[go: up one dir, main page]

JP2022128228A - 撮像装置及びその制御方法、プログラム、記憶媒体 - Google Patents

撮像装置及びその制御方法、プログラム、記憶媒体 Download PDF

Info

Publication number
JP2022128228A
JP2022128228A JP2021026642A JP2021026642A JP2022128228A JP 2022128228 A JP2022128228 A JP 2022128228A JP 2021026642 A JP2021026642 A JP 2021026642A JP 2021026642 A JP2021026642 A JP 2021026642A JP 2022128228 A JP2022128228 A JP 2022128228A
Authority
JP
Japan
Prior art keywords
flicker
imaging
lens
image
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021026642A
Other languages
English (en)
Other versions
JP2022128228A5 (ja
JP7678680B2 (ja
Inventor
淳史 菅原
Junji Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021026642A priority Critical patent/JP7678680B2/ja
Priority to CN202210156699.5A priority patent/CN114979502B/zh
Priority to US17/677,111 priority patent/US11838647B2/en
Publication of JP2022128228A publication Critical patent/JP2022128228A/ja
Priority to US18/503,760 priority patent/US20240073544A1/en
Publication of JP2022128228A5 publication Critical patent/JP2022128228A5/ja
Application granted granted Critical
Publication of JP7678680B2 publication Critical patent/JP7678680B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

【課題】ライブビュー表示中にフリッカーを検出する場合の、検出精度の低下を抑制できる撮像装置を提供する。【解決手段】レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、撮像素子から出力される画像からフリッカーを検出する検出部と、撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、レンズに対し、撮像素子が受光する光量の変化を引き起こす駆動操作に応じたレンズの駆動が行われる場合、撮像期間においてレンズの駆動を調整する制御部と、を備える。【選択図】 図3

Description

本発明は、撮像装置におけるフリッカーを検出する技術に関するものである。
近年のデジタルカメラの高ISO化(高感度化)に伴い、フリッカーの発生する人工光源下でも高速シャッターの撮影を行えるようになってきている。高速シャッターは、室内スポーツの撮影などでブレのない写真を撮影できるメリットがある一方、フリッカー光源下での撮影では、フリッカーの影響により、フレーム毎、もしくは1フレーム内でも、画像の露出や色のムラが発生してしまうことがある。
このような問題に対して、フリッカーを検出し、明暗の変化が最も少ない、フリッカーのピーク位置での露光を行うことにより、フリッカーの影響を軽減する方法が知られている。
このようなフリッカーの影響を軽減する手法を用いるには、フリッカー及びその周波数を検出することが必要である。フリッカーおよびその周波数の検出に関しては、例えば特許文献1に開示されている技術が知られている。特許文献1では、一定の周期で測光を複数回行い、得られた複数回の測光値のうち、フリッカーの同相に近い第1の間隔で取得された測光値から得られる第1の評価値と、フリッカーの逆相に近い第2の間隔で取得された測光値から得られる第2の評価値とから、フリッカーの有無と周波数を判定する例が示されている。
