JP2022150376A - oxygen storage material - Google Patents
oxygen storage material Download PDFInfo
- Publication number
- JP2022150376A JP2022150376A JP2021052955A JP2021052955A JP2022150376A JP 2022150376 A JP2022150376 A JP 2022150376A JP 2021052955 A JP2021052955 A JP 2021052955A JP 2021052955 A JP2021052955 A JP 2021052955A JP 2022150376 A JP2022150376 A JP 2022150376A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen storage
- ceria
- storage material
- zirconia
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
【課題】圧力損失を低減することができ、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)に適用可能な酸素ストレージ材料を提供する。【解決手段】ジルコニアを含むコアと、セリアを含むシェルとからなるコアシェル型ナノ粒子を含有する、酸素ストレージ材料。【選択図】なしThe present invention provides an oxygen storage material that can reduce pressure loss and is applicable to three-way catalysts (TWCs) suitable for use as filter substrates in exhaust gas purification filters (GPFs). The oxygen storage material contains core-shell nanoparticles that are made of a core containing zirconia and a shell containing ceria. [Selected Figure] None
Description
本発明は、酸素ストレージ材料に関する。 The present invention relates to oxygen storage materials.
従来、自動車等に搭載されるガソリンエンジンにおいて、燃焼効率の優れる直噴ガソリンエンジンでは、すす状PM(パティキュレートマター)といった粒子状物質が多く排出されるため排気通路に粒子状物質を捕捉する排気浄化フィルタ(ガソリンパティキュレートフィルタ:Gasoline Particulate Filter)(GPF)を設ける技術がある。 Conventionally, among gasoline engines installed in automobiles, etc., direct-injection gasoline engines with excellent combustion efficiency emit a large amount of particulate matter such as soot PM (particulate matter), so exhaust that traps particulate matter in the exhaust passage. There is a technique of providing a purification filter (Gasoline Particulate Filter) (GPF).
また、ガソリンエンジンの排気通路には、排気中に含まれるCO、HC及びNOxを浄化する三元触媒(TWC)が、ハニカム支持体に担持された状態で設けられる。特に、近年では、触媒浄化の要求性能を満たすために複数の三元触媒(TWC)が直列に排気通路に配置されることが多い。排気浄化フィルタ(GPF)のフィルタ基材に三元触媒(TWC)を担持させようとすると、圧力損失と排気浄化性能との両立が困難になる。 In addition, a three-way catalyst (TWC) that purifies CO, HC and NOx contained in exhaust gas is provided in an exhaust passage of a gasoline engine while being carried on a honeycomb support. In recent years, in particular, a plurality of three-way catalysts (TWC) are often arranged in series in an exhaust passage in order to meet the required catalytic purification performance. If an attempt is made to carry a three-way catalyst (TWC) on the filter base material of an exhaust purification filter (GPF), it becomes difficult to achieve both pressure loss and exhaust purification performance.
そのため、これら複数の三元触媒(TWC)に加え、排気浄化フィルタ(GPF)を新たに排気通路に設けることは、圧力損失やコストの観点から好ましくない。そこで、排気浄化フィルタ(GPF)に三元触媒(TWC)を担持させ、粒子状物質捕捉性能に加えて三元浄化機能を排気浄化フィルタ(GPF)に付与する技術が提案されている(例えば、特許文献1参照)。 Therefore, in addition to these three-way catalysts (TWC), newly providing an exhaust purification filter (GPF) in the exhaust passage is not preferable from the viewpoint of pressure loss and cost. Therefore, a technology has been proposed in which a three-way catalyst (TWC) is supported on an exhaust purification filter (GPF) to provide the exhaust purification filter (GPF) with a three-way purification function in addition to the particulate matter trapping performance (for example, See Patent Document 1).
また、別の観点では、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)の開発が望まれている。例えば、特許文献2に記載の技術では、触媒金属としてRhを含む三元触媒(TWC)を用いた場合に、特にNOx浄化性能が大きく低下する場合がある。例えば、優れた三元浄化機能を有する三元触媒(TWC)としてRh層とPd層の2層構造を有するものが知られているが、排気浄化フィルタ(GPF)のフィルタ基材にこのような2層構造の三元触媒(TWC)を担持させると大きな圧力損失を招く。このため、フィルタ基材にはRhとPdとを混合して得られる単層構造の三元触媒(TWC)を担持させることが考えられる。ところが、この場合には、両方に有効な担体材がないため、Pdの劣化とRhの酸化劣化とが異なる状況で生ずるため、NOx還元能が低下する等、排気浄化フィルタ(GPF)ではさほど大きなNOx浄化性能が達成できない、という課題がある。 From another point of view, development of a three-way catalyst (TWC) suitable for a filter base material of an exhaust purification filter (GPF) is desired. For example, in the technique described in Patent Literature 2, when a three-way catalyst (TWC) containing Rh as a catalyst metal is used, the NOx purification performance may be greatly reduced. For example, a three-way catalyst (TWC) having a two-layer structure of an Rh layer and a Pd layer is known as a three-way catalyst (TWC) having an excellent three-way purification function. Carrying a two-layer three-way catalyst (TWC) causes a large pressure loss. Therefore, it is conceivable that the filter substrate supports a three-way catalyst (TWC) having a single-layer structure obtained by mixing Rh and Pd. However, in this case, since there is no effective support material for both, the deterioration of Pd and the oxidation deterioration of Rh occur in different conditions. There is a problem that the NOx purification performance cannot be achieved.
特許文献3では、圧力損失に対して、ハニカム基材の壁厚みを調整して解決できることが記載されているものの、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)を提供することができれば、製造工程をより簡略化することができる。 Although Patent Document 3 describes that the pressure loss can be solved by adjusting the wall thickness of the honeycomb base material, a three-way catalyst (TWC) suitable for the filter base material of the exhaust purification filter (GPF) is used. If it can be provided, the manufacturing process can be simplified.
一方、排ガス浄化触媒としては、特許文献4において、セリウム酸化物とジルコニウム酸化物との少なくとも一方を担体としたパティキュレート酸化触媒が開示されている。特許文献5~6からは、一般に、酸素ストレージ材料としてのセリウム-ジルコニウム複合酸化物は、約50モル%のような高いセリウム含有率が好ましいこととされている。 On the other hand, as an exhaust gas purifying catalyst, Patent Document 4 discloses a particulate oxidation catalyst using at least one of cerium oxide and zirconium oxide as a carrier. From US Pat. Nos. 5,300,000 and 5,000,000, it is generally stated that cerium-zirconium composite oxides as oxygen storage materials preferably have a high cerium content, such as about 50 mol %.
本発明は、上記のような課題を解決しようとするものであり、圧力損失を低減することができ、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)に適用可能な酸素ストレージ材料を提供することを目的とする。 The present invention is intended to solve the above problems, and can reduce pressure loss and can be applied to a three-way catalyst (TWC) suitable for a filter base material of an exhaust purification filter (GPF). The object is to provide an oxygen storage material.
本発明者は、鋭意努力した結果、ジルコニアを含むコアと、セリアを含むシェルとからなるコアシェル型ナノ粒子が、圧力損失を低減することができ、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)に適用可能な酸素ストレージ材料であることを見出した。すなわち、本発明は、以下の構成を包含する。 As a result of diligent efforts, the present inventors have found that core-shell nanoparticles composed of a core containing zirconia and a shell containing ceria can reduce pressure loss and are suitable for filter substrates of exhaust gas purification filters (GPF). It was found that it is an oxygen storage material that can be applied to a three-way catalyst (TWC). That is, the present invention includes the following configurations.
項1.ジルコニアを含むコアと、セリアを含むシェルとからなるコアシェル型ナノ粒子を含有する、酸素ストレージ材料。 Section 1. An oxygen storage material containing core-shell nanoparticles consisting of a core containing zirconia and a shell containing ceria.
項2.組成式:
(CeO2)x(ZrO2)1-x
[式中、xは0.05~0.50を示す。]
で表される、項1に記載の酸素ストレージ材料。
Section 2. Composition formula:
(CeO 2 ) x (ZrO 2 ) 1−x
[In the formula, x represents 0.05 to 0.50. ]
Item 2. The oxygen storage material according to item 1, represented by
項3.前記xが0.10~0.30である、項1又は2に記載の酸素ストレージ材料。 Item 3. Item 3. The oxygen storage material according to Item 1 or 2, wherein x is 0.10 to 0.30.
項4.比表面積が5~40m2/gである、項1~3のいずれか1項に記載の酸素ストレージ材料。 Section 4. 4. The oxygen storage material according to any one of Items 1 to 3, which has a specific surface area of 5 to 40 m 2 /g.
項5.項1~4のいずれか1項に記載の酸素ストレージ材料を含有する、排ガス浄化触媒。 Item 5. An exhaust gas purification catalyst containing the oxygen storage material according to any one of Items 1 to 4.
項6.前記酸素ストレージ材料上に、白金、パラジウム及びロジウムよりなる群から選ばれる少なくとも1種の貴金属が担持されている、項5に記載の排ガス浄化触媒。 Item 6. Item 6. An exhaust gas purification catalyst according to Item 5, wherein at least one noble metal selected from the group consisting of platinum, palladium and rhodium is supported on the oxygen storage material.
