal section, and each divided cylindrical body is joined on the underwater bed ground along the outer peripheral surface of the cylindrical body for underwater installation. Item 8. The method for reinforcing a cylindrical body for installation on the bottom of water. 前記補強用筒状体を前記水底地盤に貫入させた後、前記内管と前記水底設置用筒状体との間の土砂を除去して隙間を形成し、該隙間に充填材を充填する請求項8又は9に記載の水底設置用筒状体の補強方法。 After the reinforcing cylindrical body penetrates into the underwater ground, earth and sand between the inner pipe and the underwater bottom installation cylindrical body is removed to form a gap, and the gap is filled with a filler material. The method for reinforcing a cylindrical body for underwater bottom installation according to item 8 or 9. 前記水底設置用筒状体に作用するせん断力及び曲げモーメントを解析し、深度毎に得られた解析結果に基づいて前記補強用筒状体の貫入長を設定する請求項8~10の何れか一に記載の水底設置用筒状体の補強方法。 Any one of claims 8 to 10, wherein the shear force and bending moment acting on the cylindrical body for installation on the underwater bottom are analyzed, and the penetration length of the reinforcing cylindrical body is set based on the analysis results obtained for each depth. 1. The method for reinforcing a cylindrical body for installation on the bottom of water. 前記補強用筒状体を前記水底地盤に貫入する前に、該補強用筒状体の上部外周に洗掘防止用部材を取り付けておく請求項8~11の何れか一に記載の水底設置用筒状体の補強方法。 The water bottom installation according to any one of claims 8 to 11, wherein a scouring prevention member is attached to the upper outer periphery of the reinforcing cylindrical body before the reinforcing cylindrical body penetrates into the underwater bed ground. How to reinforce a cylindrical body.
JP2022045181A 2022-03-22 2022-03-22 Reinforcement structure and reinforcement method for cylindrical body for underwater installation Pending JP2023139586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022045181A JP2023139586A (en) 2022-03-22 2022-03-22 Reinforcement structure and reinforcement method for cylindrical body for underwater installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022045181A JP2023139586A (en) 2022-03-22 2022-03-22 Reinforcement structure and reinforcement method for cylindrical body for underwater installation

Publications (1)

Publication Number Publication Date
JP2023139586A true JP2023139586A (en) 2023-10-04

Family

ID=88204536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022045181A Pending JP2023139586A (en) 2022-03-22 2022-03-22 Reinforcement structure and reinforcement method for cylindrical body for underwater installation

Country Status (1)

Country Link
JP (1) JP2023139586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7614434B1 (en) 2024-08-09 2025-01-15 日鉄エンジニアリング株式会社 Process Planning Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7614434B1 (en) 2024-08-09 2025-01-15 日鉄エンジニアリング株式会社 Process Planning Method

Similar Documents

Publication Publication Date Title
EP2310670B1 (en) Support structure for use in the offshore wind farm industry
US20220002961A1 (en) Suction Anchors and Their Methods of Manufacture
EP2837554A1 (en) Partially floating marine platform for offshore wind-power, bridges and marine buildings, and construction method
EP3904674B1 (en) Floating platform for high-power wind turbines
JP6776505B2 (en) How to build the foundation of offshore facilities, the foundation of offshore facilities and the foundation of offshore facilities
KR101043606B1 (en) Net support mechanism of single support pile for soft ground for installation of offshore structures
CN103255752B (en) Support the buoyant support fixed platform of offshore wind turbine, marine works
CN106703066B (en) The construction method of offshore wind turbine foundation single-column attachment assembled berthing structure
Malhotra Design and construction considerations for offshore wind turbine foundations in North America
CN101876174A (en) Foundation structure of marine wind electric field fan
JP2023139586A (en) Reinforcement structure and reinforcement method for cylindrical body for underwater installation
NL2028088B1 (en) Concrete connector body for an offshore wind turbine.
CN201943084U (en) Negative pressure bucket type foundation structure for offshore wind driven generator with stabilizers
CN116292123A (en) An offshore wind power and floating photovoltaic combined system and construction method
JP2002047665A (en) Installation method for jacket structure
JP3790451B2 (en) Underwater foundation and installation method of underwater foundation
US20240328107A1 (en) Gravity based foundation
JP3776690B2 (en) Jacket structure
CN219952021U (en) Marine fan foundation with transition section and combined negative pressure barrel and underwater single pile
CN216973476U (en) Gravity type fan foundation that caisson and steel-pipe pile combine
JP2023139585A (en) Reinforcement structure and reinforcement method for cylindrical body for underwater installation
CN112160336B (en) Combined type anti-flushing tidal flat fan foundation and construction method thereof
KR101381276B1 (en) Construction method of split type pc house and split type pc house
KR20250032133A (en) Suction pile anchor having initial penetration meams
EP2189576A1 (en) Foundation system for marine structures in deep water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241216