また、特許文献2には、フリッカー検出動作を、いわゆるライブビュー表示中に、ライブビュー表示を停止させることなく実施することを可能にした撮像装置が開示されている。
特開2017-11352号公報 特開2020-80512号公報
しかしながら、上述の特許文献1に開示された従来技術では、フリッカー検出のための画像の露光時に、絞りなどの露光条件が変化せず、フリッカー光源による被写体の明るさのみが変化することを前提としている。この前提条件が満たされない場合は、フリッカー検出の性能は低下する。
一方で、特許文献2に開示された技術では、ライブビュー表示中は、露出やピントを絶えずユーザーにとって好ましい状態に制御する必要がある。そのため、ライブビュー表示中にフリッカー検出動作を実施しようとすると、ライブビュー表示中の露出やピントの変化に影響され、フリッカー検出ための画像の露光条件が変化してしまうという問題がある。
本発明は上述した課題に鑑みてなされたものであり、その目的は、ライブビュー表示中にフリッカーを検出する場合の、検出精度の低下を抑制できる撮像装置を提供することである。
本発明に係わる撮像装置は、レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、前記撮像素子から出力される画像からフリッカーを検出する検出手段と、前記撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、前記レンズに対し、前記撮像素子が受光する光量の変化を引き起こす駆動操作に応じた前記レンズの駆動が行われる場合、前記撮像期間において前記レンズの駆動を調整する制御手段と、を備えることを特徴とする。
本発明によれば、ライブビュー表示中にフリッカーを検出する場合の、検出精度の低下を抑制できる撮像装置を提供することが可能となる。
本発明の撮像装置の第1の実施形態であるデジタルミラーレスカメラの概略構成を示す図。 ライブビュー中における撮像素子の駆動を説明する図。 第1の実施形態におけるライブビュー中のフリッカー検出動作を示すフローチャート。 フリッカー検出用画像の取得タイミングと測光出力の関係を示す図。 フリッカーの存在を判定する方法を示す図。 フリッカー検出用画像の蓄積時に絞りを駆動した際の測光出力を示す図。 第2の実施形態におけるライブビュー中のフリッカー検出動作を示すフローチャート。 第3の実施形態におけるライブビュー中のフリッカー検出動作を示すフローチャート。 第1の実施形態におけるライブビュー中のフリッカー検出動作を示すフローチャート。 第1の実施形態におけるライブビュー中のフリッカー検出動作を示すフローチャート。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
本発明は、レンズから取り込まれる光量(撮像素子が受光する光量)が変化するような撮像制御動作(例えばレンズにおける絞り駆動、フォーカシングレンズ駆動、ズームレンズ駆動)がフリッカー検出にとって外乱となることを課題としている。以下の説明では、いずれの実施形態においても、上記の撮像制御動作(レンズ構成部材の駆動操作)の代表として、レンズの絞り駆動がフリッカー検出に影響を与える例について記載している。しかし、これは説明を分かりやすくするためであり、実際にはレンズの絞り駆動に限ったことではなく、その他の撮像制御動作についても同様の手法を用いることができる。
また、いずれの実施形態でも、撮像装置として、いわゆるデジタルミラーレスカメラを例に挙げて説明する。しかし、本発明はこれに限定されるものではなく、カメラ機能を備える各種の電子機器であってもよい。例えば、本発明に係る撮像装置は、携帯電話やスマートフォン等のカメラ機能付き携帯通信端末、カメラ機能付き携帯型コンピュータ、カメラ機能付き携帯ゲーム機などであってもよい。
(第1の実施形態)
図1は、本発明の撮像装置の第1の実施形態であるデジタルミラーレスカメラ(以下、カメラと呼ぶ)の概略構成を示す図である。
図1において、カメラは、大きく分けてカメラ本体100と、撮影レンズ200とから構成され、両者はレンズマウント機構110を介して、機械的、電気的に接続される。なお、本実施形態では、被写体像を結像させる撮影レンズ200は、カメラ本体100に対して脱着自在に構成されているが、カメラ本体100と一体となっていてもよい。