項7.前記酸素ストレージ材料100質量部に対して、前記貴金属の担持量が0.00001~2質量部である、項6に記載の排ガス浄化触媒。 Item 7. Item 7. The exhaust gas purification catalyst according to item 6, wherein the supported amount of the noble metal is 0.00001 to 2 parts by mass with respect to 100 parts by mass of the oxygen storage material.
項8.項1~4のいずれか1項に記載の酸素ストレージ材料を含有する、粒子状物質浄化触媒。 Item 8. A particulate matter purification catalyst containing the oxygen storage material according to any one of Items 1 to 4.
項9.前記酸素ストレージ材料上に、銀が担持されている、項8に記載の粒子状物質浄化触媒。 Item 9. Item 9. The particulate matter purification catalyst according to Item 8, wherein silver is supported on the oxygen storage material.
項10.前記酸素ストレージ材料100質量部に対して、前記銀の担持量が0.2~5.0質量部である、項9に記載の粒子状物質浄化触媒。 Item 10. Item 10. The particulate matter purification catalyst according to Item 9, wherein the supported amount of silver is 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the oxygen storage material.
項11.前記酸素ストレージ材料100質量部に対して、前記銀の担持量が0.5~1.0質量部である、項9又は10に記載の粒子状物質浄化触媒。 Item 11. Item 11. The particulate matter purification catalyst according to Item 9 or 10, wherein the supported amount of silver is 0.5 to 1.0 parts by mass with respect to 100 parts by mass of the oxygen storage material.
項12.項1~4のいずれか1項に記載の酸素ストレージ材料、項5~7のいずれか1項に記載の排ガス浄化触媒、又は項8~11のいずれか1項に記載の粒子状物質浄化触媒を備える、排気浄化フィルタ。 Item 12. The oxygen storage material according to any one of Items 1 to 4, the exhaust gas purification catalyst according to any one of Items 5 to 7, or the particulate matter purification catalyst according to any one of Items 8 to 11. an exhaust purification filter.
本発明によれば、圧力損失を低減することができ、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)に適用可能な酸素ストレージ材料を提供することができる。 According to the present invention, it is possible to provide an oxygen storage material that can reduce pressure loss and is applicable to a three-way catalyst (TWC) that is suitable for a filter base material of an exhaust gas purification filter (GPF).
本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。 As used herein, "contain" is a concept that includes both "comprise," "consist essentially of," and "consist of."
また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 Further, in this specification, when a numerical range is indicated by "A to B", it means from A to B.
本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.
1.酸素ストレージ材料
本発明の酸素ストレージ材料は、ジルコニアを含むコアと、セリアを含むシェルとからなるコアシェル型ナノ粒子を含有する。これにより、圧力損失を低減することができ、排気浄化フィルタ(GPF)のフィルタ基材に適した三元触媒(TWC)に適用可能である。
1. Oxygen Storage Material The oxygen storage material of the present invention contains core-shell nanoparticles consisting of a core containing zirconia and a shell containing ceria. As a result, the pressure loss can be reduced, and it can be applied to a three-way catalyst (TWC) suitable for the filter base material of an exhaust gas purification filter (GPF).
自動車触媒における浄化性能の実際的な制御方法は各種のエンジン設計のよって多少異なるが,エンジンの作動条件によって変動する空燃比(A/F)を一定の狭い幅に抑えることに特徴がある。酸素センサーによりA/Fを保ち、最適の燃焼条件と排ガス浄化のための反応条件をつくりだしている。しかしながら、排ガスに含まれる微量の有害ガスは、実際には、担体上の触媒貴金属や助触媒酸化物上に吸着し、その上で触媒反応を起こすことによって浄化される。これら一連の反応過程の進行は、かなりミクロな空間で反応条件、特にガス組成が維持されなければならないため,高い浄化性能が要求される近年のエンジンシステムでは、マクロに制御されたA/F値だけでは十分に浄化触媒性能を発揮させることができない。そのため、触媒層自身に、ミクロな空間でA/F値を制御するような機能が求められる。このような機能を達成しているのが、自動車触媒の酸素ストレージ能(OSC)と呼ばれる作用であり、本発明の酸素ストレージ材料は、このような酸素ストレージ能を有している。 The actual method of controlling the purification performance of an autocatalyst varies somewhat with each type of engine design, but is characterized by limiting the air-fuel ratio (A/F), which varies with engine operating conditions, within a constant narrow range. An oxygen sensor maintains the A/F, creating optimal combustion conditions and reaction conditions for purifying exhaust gas. However, a trace amount of harmful gas contained in the exhaust gas is actually purified by being adsorbed on the catalytic precious metal or co-catalyst oxide on the carrier and causing a catalytic reaction thereon. In the course of these series of reaction processes, the reaction conditions, especially the gas composition, must be maintained in a fairly microscopic space. It is not possible to sufficiently exhibit the performance of the purification catalyst only with this. Therefore, the catalyst layer itself is required to have a function of controlling the A/F value in a microscopic space. Such a function is achieved by a function called oxygen storage capacity (OSC) of autocatalysts, and the oxygen storage material of the present invention has such an oxygen storage capacity.
本発明の酸素ストレージ材料においては、特に、ジルコニアを含むコアと、セリアを含むシェルとから構成することにより、低温で粒子状物質(パティキュレートマター)燃焼活性を有しており、優れた酸素ストレージ能を有している。また、高温の排ガスに曝された場合においても、ジルコニアとセリアとの固溶反応が抑制され、また、このようなコアシェル型ナノ粒子に貴金属を担持した触媒においては、高温下での貴金属のシンタリングが抑制され得る。 In particular, the oxygen storage material of the present invention has a particulate matter combustion activity at a low temperature by being composed of a core containing zirconia and a shell containing ceria, and is excellent in oxygen storage. have the ability In addition, even when exposed to high-temperature exhaust gas, the solid-solution reaction between zirconia and ceria is suppressed. A ring can be suppressed.
コアシェル型ナノ粒子において、コアはジルコニアを含んでいる。ジルコニアは耐熱性が高く、コアシェル型ナノ粒子の耐熱性を向上させることが可能である。なお、本発明において、コア中のジルコニアの含有量は、特に制限されないが、耐熱性、酸素ストレージ能、圧力損失等の観点から、コアの総量を100質量%として、50~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%がさらに好ましい。 In core-shell nanoparticles, the core contains zirconia. Zirconia has high heat resistance and can improve the heat resistance of core-shell nanoparticles. In the present invention, the content of zirconia in the core is not particularly limited, but from the viewpoint of heat resistance, oxygen storage capacity, pressure loss, etc., it is preferably 50 to 100% by mass, with the total amount of the core being 100% by mass. , more preferably 70 to 100% by mass, more preferably 90 to 100% by mass.
ジルコニアの結晶構造は、特に制限されないが、耐熱性、酸素ストレージ能、圧力損失等の観点から、単斜晶又は正方晶が好ましい。 Although the crystal structure of zirconia is not particularly limited, it is preferably monoclinic or tetragonal from the viewpoints of heat resistance, oxygen storage capacity, pressure loss, and the like.
コアシェル型ナノ粒子においては、コアは、ジルコニアの他に、他の金属酸化物を、本発明の効果を損なわない程度、例えば、コアの総量を100質量%として、0~50質量%、特に0~30質量%、さらには0~10質量%含むことを排除するものではない。このような他の金属酸化物としては、例えば、アルミナ、シリカ、チタニア等が挙げられる。 In the core-shell nanoparticles, the core contains, in addition to zirconia, other metal oxides to an extent that does not impair the effects of the present invention, for example, 0 to 50% by mass, particularly 0%, based on the total amount of the core being 100% by mass. ~30% by mass, and even 0~10% by mass are not excluded. Such other metal oxides include, for example, alumina, silica, titania, and the like.
コアシェル型ナノ粒子において、シェルはセリアを含んでいる。セリアは貴金属との親和性が強く、上に担持される貴金属の高温下でのシンタリングを抑制することができる。なお、本発明において、シェル中のセリアの含有量は、特に制限されないが、耐熱性、酸素ストレージ能、圧力損失等の観点から、シェルの総量を100質量%として、50~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%がさらに好ましい。 In core-shell nanoparticles, the shell contains ceria. Ceria has a strong affinity with noble metals and can suppress sintering of the noble metals carried thereon at high temperatures. In the present invention, the content of ceria in the shell is not particularly limited, but from the viewpoint of heat resistance, oxygen storage capacity, pressure loss, etc., it is preferably 50 to 100% by mass when the total amount of the shell is 100% by mass. , more preferably 70 to 100% by mass, more preferably 90 to 100% by mass.
セリアの結晶構造は、特に制限されないが、耐熱性、酸素ストレージ能、圧力損失等の観点から、立方晶が好ましい。 The crystal structure of ceria is not particularly limited, but a cubic crystal is preferable from the viewpoints of heat resistance, oxygen storage capacity, pressure loss, and the like.
コアシェル型ナノ粒子においては、シェルは、セリアの他に、他の金属酸化物を、本発明の効果を損なわない程度、例えば、シェルの総量を100質量%として、0~50質量%、特に0~30質量%、さらには0~10質量%含むことを排除するものではない。このような他の金属酸化物としては、例えば、酸化ランタン、イットリア、酸化ネオジム、酸化プラセオジム等が挙げられる。 In the core-shell nanoparticles, the shell contains other metal oxides in addition to ceria to an extent that does not impair the effects of the present invention, for example, 0 to 50% by mass, particularly 0%, where the total amount of the shell is 100% by mass. ~30% by mass, and even 0~10% by mass are not excluded. Examples of such other metal oxides include lanthanum oxide, yttria, neodymium oxide, and praseodymium oxide.