まず、カメラ本体100について説明する。撮像素子101は、赤外カットフィルタやローパスフィルタなどを含み、CMOS型等の光電変換素子を備えるイメージセンサである。撮像素子101により被写体の光学像が光電変換され、画像信号として出力される。シャッター104は、非撮影時には閉じて撮像素子101を遮光し、ライブビュー(LV)時や撮影時には開いて、撮影レンズ200を通過した入射光を撮像素子101へ導く。
システム制御部102は、カメラ本体100の各部を制御する演算処理装置である。メモリ103は、システム制御部102が実行するプログラムや変数等を格納するROMと、システム制御部102がプログラムを展開する作業領域や一時的な画像データ等の記憶領域を有するRAMとを含む。
また、システム制御部102は、レンズマウント機構110を通じて、レンズ制御部201と接続される。レンズ制御部201は、レンズ駆動部203を通じてフォーカシングレンズ202の位置を制御する。また、絞り制御部205を通じて絞り204を制御する。より具体的には、撮像素子101で取得した画像からAE/AFに関する演算をシステム制御部102で行い、演算結果に応じたフォーカシングレンズの位置や絞り値をレンズ制御部201へ通信し、制御を行う。
また、シャッター104もシャッター制御部105を通してシステム制御部102と接続されており、システム制御部102での演算結果に応じた露光時間で撮像素子101を露光させる。
次に撮像素子101で取得した画像を表示する動作について説明する。ここでは、撮像素子101で連続的に撮像を行い、撮像された画像を表示部にリアルタイムに表示することでユーザーが被写体を観察する、いわゆるライブビューモードでの動作について説明する。
撮像素子101で取得した画像の表示先として、背面モニタ106とファインダー表示部107の2種類があり、これらを切り替えながら画像が表示される。切り替えは接眼検知部109の検知結果に基づいて行われる。具体的には、ユーザーが接眼状態にあることが検出された場合は、ファインダー表示部107に画像が表示される。ユーザーはファインダーを覗き込んで、接眼レンズ108を通してファインダー表示部107に表示された被写体を確認する。一方、接眼検知部109によりユーザーが接眼状態にないことが検出された場合は、背面モニタ106に画像が表示される。
次に、ライブビューモード時の撮像素子101の駆動について、図2を用いて説明する。図2において、横方向は時間、縦方向は撮像素子101の垂直方向の位置を示し、図中の斜線は、ライブビューモード中の撮像素子101の読み出しタイミングを示している。図2に示すように、まず初めにライブビュー表示用の画像を1枚読み出し、その後、フリッカー検出用の画像を複数枚読み出す(フリッカー検出用の画像の撮像期間)。このライブビュー用の画像とフリッカー検出用の複数枚の画像の取得を1セットとし、この1セットの動作を繰り返す。
フリッカー検出用の画像は、1.66[ms]間隔で複数枚撮影される。1セットはT[ms]の周期で繰り返されるので、この周期がライブビュー表示のフレームレートとなり、1/T[fps]である。1セット内で、フリッカー検出用の画像を何枚取得できるかは、1セットの周期T[ms]に依存し、T[ms]が長いほど、取得できるフリッカー検出用の画像の枚数は増加する。本実施形態では、1セットの周期(ライブビュー表示のフレームレート)を33.33ms(30fps)とし、また1セット内で取得するフリッカー検出用の画像の枚数を18枚とする。
次に、図3を用いて、本実施形態のカメラにおけるライブビュー中のフリッカー検出動作について説明する。図3のフローチャートの動作は、システム制御部102が、メモリ103のROMに記憶されたプログラムをRAMに展開して実行することにより実現される。なお、後述する図7~図10のフローチャートの動作も、同様にシステム制御部102がメモリ103内のプログラムを実行することにより実現される。
ステップS101でライブビューの動作開始指示を受け付けると、システム制御部102は、まず初めにステップS102においてフリッカー検出用の蓄積を行う際の、絞り204の駆動速度の上限速度V_maxをv0に設定する。詳細は後述するが、一般にフリッカー検出用の画像の露光時に、絞り駆動によりレンズからの取り込み光量が変化すると、フリッカーの検出性能は低下する。そして、性能低下の度合いは絞り駆動速度が速いほど大きくなる。そのため、ステップS102では、ライブビューが始まって最初のフリッカー検出動作に向けて、絞り204の駆動速度の上限値V_maxが設定される。
通常、撮影環境のフリッカーの状態は、その環境にある照明光で決まるため、フリッカーの有無や周波数といったフリッカーの状態が目まぐるしく変化することは考えにくい。そのため、初回のフリッカー検出は確実な検出を行うことを目的として、V_maxは比較的低速な速度に設定されるのが望ましい。この初回のフリッカー検出時の絞り駆動速度の上限値をv0とする。v0は予め定められた値であるが、例えばv0=0とすれば、フリッカー検出時は絞り204の駆動が停止することになり、高精度なフリッカー検出を実現することができる。システム制御部102はV_maxを設定した後、ステップS103へ処理を進める。
ステップS103は、フリッカー検出を行うタイミングを待つステップである。すでに説明した通り、フリッカー状態が目まぐるしく変化することは考えにくいため、フリッカー検出動作を毎フレーム行うことは、演算負荷などの観点からも過剰であり、所定の期間が経過するたびにフリッカー検出動作を行えばよいと考えられる。そのため、本実施形態では、システム制御部102は、ライブビュー起動後にフリッカー検出を行い、その後T秒経過するたびに、フリッカー検出を繰り返し行うものとする。例えばT=1などに設定し、1秒おきにフリッカー検出を行うことが考えられる。ステップS103では、システム制御部102は、このフリッカー検出タイミングが来たか否かを判定する。そして、フリッカー検出タイミングが来た場合のみフリッカー検出動作を行うステップS104へと進み、そうでない場合は通常のライブビュー表示を継続したまま待機する。
ステップS104~S107は、実際にフリッカーの検出動作を行うステップである。まずステップS104では、システム制御部102は、フリッカー検出のための画像を蓄積するにあたり、絞り204の駆動速度を上限速度V_max以下(上限値以下)に制限(調整)する。絞り駆動速度が制限された後、ステップS105では、システム制御部102は、撮像素子101にフリッカー検出用の蓄積を行わせる。
図4(a)は、フリッカー検出用の蓄積を行い、100Hzのフリッカーが存在した場合の信号値の時間変化を示した図である。既に図2で示した通り、本実施形態では、ライブビュー表示用の画像の読み出しの後に、フリッカー検出用画像を、1.66ms間隔で18回読み出すことを1セットとして、撮像素子101が駆動される。フリッカー検出には、1.66ms間隔で撮像された18枚の画像のうち、最初の12枚の画像が使用される。12枚の画像のそれぞれに対して、蓄積と読み出しを実施するが、図に示したように、n回目の蓄積を「蓄積n」、蓄積nの信号読み出しを「読み出しn」、読み出しnの結果から得られる測光値(信号値)を「AE(n)」と記述する。ここでは、最初の12回の蓄積に着目するので、AE(1)~AE(12)の測光値が得られることになる。また、各測光値の取得時刻に関しては、蓄積が有限の時間で行われるため、蓄積期間中の中央値(図中の平行四辺形の重心位置)で代表させることとし、それぞれt(1)~t(12)とする。ステップS105では、システム制御部102が、このように1.66ms間隔でフリッカー検出用の画像を撮像素子101に取得させる。
ステップS105でフリッカー検出用の画像を取得し終わったら、システム制御部102は、ステップS106において、絞り204の駆動速度に対してステップS104で設定していた制限を解除する。そして、システム制御部102は、ステップS107においてAE(1)~AE(12)を用いてフリッカー検出演算を行う。
フリッカー検出演算では、システム制御部102は、まずAE(1)~AE(12)からフリッカーの周波数判定で使用する評価値を算出する。フリッカー周波数判定に使用する評価値を、本実施形態では次式により定義することとする。
Figure 2022128228000002
SADとはSum of Absolute Differenceの略であり、パターンマッチングの分野などで使われる、類似度を表す指標である。mは、12回の測光を行ったうちのn回目の測光結果AE(n)に対し、何回先の測光値との類似度を計算するかを意味する数値であるから、SAD(m)とは、(1.667×m)ms経過後の測光値との類似度を算出する式である。式から分かるように、類似度が高いほど、SAD(m)の値は小さくなる。
例えば、100Hzのフリッカーが存在する環境下では、フリッカー周期は約10msであり、測光周期1.66msとの関係は、10÷1.66≒6であるから、図4(a)に示すように、蓄積のタイミングによらず、6回周期で同じ測光値が得られる。すなわち、AE(n)≒AE(n+6)の関係となる。この性質から、100Hzのフリッカーが存在する環境下でSAD(6)を計算すると、SAD(6)≒0となる。更に、100Hzのフリッカーの存在を検出するために、SAD(3)も計算する。SAD(3)は、1.667×3=5ms経過後の測光値との類似度を計算した値となる。100Hzのフリッカーが存在する環境下では、5msずれたタイミングの測光値は逆相の関係となるため、SAD(3)はSAD(6)に対して非常に大きな値となる。つまり、SAD(3)が大きく、SAD(6)が小さくなる場合は、100Hzフリッカーが存在すると考えられる。