なお、コアシェル型ナノ粒子は、ジルコニアを含むコアの表面を均一に、好ましくはナノレベルで均一に被覆するのに十分な量においてセリアを含むシェルを含むことが好ましい。特に限定されないが、一般的には、コアシェル型ナノ粒子は、ジルコニアを含むコアとセリアを含むシェルの総量を1モルとして、ジルコニアを含むコアを0.50~0.95モル(0.70~0.90モル)含むことが好ましく、セリアを含むシェルを0.05~0.50モル(0.10~0.30モル)含むことが好ましい。 The core-shell nanoparticles preferably include a shell containing ceria in an amount sufficient to uniformly coat the surface of the core containing zirconia, preferably at the nano level. Although not particularly limited, core-shell nanoparticles generally contain 0.50 to 0.95 mol (0.70 to 0.90 mol), preferably 0.05 to 0.50 mol (0.10 to 0.30 mol) of a shell containing ceria.
このため、コアがジルコニアから構成され、シェルがセリアから構成される場合は、コアシェル型ナノ粒子は、組成式:
(CeO2)x(ZrO2)1-x
[式中、xは0.05~0.50(特に0.10~0.30)を示す。]
で表される組成を有することが好ましい。
Therefore, when the core is composed of zirconia and the shell is composed of ceria, the core-shell nanoparticles have the composition formula:
(CeO 2 ) x (ZrO 2 ) 1−x
[In the formula, x represents 0.05 to 0.50 (especially 0.10 to 0.30). ]
It is preferable to have a composition represented by
以上のような本発明の酸素ストレージ材料は、耐熱性、酸素ストレージ能、圧力損失等の観点から、比表面積は5~40m2/gが好ましく、10~35m2/gがより好ましい。本発明の酸素ストレージ材料の比表面積は、窒素吸着法により測定する。 The oxygen storage material of the present invention as described above preferably has a specific surface area of 5 to 40 m 2 /g, more preferably 10 to 35 m 2 /g, from the viewpoint of heat resistance, oxygen storage capacity, pressure loss and the like. The specific surface area of the oxygen storage material of the present invention is measured by a nitrogen adsorption method.
コアシェル型ナノ粒子は、当業者に公知の任意の方法によって製造することができる。 Core-shell nanoparticles can be produced by any method known to those skilled in the art.
例えば、コアシェル型ナノ粒子は、従来のいわゆる含浸、蒸発・乾固等、すなわち、ジルコニアを含む粉末と、セリアの供給源である金属塩を含む溶液とを混合し、その後、乾燥及び焼成等することによって製造することができる。あるいはまた、ジルコニアを含む粉末と、セリアの供給源である金属塩を含む溶液に添加し、これにさらに塩基性物質等を添加して当該金属塩を水酸化物等としてジルコニアを含むコアの周りに析出させ、その後、この水酸化物等を酸化してセリアを含むシェルとするのに十分な温度及び時間において乾燥及び焼成等することによって製造することもできる。さらには、(NH4)2Ce(NO3)6等のセリウム塩を水に溶解し、カルボン酸塩等の界面活性剤や有機保護剤を溶解させた溶液を混合し、さらに、この混合溶液にZrO2粉末を加えて混合した液体をアンモニア水等で中和及び加熱処理したのち、乾燥及び焼成等することによって製造することもできる。 For example, core-shell nanoparticles can be produced by conventional so-called impregnation, evaporation, drying, etc., that is, by mixing a powder containing zirconia and a solution containing a metal salt as a source of ceria, followed by drying and firing. It can be manufactured by Alternatively, a powder containing zirconia is added to a solution containing a metal salt as a source of ceria, and a basic substance or the like is further added to this to convert the metal salt into a hydroxide or the like around the core containing zirconia. and then drying and firing at a temperature and time sufficient to oxidize the hydroxide or the like to form a ceria-containing shell. Furthermore, a solution obtained by dissolving a cerium salt such as (NH 4 ) 2 Ce(NO 3 ) 6 in water and dissolving a surfactant such as a carboxylate or an organic protective agent is mixed, and this mixed solution is It can also be produced by adding ZrO 2 powder to and mixing the liquid, neutralizing it with ammonia water or the like, heat-treating it, and then drying and calcining it.
2.排ガス浄化触媒
本発明の排ガス浄化触媒は、上記した本発明の酸素ストレージ材料を含有している。
2. Exhaust gas purifying catalyst The exhaust gas purifying catalyst of the present invention contains the above oxygen storage material of the present invention.
この本発明の排ガス浄化触媒には、上記した本発明の酸素ストレージ材料の上に、さらに、白金、パラジウム及びロジウムよりなる群から選ばれる少なくとも1種の貴金属を担持することもできる。 In the exhaust gas purifying catalyst of the present invention, at least one noble metal selected from the group consisting of platinum, palladium and rhodium can be further supported on the oxygen storage material of the present invention.
これにより、低温で粒子状物質(パティキュレートマター)燃焼活性を有しているのみならず、排気中に含まれるCO、HC及びNOxを浄化する三元触媒活性も飛躍的に向上させることができる。 As a result, not only has particulate matter (particulate matter) combustion activity at low temperatures, but also the three-way catalyst activity for purifying CO, HC and NOx contained in the exhaust can be dramatically improved. .
このため、本発明の排ガス浄化触媒を排気浄化フィルタ(GPF)のフィルタ基材に担持させて、すす状PM(パティキュレートマター)等の粒子状物質を捕捉しつつ、排気中に含まれるCO、HC及びNOxも浄化することができる。 For this reason, the exhaust gas purifying catalyst of the present invention is carried on the filter base material of an exhaust gas purifying filter (GPF) to trap particulate matter such as soot-like PM (particulate matter) while reducing CO contained in the exhaust gas. HC and NOx can also be purified.
なお、本発明の排ガス浄化触媒を排気浄化フィルタ(GPF)のフィルタ基材に担持させる場合、すす状PM(パティキュレートマター)等の粒子状物質を捕捉しつつ、排気中に含まれるCO、HC及びNOxも浄化することができるため、本発明の排ガス浄化触媒による触媒層厚みは薄くすることができる。具体的には、触媒層の厚みを0.001~10μm、特に0.01~1μmとすることができる。 When the exhaust gas purifying catalyst of the present invention is supported on the filter base material of an exhaust gas purifying filter (GPF), it captures particulate matter such as soot-like PM (particulate matter) while removing CO and HC contained in the exhaust gas. And NOx can also be purified, so the thickness of the catalyst layer of the exhaust gas purification catalyst of the present invention can be reduced. Specifically, the thickness of the catalyst layer can be 0.001 to 10 μm, particularly 0.01 to 1 μm.
上記した本発明の酸素ストレージ材料の上に、さらに、白金、パラジウム及びロジウムよりなる群から選ばれる少なくとも1種の貴金属を担持させる場合、当業者に公知の任意の方法により貴金属を担持させることができる。 When at least one noble metal selected from the group consisting of platinum, palladium and rhodium is further supported on the oxygen storage material of the present invention described above, the noble metal can be supported by any method known to those skilled in the art. can.
これらの貴金属は、耐熱性、酸素ストレージ能、粒子状物質燃焼活性、三元触媒活性、圧力損失等の観点から、本発明の酸素ストレージ材料100質量部に対して、0.00001~2質量部が好ましく、0.0001~1質量部がより好ましく、0.001~0.5質量部がさらに好ましい。 From the viewpoint of heat resistance, oxygen storage capacity, particulate matter combustion activity, three-way catalytic activity, pressure loss, etc., these noble metals are used in an amount of 0.00001 to 2 parts by mass per 100 parts by mass of the oxygen storage material of the present invention. is preferred, 0.0001 to 1 part by mass is more preferred, and 0.001 to 0.5 part by mass is even more preferred.
例えば、これら貴金属の担持は、貴金属源として上記貴金属を陽イオンとして含む化合物を用い、この化合物の所定濃度の溶液に本発明の酸素ストレージ材料を浸漬させ、その後、乾燥及び焼成等するか、又は貴金属源として上記貴金属の錯体を用い、この錯体の所定濃度の溶液に本発明の酸素ストレージ材料を浸漬させ、その後、乾燥及び焼成等することによって貴金属を担持させることができる。 For example, these noble metals can be supported by using a compound containing the above noble metal as a cation as a noble metal source, immersing the oxygen storage material of the present invention in a solution of this compound at a predetermined concentration, and then drying and calcining it, or Using the above noble metal complex as the noble metal source, the oxygen storage material of the present invention is immersed in a solution of this complex at a predetermined concentration, and then dried and fired to support the noble metal.
これら貴金属の化合物又は錯体を含む溶液に浸漬された本発明の酸素ストレージ材料の焼成及び乾燥は、上記貴金属を本発明の酸素ストレージ材料に担持するのに十分な温度及び時間において実施することができる。例えば、乾燥は70~250℃の温度で6~48時間実施することができ、焼成は500~800℃の温度で1~5時間実施することができる。 The baking and drying of the oxygen storage material of the present invention immersed in the solution containing these noble metal compounds or complexes can be carried out at a temperature and time sufficient to support the noble metal on the oxygen storage material of the present invention. . For example, drying can be carried out at a temperature of 70-250° C. for 6-48 hours and calcination can be carried out at a temperature of 500-800° C. for 1-5 hours.