同様の考え方から、120Hzのフリッカーが存在する環境下では、SAD(5)とSAD(3)を計算すればよい。120Hzのフリッカーが存在する環境下では、光源の点灯周期は8.333msであるため、図4(b)に示すようにAE(n)≒AE(n+5)となり、SAD(5)≒0となる。また、120Hzのフリッカーでは、完全に逆相の関係になるのは4.16ms経過後であり、4.16ms経過後の波形との類似度を判定するのが理想的である。しかし、4.16msはフレーム周期1.667msの整数倍ではないため、これに比較的近い値として、5ms経過後の波形との類似度を示すSAD(3)の値で代用する。120Hzのフリッカーが存在する環境下でも、SAD(3)は逆相に近い類似度を示すため、SAD(3)はSAD(5)に対して非常に大きな値となる。
以上のことから、SAD(6)、SAD(5)、SAD(3)を計算し、これらを使用して最終的なフリッカーの周波数判定を行う。既に説明したように、100Hzのフリッカーが存在する環境下では、SAD(3)はSAD(6)と比較して非常に大きな値となる。よって、横軸にSAD(3)、縦軸にSAD(6)をとった図5(a)に示すような平面を考えると、100Hzのフリッカーが存在する環境下では、この平面の相対的に右下の領域にプロットが得られることになる。すなわち、図5(a)に示すような領域分割で100Hzと判定する領域と、100Hzではないと判定する領域を設定すれば、プロットの位置から、精度良く100Hzのフリッカーであるか否かを判定することができる。
同様に横軸にSAD(3)、縦軸にSAD(5)をとった図5(b)に示す平面の領域分割により、120Hzのフリッカーであるか否かを判定することができる。
なお、図5(a)、図5(b)に示した領域分割線はあくまで一例であり、その傾きや折れ曲がるポイントは、これに限定されるものではない。
図5(a)に示す平面でのプロット位置から100Hzのフリッカーの有無が判定でき、図5(b)に示す平面でのプロット位置から120Hzのフリッカーの有無が判定できるので、最後にこれらの判定結果を統合する処理を行う。
統合処理は、図5(c)に示す表に基づいて行われる。以下、この表について説明する。100Hzのフリッカーが存在する場合は、図5(a)の判定結果は「100Hz」となり、図5(b)の判定結果は「120Hzではない」となるため、図5(c)の左下のボックスは「100Hz」となる。同様の考え方で、図5(c)の右上のボックスは「120Hz」となる。
フリッカーが存在せず、DC的な定常光が被写体となっている場合は、測光値は時間的に変化しないため、
AE(1)≒AE(2)≒AE(3)≒ … ≒AE(12)
であり、これにより
SAD(6)≒SAD(5)≒SAD(3)≒0
となる。つまりDC環境下では図5(a)、図5(b)の両平面の原点付近にプロットが得られることとなり、図5(a)の判定結果は「100Hzではない」、図5(b)の判定結果は「120Hzではない」となる。よって、図5(c)の表の右下のボックスは輝度変化が無いDC判定となる。
また、図5(c)の表の左上のボックスは、「100Hz」であり、「120Hz」でもあるという場合である。通常であればこのような判定結果が得られることは考えにくいが、仮に被写体の移動やパンニング動作などによって、AE(1)~AE(12)を取得中の被写体が同じでない場合などは、このような結果になる可能性もある。よって、このような場合は、フリッカー検出エラーという意味合いで、DC判定とする。以上のようにして、システム制御部102は、ステップS107において、フリッカーの有無とその周波数を判定する。
以上、理想的なフリッカーが存在した場合でのフリッカー検出演算について説明したが、次に、フリッカー検出用画像を蓄積中に、絞り204が駆動されて、絞りが開いた場合について考える。図6は、絞りが開きつつあり、且つ100Hzのフリッカーが存在する環境下で、フリッカー検出用の蓄積を12回行った場合の測光出力の例を示す図である。
図6のような測光出力では、AE(n)≦AE(n+6)となり、100Hzのフリッカーが存在する環境下で期待されるSAD(6)≒0とはならず、SAD(6)>0となり、絞り204を駆動する速度が速いほど、SAD(6)も大きな値となる。つまり、図5(a)で本来100Hzと判定される領域に来るはずの点が、絞りの駆動速度によってはSAD(6)>0となる領域の点となり、100Hzではないと判定される可能性が出てくる。この現象は、120Hzのフリッカーが存在する環境下でのSAD(5)に関しても同様である。
一方で、検出対象のフリッカーの振幅が大きいほど、SAD(3)の値は大きくなる。図5では、フリッカー判定領域の境界が右上がりになっており、フリッカーの振幅が大きいほど、絞り204が駆動されてSAD(6)>0となっても、誤判定される確率は小さくなることが分かる。つまり、大きい振幅のフリッカーであれば、比較的速くレンズ絞り駆動をしても誤判定しにくいことが分かる。
システム制御部102は、ステップS107でフリッカー検出演算を終えたら、ステップS109に処理を進め、検出したフリッカーに応じて、ライブビューの表示動作を変更する。フリッカー環境下においては、取得画像の蓄積時間をフリッカー周期の整数倍に設定することで、撮影画像に生じるラインフリッカーを防ぐことができる。そのため、ステップS109では、システム制御部102は、ライブビュー表示用画像の蓄積時間をフリッカー検出結果に応じて制御する。
ステップS110~S111では、システム制御部102は、フリッカーの振幅を計算し、計算結果に応じて、次のフリッカー検出用蓄積における絞り204の駆動速度上限値V_maxを決定する。
既に説明したように、大きい振幅のフリッカーであれば、絞り204の駆動速度を比較的速くしても誤判定しにくい。よって、図4にあるAE(1)~AE(12)のMAX値とMIN値の差分からフリッカーの振幅を求め、求めた振幅に応じてV_maxを決定する。その後、ステップS103ヘ戻って、システム制御部102は、ライブビュー表示を繰り返す。これにより、振幅が大きいフリッカー環境下では絞り204の駆動速度の最大値V_maxを相対的に大きな値に設定できる。そのため、必要以上に絞りの駆動速度を制限することを避けることができ、また、振幅の小さいフリッカー環境下でも、誤検知を防ぐことができる。
(第2の実施形態)
次に、第2の実施形態におけるカメラのライブビュー中のフリッカー検出動作について、図7を用いて説明する。なお、カメラ100の構成及びライブビューモード時の撮像素子101の駆動方法については、第1の実施形態における図1及び図2と同様であるため、説明を省略する。
第1の実施形態における図3のフローチャートでは、フリッカーの振幅を検出し、その振幅に応じて絞りの駆動速度の上限値V_maxを更新した。本実施形態では、より簡易的に、フリッカーの振幅によらず、予め定めた固定の所定値をV_maxに設定する。すなわち、本実施形態を示す図7のステップS201~S209では、図3のステップS102,S110,S111を省略して、V_maxを固定値としている。これにより、フリッカーの検出精度とライブビュー表示の露出制御を、非常に簡単な制御で両立することが可能となる。
(第3の実施形態)
第3の実施形態におけるカメラのライブビュー中のフリッカー検出動作について、図8を用いて説明する。なお、カメラ100の構成及びライブビューモード時の撮像素子101の駆動方法については、第1の実施形態における図1及び図2と同様であるため、説明を省略する。
ライブビュー中においては、絞り204が常に高速で動いていることは稀である。そのため、絞りが高速で動いているときのフリッカー検出結果のみを信頼度が低いと見なして廃棄し、代わりにフリッカー検出の周期Tを短く設定すれば、全体として大きな問題はないと考えることができる。第3の実施形態では、この考え方に基づき、図8に示すようなフリッカー検出動作を行う。
ステップS301,S303は、ステップS101,S103と同様である。ステップS304では、システム制御部102は、絞りの駆動速度Vの監視を始める。ステップS305,S307では、ステップS105,S107と同様にフリッカー検出用の蓄積と演算が行われる。その後、ステップS308では、システム制御部102は、監視していた絞りの駆動速度の判定を行う。すなわち、ステップS305におけるフリッカー検出用の蓄積期間中において、監視していた絞りの駆動速度Vが予め定めた固定の閾値V_thより高速か否かを判定する。そして、駆動速度Vが閾値V_thより高速だった場合は、ステップS307のフリッカー検出結果が信用できないとして、ステップS303へ戻る。逆にVが閾値V_th以下(閾値以下)だった場合は、システム制御部102は、ステップS307のフリッカー検出結果を採用(選択)し、それに応じてステップS309でライブビュー表示を制御する。その後、ステップS303に戻る。