3.粒子状物質浄化触媒
本発明の粒子状物質浄化触媒は、上記した本発明の酸素ストレージ材料を含有している。
3. Particulate Matter Purification Catalyst The particulate matter purification catalyst of the present invention contains the oxygen storage material of the present invention described above.
この本発明の粒子状物質浄化触媒には、上記した本発明の酸素ストレージ材料の上に、さらに、銀を担持することもできる。 In the particulate matter purification catalyst of the present invention, silver can be further supported on the oxygen storage material of the present invention described above.
これにより、さらに低温での粒子状物質(パティキュレートマター)燃焼活性を有することができる。 Thereby, it is possible to have particulate matter (particulate matter) combustion activity at a lower temperature.
このため、本発明の粒子状物質浄化触媒を排気浄化フィルタ(GPF)のフィルタ基材に担持させて、すす状PM(パティキュレートマター)等の粒子状物質を捕捉することができる。 For this reason, the particulate matter purification catalyst of the present invention can be supported on the filter base material of an exhaust gas purification filter (GPF) to trap particulate matter such as soot-like PM (particulate matter).
なお、本発明の粒子状物質浄化触媒を排気浄化フィルタ(GPF)のフィルタ基材に担持させる場合、すす状PM(パティキュレートマター)等の粒子状物質の燃焼活性がさらに向上しているため、本発明の粒子状物質浄化触媒による触媒層厚みは薄くすることができる。具体的には、触媒層の厚みを0.001~10μm、特に0.01~1μmとすることができる。 When the particulate matter purification catalyst of the present invention is supported on the filter base material of an exhaust purification filter (GPF), the combustion activity of particulate matter such as soot-like PM (particulate matter) is further improved. The catalyst layer thickness of the particulate matter purification catalyst of the present invention can be reduced. Specifically, the thickness of the catalyst layer can be 0.001 to 10 μm, particularly 0.01 to 1 μm.
上記した本発明の酸素ストレージ材料の上に、さらに、銀を担持させる場合、当業者に公知の任意の方法により銀を担持させることができる。 When silver is further supported on the oxygen storage material of the present invention described above, silver can be supported by any method known to those skilled in the art.
銀は、耐熱性、酸素ストレージ能、粒子状物質燃焼活性、圧力損失等の観点から、本発明の酸素ストレージ材料100質量部に対して、0.2~5.0質量部が好ましく、0.3~3.0質量部がより好ましく、0.5~1.0質量部がさらに好ましい。 Silver is preferably 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the oxygen storage material of the present invention, from the viewpoint of heat resistance, oxygen storage capacity, particulate matter combustion activity, pressure loss, etc. 3 to 3.0 parts by mass is more preferable, and 0.5 to 1.0 parts by mass is even more preferable.
例えば、銀の担持は、銀源として銀を陽イオンとして含む化合物を用い、この化合物の所定濃度の溶液に本発明の酸素ストレージ材料を浸漬させ、その後、乾燥及び焼成等するか、又は銀源として銀錯体を用い、この錯体の所定濃度の溶液に本発明の酸素ストレージ材料を浸漬させ、その後、乾燥及び焼成等することによって銀を担持させることができる。 For example, to support silver, a compound containing silver as a cation is used as the silver source, the oxygen storage material of the present invention is immersed in a solution of this compound at a predetermined concentration, and then dried and fired, or the silver source is A silver complex is used as the oxygen storage material, and the oxygen storage material of the present invention is immersed in a solution of this complex at a predetermined concentration, followed by drying, firing, and the like, whereby silver can be supported.
銀の化合物又は錯体を含む溶液に浸漬された本発明の酸素ストレージ材料の焼成及び乾燥は、銀を本発明の酸素ストレージ材料に担持するのに十分な温度及び時間において実施することができる。例えば、乾燥は70~250℃の温度で6~48時間実施することができ、焼成は500~800℃の温度で1~5時間実施することができる。 Calcination and drying of the oxygen storage material of the present invention immersed in a solution containing a silver compound or complex can be performed at a temperature and time sufficient to load silver onto the oxygen storage material of the present invention. For example, drying can be carried out at a temperature of 70-250° C. for 6-48 hours and calcination can be carried out at a temperature of 500-800° C. for 1-5 hours.
以下、この発明を更に説明するために実施例を示すが、この発明は実施例に限定されるものではない。 Examples are given below to further describe the present invention, but the present invention is not limited to the examples.
実施例1:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=5:95)
Ce:Zr=5:95(モル比)であるジルコニア-セリアコアシェル型粒子からなる試料を、以下のように作製した。
Example 1: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=5:95)
A sample consisting of zirconia-ceria core-shell type particles with Ce:Zr=5:95 (molar ratio) was prepared as follows.
(NH4)2Ce(NO3)6(富士フイルム和光純薬(株)製)を60mLのH2Oに溶解した溶液と、有機保護剤としてC17H33COOK(関東化学(株)製)を溶解させた溶液を混合し、さらに、この混合溶液にZrO2粉末(トーソー(株)製TZ-0)をCe:Zr=5:95(モル比)になるように加えて混合した。混合した液体を撹拌しながら、25質量%のアンモニア水(NH4OH:富士フイルム和光純薬(株)製)を10mL加えて中和反応をさせて、沈殿物を得た。液中に析出した沈殿物をろ過、洗浄し、乾燥させた。さらに、この試料を、600℃で60分間大気中で熱処理し、ジルコニア-セリアコアシェル型粒子(本発明試料1)を得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。 A solution of (NH 4 ) 2 Ce(NO 3 ) 6 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) in 60 mL of H 2 O and C 17 H 33 COOK (manufactured by Kanto Chemical Co., Ltd.) as an organic protective agent ) was mixed, and ZrO 2 powder (TZ-0 manufactured by Toso Co., Ltd.) was added to the mixed solution so that Ce:Zr = 5:95 (molar ratio) and mixed. While stirring the mixed liquid, 10 mL of 25% by mass ammonia water (NH 4 OH: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added for neutralization reaction to obtain a precipitate. A precipitate deposited in the liquid was filtered, washed and dried. Further, this sample was heat-treated in the atmosphere at 600° C. for 60 minutes to obtain zirconia-ceria core-shell type particles (Invention Sample 1). As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
コアシェルを構成するジルコニアやセリアの結晶構造は、粉末X線回折装置((株)リガク、MiniFlexII)を適用して調べたところ、ジルコニアは単斜晶、セリアは立方晶であった。なお、粒径は、X線回折図形の結果にシェラー(Scherrer)の式を適用して、算出された。また、結晶構造は、以下の実施例2~6においても同様であった。 The crystal structure of zirconia and ceria constituting the core-shell was examined using a powder X-ray diffractometer (MiniFlexII, Rigaku Co., Ltd.), and zirconia was monoclinic and ceria was cubic. The particle size was calculated by applying Scherrer's formula to the result of the X-ray diffraction pattern. Further, the crystal structure was the same in Examples 2 to 6 below.