このように、ステップS305でのフリッカー検出用の蓄積期間中の絞り駆動速度に応じてフリッカー検出結果の信頼性を評価することにより、フリッカーの誤検知を抑制することができる。
(第4の実施形態)
第4の実施形態におけるカメラのライブビュー中のフリッカー検出動作について、図9を用いて説明する。なお、カメラ100の構成及びライブビューモード時の撮像素子101の駆動方法については、第1の実施形態における図1及び図2と同様であるため、説明を省略する。
ステップS401,S403は、ステップS101,S103と同様である。ステップS404では、システム制御部102は、絞り204の絞り位置の監視を開始し、ステップS405では、フリッカー検出用の画像の取得を行う。ステップS405では、例えば、絞り204を開く方向に駆動しながら12回の蓄積、読み出しを行い、図6に示したような、測光値AE(1)~AE(12)を得る。しかし、ステップS404で絞り位置の監視を始めているので、12回の蓄積を行った時刻であるt(1)~t(12)のそれぞれの時点における絞り位置を特定することができる。そして、これに基づいて、測光値AE(1)~AE(12)を補正することができる。例えばt(1)での絞り位置を基準として、t(2)~t(12)の時点での絞りの相対位置から計算される光量差を、そのままAE(2)~AE(12)へ加味すれば、絞り駆動の影響を排除したAE(1)~AE(12)の値を得ることができる。結果として、実際に得られるAE(1)~AE(12)は図6のような値でも、絞り位置に基づく補正により、図4(a)のAE(1)~AE(12)のような測光値に補正することができる。
ステップS407,S409は、ステップS107,S109と同様であるため、説明を省略する。
以上の動作により、本実施形態においては、フリッカー検出用画像を蓄積中に絞りを駆動しても、フリッカーの検出性能とライブビュー表示の露出制御を両立することができる。
(第5の実施形態)
第1~第4の実施形態では、1.66ms間隔で取得したフリッカー検出用画像12枚から、SAD(6)、SAD(5)、SAD(3)を算出し、これらの評価値を利用してフリッカー検出を行った。これを説明の都合上、第1のフリッカー検出方法と呼ぶこととする。
本実施形態では、第1のフリッカー検出方法とは別に、フリッカー検出用の蓄積時の外乱に対して相対的に強い第2のフリッカー検出方法も用い、フリッカー検出用の蓄積時の絞り204の駆動速度に応じて、使用するフリッカー検出方法を切り替える。
ここで、第2のフリッカー検出方法について説明する。第2のフリッカー検出方法では、フリッカーの検出に、ライブビュー表示用の画像そのものを使用する。ローリングシャッター形式の撮像素子で撮像された画像では、水平ラインごとに露光開始と露光終了のタイミングが異なる。つまり、フリッカー環境下においては水平ラインごとに明るさの異なる画像が得られ、縞模様として観測される。この縞模様からフリッカー成分を抽出するために、以下の式により時間方向の定常的な信号成分を抽出する。
mem=ave×k + mout×(1-k)
ここで、memは上記式の出力としてメモリに格納される値であり、aveは入力される画像内の各行の色成分の信号値であり、kは巡回型ローパスフィルタのフィルタ係数であり、moutは1フレームの前の画像の信号値が入力された時に演算された上記式の演算結果である。
上記の演算を入力画像の各水平ラインについて行うことにより、時間方向の定常的な信号成分を抽出できる。新たに入力される画像の水平ラインの信号値を、抽出された定常的な信号成分で除算することにより、フリッカー成分(入力画像信号のレベル変動成分)を算出する。算出されたフリッカー成分から、垂直方向の信号のレベルの変動特性であるフリッカーモデルを生成する。フリッカーモデルは、例えば垂直方向にある特定の振幅w、周波数f、位相θを持つ周期的な関数として近似することが出来る。光源を駆動する交流電源の電圧変動が三角関数の特徴を持つため、モデルとする周期的な関数としては正弦波(または余弦波)を用いるのが一般的であるが、他の周期的な理想関数でも構わない。周波数fはフレームレートと光源の電源周波数により決定される。また、位相θについては、検出された変動成分のうち変動比が1で垂直方向に変動比の変化量で1をとる行を位相θ=0として各行の位相を算出することができる。さらに、振幅wは算出された位相のπ/2及び3π/2における変動比から算出される。