実施例2:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=10:90)
Ce:Zr=10:90(モル比)となるように原料の使用量を調整したこと以外は実施例1と同様に、セリア担持ジルコニア粒子を得た。さらに、このセリア担持ジルコニア粒子を、600℃で60分間大気中で熱処理した試料(本発明試料2)と、このセリア担持ジルコニア粒子を、600℃熱処理後に1000℃で3時間大気中で熱処理した試料とを得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。
Example 2: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=10:90)
Ceria-supported zirconia particles were obtained in the same manner as in Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=10:90 (molar ratio). Furthermore, a sample obtained by heat-treating the ceria-supporting zirconia particles at 600° C. for 60 minutes in the air (sample 2 of the present invention) and a sample obtained by heat-treating the ceria-supporting zirconia particles at 1000° C. for 3 hours in the air after the heat treatment at 600° C. and got As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
実施例3:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=20:80)
Ce:Zr=20:80(モル比)となるように原料の使用量を調整したこと以外は実施例1と同様に、セリア担持ジルコニア粒子を得た。さらに、このセリア担持ジルコニア粒子を、600℃で60分間大気中で熱処理した試料(本発明試料3)と、このセリア担持ジルコニア粒子を、600℃熱処理後に1000℃で3時間大気中で熱処理した試料とを得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。
Example 3: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=20:80)
Ceria-supported zirconia particles were obtained in the same manner as in Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=20:80 (molar ratio). Further, a sample obtained by heat-treating the ceria-supporting zirconia particles at 600° C. for 60 minutes in the air (sample 3 of the present invention) and a sample obtained by heat-treating the ceria-supporting zirconia particles at 1000° C. for 3 hours in the air after heat treatment at 600° C. and got As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
実施例4:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=30:70)
Ce:Zr=30:70(モル比)となるように原料の使用量を調整したこと以外は実施例1と同様に、セリア担持ジルコニア粒子を得た。さらに、このセリア担持ジルコニア粒子を、600℃で60分間大気中で熱処理した試料(本発明試料4)と、このセリア担持ジルコニア粒子を、600℃熱処理後に1000℃で3時間大気中で熱処理した試料とを得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。
Example 4: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=30:70)
Ceria-supported zirconia particles were obtained in the same manner as in Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=30:70 (molar ratio). Furthermore, a sample obtained by heat-treating the ceria-supporting zirconia particles at 600°C for 60 minutes in the air (Sample 4 of the present invention) and a sample obtained by heat-treating the ceria-supporting zirconia particles at 1000°C for 3 hours in the air after heat treatment at 600°C. and got As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
実施例5:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=40:60)
Ce:Zr=30:70(モル比)となるように原料の使用量を調整したこと以外は実施例1と同様に、セリア担持ジルコニア粒子を得た。さらに、このセリア担持ジルコニア粒子を、600℃で60分間大気中で熱処理した試料(本発明試料5)と、このセリア担持ジルコニア粒子を、600℃熱処理後に1000℃で3時間大気中で熱処理した試料とを得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。
Example 5: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=40:60)
Ceria-supported zirconia particles were obtained in the same manner as in Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=30:70 (molar ratio). Further, a sample obtained by heat-treating the ceria-supporting zirconia particles at 600° C. for 60 minutes in the air (sample 5 of the present invention) and a sample obtained by heat-treating the ceria-supporting zirconia particles at 1000° C. for 3 hours in the air after heat treatment at 600° C. and got As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
実施例6:ジルコニア-セリアコアシェル型粒子の合成(Ce:Zr=50:50)
Ce:Zr=50:50(モル比)となるように原料の使用量を調整したこと以外は実施例1と同様に、セリア担持ジルコニア粒子を得た。さらに、このセリア担持ジルコニア粒子を、600℃で60分間大気中で熱処理した試料(本発明試料6)と、このセリア担持ジルコニア粒子を、600℃熱処理後に1000℃で3時間大気中で熱処理した試料とを得た。この結果、ジルコニア粒子表面に平均粒子径10nm以下のセリア粒子が担持されていた。
Example 6: Synthesis of zirconia-ceria core-shell particles (Ce:Zr=50:50)
Ceria-supported zirconia particles were obtained in the same manner as in Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=50:50 (molar ratio). Further, a sample obtained by heat-treating the ceria-supporting zirconia particles at 600° C. for 60 minutes in the air (sample 6 of the present invention) and a sample obtained by heat-treating the ceria-supporting zirconia particles at 1000° C. for 3 hours in the air after the heat treatment at 600° C. and got As a result, ceria particles having an average particle diameter of 10 nm or less were supported on the zirconia particle surfaces.
試験例1:比表面積
実施例1~6で得られた本発明試料1~6の比表面積を、窒素吸着法により比表面積を測定したところ、それぞれ、本発明試料1:12.0m2/g、本発明試料2:13.1m2/g、本発明試料3:16.5m2/g、本発明試料4:28.5m2/g、本発明試料5:33.1m2/g、本発明試料6:34.9m2/gであった。
Test Example 1: Specific Surface Area When the specific surface areas of the present invention samples 1 to 6 obtained in Examples 1 to 6 were measured by a nitrogen adsorption method, the present invention sample 1: 12.0 m 2 /g, respectively. , Inventive sample 2: 13.1 m 2 /g, Inventive sample 3: 16.5 m 2 /g, Inventive sample 4: 28.5 m 2 /g, Inventive sample 5: 33.1 m 2 /g, this Inventive sample 6: 34.9 m 2 /g.
比較例1:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=5:95)
Ce:Zr=5:95(モル比)の割合で、硝酸ジルコニル(富士フイルム和光純薬(株)製)と(NH4)2Ce(NO3)6(富士フイルム和光純薬(株)製)とを混合し、蒸留水を加えて1リットルにし、スターラーで攪拌し、溶解させた。溶解させた後、25質量%アンモニア水(富士フイルム和光純薬(株)製)をさらに3倍に希釈したアンモニア水溶液を加えて1時間攪拌し、沈殿物を生成した。攪拌を止めて24時間沈殿物を熟成させた後、吸引濾過し、3リットルの蒸留水で洗浄し、さらに得られた沈殿物を乾燥させた。乾燥は120℃の電気炉内で24時間行った。乾燥後、600℃で各3時間熱処理を行い、比較試料1を得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 1: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=5:95)
Zirconyl nitrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and (NH 4 ) 2 Ce(NO 3 ) 6 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) at a ratio of Ce:Zr = 5:95 (molar ratio) ), distilled water was added to make 1 liter, and the mixture was stirred with a stirrer and dissolved. After dissolution, an aqueous ammonia solution obtained by further diluting 25% by mass ammonia water (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) by 3 times was added and stirred for 1 hour to form a precipitate. After stirring was stopped and the precipitate was aged for 24 hours, it was suction-filtered, washed with 3 liters of distilled water, and dried. Drying was performed in an electric furnace at 120° C. for 24 hours. After drying, a heat treatment was performed at 600° C. for 3 hours each to obtain a comparative sample 1. When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例2:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=10:90)
Ce:Zr=10:90(モル比)となるように原料の使用量を調整したこと以外は比較例1と同様に、セリア・ジルコニア均一固溶体粒子を比較試料2として得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 2: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=10:90)
Ceria-zirconia homogeneous solid solution particles were obtained as Comparative Sample 2 in the same manner as in Comparative Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=10:90 (molar ratio). When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例3:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=20:80)
Ce:Zr=20:80(モル比)となるように原料の使用量を調整したこと以外は比較例1と同様に、セリア・ジルコニア均一固溶体粒子を比較試料3として得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 3: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=20:80)
Ceria-zirconia uniform solid solution particles were obtained as Comparative Sample 3 in the same manner as in Comparative Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=20:80 (molar ratio). When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例4:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=30:70)
Ce:Zr=30:70(モル比)となるように原料の使用量を調整したこと以外は比較例1と同様に、セリア・ジルコニア均一固溶体粒子を比較試料4として得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 4: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=30:70)
Ceria-zirconia uniform solid solution particles were obtained as Comparative Sample 4 in the same manner as in Comparative Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=30:70 (molar ratio). When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例5:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=40:60)
Ce:Zr=40:60(モル比)となるように原料の使用量を調整したこと以外は比較例1と同様に、セリア・ジルコニア均一固溶体粒子を比較試料5として得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 5: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=40:60)
Ceria-zirconia uniform solid solution particles were obtained as Comparative Sample 5 in the same manner as in Comparative Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=40:60 (molar ratio). When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例6:セリア・ジルコニア均一固溶体粒子の合成(Ce:Zr=50:50)
Ce:Zr=50:50(モル比)となるように原料の使用量を調整したこと以外は比較例1と同様に、セリア・ジルコニア均一固溶体粒子を比較試料6として得た。XRDで相を調べると正方晶又は立方晶の蛍石型結晶相であった。
Comparative Example 6: Synthesis of Ceria-Zirconia Uniform Solid Solution Particles (Ce:Zr=50:50)
Ceria-zirconia uniform solid solution particles were obtained as Comparative Sample 6 in the same manner as in Comparative Example 1, except that the amounts of raw materials used were adjusted so that Ce:Zr=50:50 (molar ratio). When the phase was examined by XRD, it was a tetragonal or cubic fluorite crystal phase.
比較例1~6で得られた比較試料1~6の比表面積を測定したところ、52.5~85.0m2/gという高い値となり、焼成後の粒子は嵩高い状態であった。また、得られた比較試料1~6を粉砕処理しても比表面積は高く嵩高かった。 When the specific surface areas of Comparative Samples 1 to 6 obtained in Comparative Examples 1 to 6 were measured, the values were as high as 52.5 to 85.0 m 2 /g, indicating that the particles after firing were in a bulky state. Further, even when the comparative samples 1 to 6 obtained were pulverized, the specific surface area was high and bulky.
試験例2:昇温還元試験による実施例1~6と比較例1~6との性能の比較調査
実施例1~6の本発明試料と比較例1~6の比較試料について、すす状パティキュレートマター(PM)燃焼反応の評価を、熱重量分析(TG:Thermogravimetry)装置(Thermo plus EVO2差動型示差熱天秤TG8120株式会社リガク)を用いて行った。本実験では、PM燃焼の研究に用いられているカーボンブラック(Printex V(Orion Engineered Carbons);以後PMと呼ぶ)をPMとして使用した。アルミナ乳鉢でPMと触媒(実施例1~5又は比較例1~5の各試料)をそれぞれ粉砕し、その後触媒を0.1g、粉砕したPMを0.005g測りとり、メノウ乳鉢で混合することでPM燃焼評価に用いる触媒とPMの混合試料を作製した。PM及び触媒の混合試料15mgをアルミナパンの上にのせ、ガス流量30mL/min、5体積%酸素(Ar希釈)ガスを流通させ、室温から800℃まで昇温した。この時、昇温速度は5℃/minで、測定した重量減少量の50%となる温度(T50)で各触媒のPM燃焼反応の評価をした。
Test Example 2: Comparative investigation of the performance of Examples 1 to 6 and Comparative Examples 1 to 6 by temperature programmed reduction test Soot-like particulates on the inventive samples of Examples 1 to 6 and the comparative samples of Comparative Examples 1 to 6. Evaluation of the matter (PM) combustion reaction was performed using a thermogravimetry (TG) apparatus (Thermo plus EVO2 differential type differential thermobalance TG8120, Rigaku Corporation). In this experiment, carbon black (Printex V (Orion Engineered Carbons); hereinafter referred to as PM) used in PM combustion studies was used as PM. PM and catalyst (each sample of Examples 1 to 5 or Comparative Examples 1 to 5) are respectively pulverized in an alumina mortar, then 0.1 g of catalyst and 0.005 g of pulverized PM are weighed and mixed in an agate mortar. prepared a mixed sample of catalyst and PM used for PM combustion evaluation. 15 mg of a mixed sample of PM and catalyst was placed on an alumina pan, and the temperature was raised from room temperature to 800° C. by circulating 5% by volume oxygen (Ar diluted) gas at a gas flow rate of 30 mL/min. At this time, the temperature increase rate was 5° C./min, and the PM combustion reaction of each catalyst was evaluated at a temperature (T50) at which the measured weight loss was 50%.
結果を表1に示す。本発明試料では、T50は、373~408℃であるのに対して、比較例ではいずれもそれ以上である。本発明試料は、より低温で活性となり、比較試料に比べて酸素ストレージ能及び粒子状物質浄化性能(PM燃焼活性)において優れていることを示している。 Table 1 shows the results. The samples of the present invention have a T50 of 373 to 408° C., whereas the samples of the comparative examples have a T50 higher than that. The samples of the present invention become active at lower temperatures, demonstrating that they are superior to the comparative samples in terms of oxygen storage capacity and particulate matter purification performance (PM combustion activity).
実施例7:銀担持ジルコニア-セリアコアシェル型粒子の合成(銀担持量0.2質量%)
Ce:Zr=10:90(モル比)であるジルコニア-セリアコアシェル型粒子に、0.2質量%の銀を担持した試料を、以下のように作製した。
Example 7: Synthesis of silver-supported zirconia-ceria core-shell type particles (silver-supported amount: 0.2% by mass)
A sample in which 0.2% by mass of silver was supported on zirconia-ceria core-shell type particles of Ce:Zr=10:90 (molar ratio) was prepared as follows.
(NH4)2Ce(NO3)6(富士フイルム和光純薬(株)製)を60mLのH2Oに溶解した溶液と、有機保護剤としてC17H33COOK(関東化学(株)製)を溶解させた溶液を混合し、さらに、この混合溶液にZrO2粉末(トーソー(株)製TZ-0)をCe:Zr=10:90(モル比)になるように加えて混合した。混合した液体を撹拌しながら、25質量%のアンモニア水(NH4OH:富士フイルム和光純薬(株)製)を10mL加えて中和反応をさせて、沈殿物を得た。液中に析出した沈殿物をろ過、洗浄し、乾燥させた。さらに、得られた粒子を、600℃で60分間大気中で熱処理後に800℃で3時間大気中で熱処理し、ジルコニア-セリアコアシェル型粒子を得た。 A solution of (NH 4 ) 2 Ce(NO 3 ) 6 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) in 60 mL of H 2 O and C 17 H 33 COOK (manufactured by Kanto Chemical Co., Ltd.) as an organic protective agent ) was mixed, and ZrO 2 powder (TZ-0 manufactured by Toso Corporation) was added to the mixed solution so that Ce:Zr = 10:90 (molar ratio) and mixed. While stirring the mixed liquid, 10 mL of 25% by mass ammonia water (NH 4 OH: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added for neutralization reaction to obtain a precipitate. A precipitate deposited in the liquid was filtered, washed and dried. Further, the obtained particles were heat-treated in air at 600° C. for 60 minutes and then heat-treated in air at 800° C. for 3 hours to obtain zirconia-ceria core-shell type particles.
得られたジルコニア-セリアコアシェル型粒子に銀(Ag)を含浸法で担持し、銀担持ジルコニア-セリアコアシェル型粒子を作製した。硝酸銀標準水溶液(AgNO3aq(富士フイルム和光純薬(株)製))を、得られたジルコニア-セリアコアシェル型粒子に加え15分撹拌し、その後90℃で24時間乾燥させ、大気中600℃で3時間焼成し、銀担持ジルコニア-セリアコアシェル型粒子を得た。なお、硝酸銀標準水溶液の濃度は、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.2質量部となるように調整した。 Silver (Ag) was supported on the obtained zirconia-ceria core-shell type particles by an impregnation method to produce silver-supported zirconia-ceria core-shell type particles. A silver nitrate standard aqueous solution (AgNO 3 aq (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)) was added to the obtained zirconia-ceria core-shell type particles, stirred for 15 minutes, then dried at 90°C for 24 hours, and dried in air at 600°C. for 3 hours to obtain silver-supported zirconia-ceria core-shell type particles. The concentration of the silver nitrate standard aqueous solution was adjusted so that the supported amount was 0.2 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles.
実施例8:銀担持ジルコニア-セリアコアシェル型粒子の合成(銀担持量0.5質量%)
硝酸標準水溶液の濃度を、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.5質量部となるように調整したこと以外は実施例7と同様に、銀担持ジルコニア-セリアコアシェル型粒子を得た。
Example 8: Synthesis of silver-supported zirconia-ceria core-shell type particles (silver-supported amount: 0.5% by mass)
A silver-supported zirconia-ceria core-shell type was prepared in the same manner as in Example 7, except that the concentration of the nitric acid standard aqueous solution was adjusted so that the supported amount was 0.5 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles. Particles were obtained.
実施例9:銀担持ジルコニア-セリアコアシェル型粒子の合成(銀担持量0.8質量%)
硝酸標準水溶液の濃度を、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.8質量部となるように調整したこと以外は実施例7と同様に、銀担持ジルコニア-セリアコアシェル型粒子を得た。
Example 9: Synthesis of silver-supported zirconia-ceria core-shell type particles (silver-supported amount: 0.8% by mass)
Silver-supported zirconia-ceria core-shell type particles were prepared in the same manner as in Example 7, except that the concentration of the nitric acid standard aqueous solution was adjusted so that the supported amount was 0.8 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles. Particles were obtained.
実施例10:銀担持ジルコニア-セリアコアシェル型粒子の合成(銀担持量0.9質量%)
硝酸標準水溶液の濃度を、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.9質量部となるように調整したこと以外は実施例7と同様に、銀担持ジルコニア-セリアコアシェル型粒子を得た。
Example 10: Synthesis of silver-supported zirconia-ceria core-shell type particles (silver-supported amount: 0.9% by mass)
A silver-supported zirconia-ceria core-shell type was prepared in the same manner as in Example 7 except that the concentration of the nitric acid standard aqueous solution was adjusted so that the supported amount was 0.9 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles. Particles were obtained.
実施例11:銀担持ジルコニア-セリアコアシェル型粒子の合成(銀担持量3.1質量%)
硝酸標準水溶液の濃度を、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して3.1質量部となるように調整したこと以外は実施例7と同様に、銀担持ジルコニア-セリアコアシェル型粒子を得た。
Example 11: Synthesis of silver-supported zirconia-ceria core-shell type particles (silver-supported amount: 3.1% by mass)
A silver-supported zirconia-ceria core-shell type was prepared in the same manner as in Example 7 except that the concentration of the nitric acid standard aqueous solution was adjusted so that the supported amount was 3.1 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles. Particles were obtained.
試験例3:昇温還元試験による実施例7~11の性能の比較調査
実施例7~11の銀担持ジルコニア-セリアコアシェル型粒子について、パティキュレートマター(PM)燃焼反応の評価を、熱重量分析(TG:Thermogravimetry)装置(Thermo plus EVO2差動型示差熱天秤TG8120株式会社リガク)を用いて行った。本実験では、PM燃焼の研究に用いられているカーボンブラック(Printex V(Orion Engineered Carbons);以後PMと呼ぶ)をPMとして使用した。アルミナ乳鉢でPMと触媒(実施例7~11の各試料)をそれぞれ粉砕し、その後触媒を0.1g、粉砕したPMを0.005g測りとり、メノウ乳鉢で混合することでPM燃焼評価に用いる触媒とPMの混合試料を作製した。PM及び触媒の混合試料15mgをアルミナパンの上にのせ、ガス流量30mL/min、5体積%酸素(Ar希釈)ガスを流通させ、室温から800℃まで昇温した。この時、昇温速度は5℃/minで、測定した重量減少量の50%となる温度(T50)で各触媒のPM燃焼反応の評価をした。
Test Example 3: Comparative investigation of the performance of Examples 7 to 11 by temperature-programmed reduction test For the silver-supported zirconia-ceria core-shell particles of Examples 7 to 11, evaluation of particulate matter (PM) combustion reaction was performed by thermogravimetric analysis. (TG: Thermogravimetry) apparatus (Thermo plus EVO2 differential type differential thermal balance TG8120, Rigaku Corporation). In this experiment, carbon black (Printex V (Orion Engineered Carbons); hereinafter referred to as PM) used in PM combustion studies was used as PM. PM and catalyst (each sample of Examples 7 to 11) are each pulverized in an alumina mortar, and then 0.1 g of catalyst and 0.005 g of pulverized PM are weighed and mixed in an agate mortar to evaluate PM combustion. A mixed sample of catalyst and PM was prepared. 15 mg of a mixed sample of PM and catalyst was placed on an alumina pan, and the temperature was raised from room temperature to 800° C. by circulating 5% by volume oxygen (Ar diluted) gas at a gas flow rate of 30 mL/min. At this time, the temperature increase rate was 5° C./min, and the PM combustion reaction of each catalyst was evaluated at a temperature (T50) at which the measured weight loss was 50%.
結果を表2に示す。表2には、比較のため、銀を担持しない実施例2の結果も示す。いずれの場合も、銀の担持によってPM燃焼活性は低下しなかった。また、少量(例えば0.3~3.0質量%、特に0.5~1.0質量%)の銀を担持した場合は、PM燃焼活性が飛躍的に向上した。 Table 2 shows the results. For comparison, Table 2 also shows the results of Example 2 in which no silver is supported. In either case, the PM burning activity did not decrease due to silver loading. Also, when a small amount of silver (for example, 0.3 to 3.0% by mass, particularly 0.5 to 1.0% by mass) was supported, the PM combustion activity was dramatically improved.
実施例12:白金担持ジルコニア-セリアコアシェル型粒子の合成(白金担持量0.2質量%)
Ce:Zr=10:90(モル比)であるジルコニア-セリアコアシェル型粒子に、0.2質量%の白金を担持した試料を、以下のように作製した。
Example 12: Synthesis of platinum-supported zirconia-ceria core-shell particles (platinum supported amount: 0.2% by mass)
A sample in which 0.2% by mass of platinum was supported on zirconia-ceria core-shell type particles of Ce:Zr=10:90 (molar ratio) was prepared as follows.
(NH4)2Ce(NO3)6(富士フイルム和光純薬(株)製)を60mLのH2Oに溶解した溶液と、有機保護剤としてC17H33COOK(関東化学(株)製)を溶解させた溶液を混合し、さらに、この混合溶液にZrO2粉末(トーソー(株)製TZ-0)をCe:Zr=10:90(モル比)になるように加えて混合した。混合した液体を撹拌しながら、25質量%のアンモニア水(NH4OH:富士フイルム和光純薬(株)製)を10mL加えて中和反応をさせて、沈殿物を得た。液中に析出した沈殿物をろ過、洗浄し、乾燥させた。さらに、得られた粒子を、600℃で60分間大気中で熱処理後に800℃で3時間大気中で熱処理し、ジルコニア-セリアコアシェル型粒子を得た。 A solution of (NH 4 ) 2 Ce(NO 3 ) 6 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) in 60 mL of H 2 O and C 17 H 33 COOK (manufactured by Kanto Chemical Co., Ltd.) as an organic protective agent ) was mixed, and ZrO 2 powder (TZ-0 manufactured by Toso Corporation) was added to the mixed solution so that Ce:Zr = 10:90 (molar ratio) and mixed. While stirring the mixed liquid, 10 mL of 25% by mass ammonia water (NH 4 OH: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added for neutralization reaction to obtain a precipitate. A precipitate deposited in the liquid was filtered, washed and dried. Further, the obtained particles were heat-treated in air at 600° C. for 60 minutes and then heat-treated in air at 800° C. for 3 hours to obtain zirconia-ceria core-shell type particles.
得られたジルコニア-セリアコアシェル型粒子に白金(Pt)を含浸法で担持し、白金担持ジルコニア-セリアコアシェル型粒子を作製した。ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業(株)製)を、得られたジルコニア-セリアコアシェル型粒子に加え15分撹拌し、その後90℃で24時間乾燥させ、大気中600℃で3時間焼成し、白金担持ジルコニア-セリアコアシェル型粒子を得た。なお、ジニトロジアンミン白金(II)硝酸溶液の濃度は、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.2質量部となるように調整した。 Platinum (Pt) was supported on the obtained zirconia-ceria core-shell type particles by an impregnation method to produce platinum-supported zirconia-ceria core-shell type particles. A dinitrodiammineplatinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was added to the resulting zirconia-ceria core-shell particles, stirred for 15 minutes, then dried at 90°C for 24 hours, and dried at 600°C for 3 hours in air. After sintering for several hours, platinum-supported zirconia-ceria core-shell type particles were obtained. The concentration of the dinitrodiammineplatinum (II) nitric acid solution was adjusted so that the supported amount was 0.2 parts by mass with respect to 100 parts by mass of the zirconia-ceria core-shell type particles.
比較例7:パラジウム担持セリア粒子の合成(パラジウム担持量0.2質量%)
ジルコニア-セリアコアシェル型粒子の代わりにセリア粒子を使用したこと以外は実施例12と同様に、パラジウム担持セリア粒子を得た。
Comparative Example 7: Synthesis of palladium-supported ceria particles (palladium-supported amount: 0.2% by mass)
Palladium-supported ceria particles were obtained in the same manner as in Example 12, except that ceria particles were used instead of the zirconia-ceria core-shell type particles.
実施例13:パラジウム担持ジルコニア-セリアコアシェル型粒子の合成(パラジウム担持量0.2質量%)
ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業(株)製)の代わりに、ジニトロジアンミンパラジウム(II)硝酸溶液(田中貴金属工業(株)製)を使用し、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.2質量部となるようにジニトロジアンミンパラジウム(II)硝酸溶液の濃度を調整すること以外は実施例12と同様に、パラジウム担持ジルコニア-セリアコアシェル型粒子を得た。
Example 13: Synthesis of palladium-supported zirconia-ceria core-shell particles (palladium-supported amount: 0.2% by mass)
Instead of dinitrodiammineplatinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), dinitrodiamminepalladium (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) is used, and the amount supported is zirconia-ceria core-shell type. Palladium-supported zirconia-ceria core-shell particles were obtained in the same manner as in Example 12, except that the concentration of the dinitrodiammine palladium (II) nitric acid solution was adjusted to 0.2 parts by mass with respect to 100 parts by mass of the particles. .
比較例8:パラジウム担持セリア粒子の合成(パラジウム担持量0.2質量%)
ジルコニア-セリアコアシェル型粒子の代わりにセリア粒子を使用し、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業(株)製)の代わりに、ジニトロジアンミンパラジウム(II)硝酸溶液(田中貴金属工業(株)製)を使用し、担持量がセリア粒子100質量部に対して0.2質量部となるようにジニトロジアンミンパラジウム(II)硝酸溶液の濃度を調整すること以外は実施例12と同様に、パラジウム担持セリア粒子を得た。
Comparative Example 8: Synthesis of palladium-supported ceria particles (palladium-supported amount: 0.2% by mass)
Ceria particles were used instead of zirconia-ceria core-shell particles, and dinitrodiammineplatinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was replaced with dinitrodiammine palladium (II) nitric acid solution (Tanaka Kikinzoku Kogyo Co., Ltd.). )), and the concentration of the dinitrodiammine palladium (II) nitric acid solution is adjusted so that the supported amount is 0.2 parts by mass with respect to 100 parts by mass of ceria particles. Palladium-supported ceria particles were obtained.
実施例14:ロジウム担持ジルコニア-セリアコアシェル型粒子の合成(ロジウム担持量0.2質量%)
ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業(株)製)の代わりに、硝酸ロジウム水溶液(田中貴金属工業(株)製)を使用し、担持量がジルコニア-セリアコアシェル型粒子100質量部に対して0.2質量部となるように硝酸ロジウム水溶液の濃度を調整すること以外は実施例12と同様に、ロジウム担持ジルコニア-セリアコアシェル型粒子を得た。
Example 14: Synthesis of rhodium-supported zirconia-ceria core-shell particles (rhodium-supported amount: 0.2% by mass)
An aqueous solution of rhodium nitrate (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was used instead of the dinitrodiammineplatinum (II) nitric acid solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), and the supported amount was 100 parts by mass of the zirconia-ceria core-shell type particles. Rhodium-supported zirconia-ceria core-shell particles were obtained in the same manner as in Example 12, except that the concentration of the rhodium nitrate aqueous solution was adjusted to 0.2 parts by mass.
比較例9:ロジウム担持セリア粒子の合成(パラジウム担持量0.2質量%)
ジルコニア-セリアコアシェル型粒子の代わりにセリア粒子を使用し、ジニトロジアンミン白金(II)硝酸溶液(田中貴金属工業(株)製)の代わりに、硝酸ロジウム水溶液(田中貴金属工業(株)製)を使用し、担持量がセリア粒子100質量部に対して0.2質量部となるように硝酸ロジウム水溶液の濃度を調整すること以外は実施例12と同様に、ロジウム担持セリア粒子を得た。
Comparative Example 9: Synthesis of rhodium-supported ceria particles (palladium-supported amount: 0.2% by mass)
Ceria particles were used instead of zirconia-ceria core-shell type particles, and rhodium nitrate aqueous solution (Tanaka Kikinzoku Kogyo Co., Ltd.) was used instead of dinitrodiammine platinum (II) nitric acid solution (Tanaka Kikinzoku Kogyo Co., Ltd.). Then, rhodium-supported ceria particles were obtained in the same manner as in Example 12, except that the concentration of the rhodium nitrate aqueous solution was adjusted so that the supported amount was 0.2 parts by mass with respect to 100 parts by mass of the ceria particles.
試験例4:実施例12~14及び比較例7~9の三元触媒活性の比較調査
実施例12~14及び比較例7~9の試料の三元触媒活性測定を、固定床流通式反応装置を用いて性能評価試験を行った。実施例12~14及び比較例7~9の試料を100mg(0.1g)秤量し直状反応管にセットし、ガソリンエンジンの排出ガス中の成分を模擬した混合ガス(C3H6:0.04体積%、NO:0.1体積%、CO:0.3体積%、O2:0.33体積%、H2:0.1体積%、H2O:2.0体積%、N2:残部)を流速500mL/minで流通させ、実施例12~14及び比較例7~9の試料通過後のガス組成を測定し、触媒性能試験を行った。測定は、昇温過程では室温から700℃まで10℃/minで昇温した後に30分保持後、徐々に温度を下げ室温まで空冷したのち、4℃/minで700℃まで昇温し、CO、NO及びC3H6の浄化率から三元触媒活性を評価した。体積換算される空間速度は120000/時間である。
Test Example 4: Comparative investigation of three-way catalyst activity of Examples 12-14 and Comparative Examples 7-9 The three-way catalyst activity measurement of the samples of Examples 12-14 and Comparative Examples 7-9 was used to perform a performance evaluation test. 100 mg (0.1 g) of the samples of Examples 12 to 14 and Comparative Examples 7 to 9 were weighed and set in a straight reaction tube, and mixed gas (C 3 H 6 : 0 0.04% by volume, NO: 0.1% by volume, CO: 0.3% by volume, O2 : 0.33% by volume, H2: 0.1% by volume, H2O : 2.0% by volume, N2 : remainder) was flowed at a flow rate of 500 mL/min, the gas composition after passing through the samples of Examples 12 to 14 and Comparative Examples 7 to 9 was measured, and a catalyst performance test was performed. In the temperature rising process, the temperature was raised from room temperature to 700 ° C. at 10 ° C./min, held for 30 minutes, then gradually lowered and air-cooled to room temperature, and then raised to 700 ° C. at 4 ° C./min. , NO and C 3 H 6 purification rates were used to evaluate the three-way catalyst activity. The space velocity converted to volume is 120000/hour.
CO、NO及びC3H6が50体積%浄化される際の温度(50体積%浄化温度T50)を測定し、表3にまとめた。 The temperature at which 50% by volume of CO, NO and C 3 H 6 were purified (50% by volume purification temperature T50) was measured and summarized in Table 3.
本発明の酸素ストレージ材料は、PM燃焼活性を低温で発現し、その特に低担持量の銀添加において浄化が優れている。それと同時に、白金、パラジウム、ロジウムの低担持量触媒においても良好な三元活性を有するので、三元触媒(TWC)能と排気浄化フィルタ(GPF)に適したPM燃焼活性を同時に発現する担体として有用であることがわかる。 The oxygen storage material of the present invention exhibits PM burning activity at low temperatures, and is excellent in purification, especially when added with a low loading of silver. At the same time, since it has good three-way activity even with low-load catalysts of platinum, palladium, and rhodium, it can be used as a carrier that exhibits both three-way catalyst (TWC) performance and PM combustion activity suitable for exhaust gas purification filters (GPF) at the same time. It turns out to be useful.
三元触媒として、多層コート無しでも貴金属のそれぞれに従来担体より高い活性発現を促すため、触媒コンバーター作製工程が簡易になる。また、低い比表面積でもこれらの高活性を示すためハニカムコート層厚みを低減できる。圧力損失低下を大幅に抑制できる担体材および触媒となる。 As a three-way catalyst, even without a multi-layer coating, each precious metal is promoted to exhibit higher activity than conventional carriers, simplifying the process of manufacturing a catalytic converter. Moreover, since these high activities are exhibited even with a low specific surface area, the thickness of the honeycomb coat layer can be reduced. It becomes a support material and a catalyst that can greatly suppress pressure drop reduction.
なお、排気浄化フィルタ(GPF)の圧力損失の低減に対しては、従来の触媒層の厚みが数十μm、薄いところでも数μmであることから、これよりも薄くして壁内細孔のガス通路を十分確保する必要がある。 In order to reduce the pressure loss of the exhaust purification filter (GPF), the thickness of the conventional catalyst layer is several tens of μm, and the thinnest part is several μm. It is necessary to secure a sufficient gas passage.
三元触媒(TWC触媒)を担持した場合、従来のように多孔性で比表面積の高い凝集した粒子の担体用コート層では活性を発現するためにある程度の厚みが必要でこれを解決できなかった。 When a three-way catalyst (TWC catalyst) is supported, a certain amount of thickness is required in order to exhibit activity in the carrier coating layer of aggregated particles with a high specific surface area and high porosity as in the past, and this problem could not be solved. .
それに対して、本発明では、比表面積が小さく粒子が独立しやすくさらにはPd等を担持した場合でも活性が高いので、排気浄化フィルタ(GPF)基材の壁内でのコート層厚みを調整し薄くできる利点がある。すなわち、本発明によれば、排気浄化フィルタ(GPF)基材上の薄いコート層で、三元触媒(TWC)活性とPM浄化活性を実現できることが明らかである。基材上に100nmの層を形成した触媒においても、三元触媒(TWC)活性とPM浄化活性が十分発現した。さらには、同じコート層担体に対しても、三元触媒(TWC)活性にとくに優れるRhやPd、さらにはPM浄化活性を向上するAg等を部位ごとに添加する担持の仕分けもでき、それぞれ必要な浄化性能を保持した。 On the other hand, in the present invention, the specific surface area is small and the particles are easy to become independent, and even when Pd or the like is supported, the activity is high. It has the advantage of being thin. That is, according to the present invention, it is clear that a thin coating layer on an exhaust purification filter (GPF) substrate can achieve three-way catalyst (TWC) activity and PM purification activity. The three-way catalyst (TWC) activity and PM purification activity were sufficiently expressed even in the catalyst having a layer of 100 nm formed on the substrate. Furthermore, even for the same coated layer carrier, it is possible to sort the carrier by adding Rh and Pd, which are particularly excellent in three-way catalyst (TWC) activity, and Ag, etc., which improves PM purification activity. maintained good purification performance.
本材のコアシェル構造により、三元触媒(TWC)活性に加えてPM浄化に対しても本発明のコアシェル型ナノ粒子が有効に働いた。すなわち、排気浄化フィルタ(GPF)基材の壁入り口や内部等でのコート層による閉塞や細孔の狭まりといった不都合がない触媒材として本発明の材料は有効である。このように、本発明による三元触媒(TWC)提供は、排気浄化フィルタ(GPF)基材の最適な利用とその浄化活性保持に対して有用であるとともに、その製造工程をより簡略化することができる利点がある。 Due to the core-shell structure of this material, the core-shell nanoparticles of the present invention worked effectively not only for three-way catalyst (TWC) activity but also for PM purification. In other words, the material of the present invention is effective as a catalytic material that does not cause problems such as clogging or narrowing of pores due to the coat layer at the wall inlet or inside of the exhaust gas purification filter (GPF) substrate. Thus, provision of a three-way catalyst (TWC) according to the present invention is useful for optimal utilization of the exhaust gas purification filter (GPF) substrate and maintenance of its purification activity, and further simplifies the manufacturing process. There is an advantage that
Claims (12)
(CeO2)x(ZrO2)1-x
[式中、xは0.05~0.50を示す。]
で表される、請求項1に記載の酸素ストレージ材料。 Composition formula:
(CeO 2 ) x (ZrO 2 ) 1−x
[In the formula, x represents 0.05 to 0.50. ]
The oxygen storage material according to claim 1, represented by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021052955A JP2022150376A (en) | 2021-03-26 | 2021-03-26 | oxygen storage material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021052955A JP2022150376A (en) | 2021-03-26 | 2021-03-26 | oxygen storage material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022150376A true JP2022150376A (en) | 2022-10-07 |
Family
ID=83464327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021052955A Pending JP2022150376A (en) | 2021-03-26 | 2021-03-26 | oxygen storage material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022150376A (en) |
-
2021
- 2021-03-26 JP JP2021052955A patent/JP2022150376A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5890920B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same | |
JP4858463B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP5921387B2 (en) | Exhaust gas purification catalyst | |
JP4959129B2 (en) | Exhaust gas purification catalyst | |
WO2000044493A1 (en) | Catalyst composition containing oxygen storage components | |
CA2562556C (en) | Process for producing metal oxide particle and exhaust gas purifying catalyst | |
WO2005102933A2 (en) | Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst | |
JP5674092B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP7187654B2 (en) | Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst | |
WO2008007628A1 (en) | Catalyst carrier particle, method for producing the same, and exhaust gas purifying catalyst | |
JP7278518B2 (en) | Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst | |
JP2578219B2 (en) | Method for producing exhaust gas purifying catalyst | |
US7745371B2 (en) | Exhaust gas purifying catalyst, metal oxide particle and production process thereof | |
JP3799466B2 (en) | Exhaust gas purification catalyst | |
JP6050703B2 (en) | Exhaust gas purification catalyst | |
JP6637794B2 (en) | Exhaust gas purification catalyst | |
JP3766568B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH11217220A (en) | Compound oxide, its production and exhaust gas-cleaning catalyst using the same | |
JP2017144412A (en) | Exhaust gas purification catalyst material and exhaust gas purification catalyst | |
JP2011136257A (en) | Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier | |
JP4775953B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP2022150376A (en) | oxygen storage material | |
JP4779271B2 (en) | catalyst | |
JP4697796B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
CN106944094B (en) | Catalyst for exhaust gas purification |