このような方法は、より周波数成分に着目した手法であり、第1のフリッカー検出方法よりも、絞り204の駆動による明るさの変化に対して強く、安定して検出できる特性がある。しかし、ローリングシャッター形式により発生する縞の情報を使うことから、画面の一部のみに存在するフリッカーを見つけることが困難である。また、安定した検出結果を得るために、複数フレームの画像を必要とするため、1回の検出にかかる時間が長いという特徴がある。
一方で、第1のフリッカー検出方法は、着目する領域に絞った測光値を用いることで、画面の一部の領域のみに存在するフリッカーも検出可能である。また、検出にかかる時間も、1.66ms間隔で12枚の撮影を行えばよいので、おおよそ20ms程度と非常に短い。第5の実施形態では、このように特性の違う第1と第2のフリッカー検出方法を使い分ける。
図10は、本実施形態の動作を示すフローチャートである。ステップS501~S509に関しては、第3の実施形態のステップS301~S309と同様である。ただし、ステップS308で、フリッカー検出用蓄積時の絞り駆動速度Vが、予め定めた固定の閾値V_thより高速だった場合は、第3の実施形態では検出結果を廃棄していた。これに対し、本実施形態では、絞り駆動速度Vが閾値V_thより高速だった場合でも、ステップS510で第2のフリッカー検出を実施することにより、絞り駆動に影響されないフリッカー検出を実現することができる。
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読み出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
101:撮像素子、102:システム制御部、103:メモリ、201:レンズ制御部、203:レンズ駆動部、204:絞り、205:絞り駆動部

Claims (19)

  1. レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、
    前記撮像素子から出力される画像からフリッカーを検出する検出手段と、
    前記撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、前記レンズに対し、前記撮像素子が受光する光量の変化を引き起こす駆動操作に応じた前記レンズの駆動が行われる場合、前記撮像期間において前記レンズの駆動を調整する制御手段と、
    を備えることを特徴とする撮像装置。
  2. 前記検出手段は、フリッカーの有無と、フリッカーの周波数とを検出することを特徴とする請求項1に記載の撮像装置。
  3. 前記駆動操作により、前記レンズにおける絞りの駆動、フォーカシングレンズの駆動、ズームレンズの駆動の少なくとも1つのレンズ駆動が行われることを特徴とする請求項1または2に記載の撮像装置。
  4. 前記駆動操作は、前記レンズの絞りを駆動する操作であり、前記制御手段は、前記撮像期間において前記絞りを駆動する速度を調整することを特徴とする請求項3に記載の撮像装置。
  5. 前記制御手段は、前記撮像期間において前記絞りを駆動する速度を所定の上限値以下に制限することを特徴とする請求項4に記載の撮像装置。
  6. 前記制御手段は、前記所定の上限値をフリッカーの振幅に基づいて変更することを特徴とする請求項5に記載の撮像装置。
  7. 前記制御手段は、前記所定の上限値を固定の値に設定することを特徴とする請求項5に記載の撮像装置。
  8. レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、
    前記撮像素子から出力される画像からフリッカーを検出する検出手段と、
    前記撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、前記レンズに対し、前記撮像素子が受光する光量の変化を引き起こす駆動操作が行われる場合、前記検出手段によりフリッカーを検出する方法を変更する制御手段と、
    を備えることを特徴とする撮像装置。
  9. 前記検出手段は、フリッカーの有無と、フリッカーの周波数とを検出することを特徴とする請求項8に記載の撮像装置。
  10. 前記駆動操作により、前記レンズにおける絞りの駆動、フォーカシングレンズの駆動、ズームレンズの駆動の少なくとも1つのレンズ駆動が行われることを特徴とする請求項8または9に記載の撮像装置。
  11. 前記制御手段は、前記レンズの絞りを駆動する速度に基づいて前記検出手段によるフリッカーの検出結果の信頼度を判定し、信頼度が低い検出結果を採用しないことを特徴とする請求項10に記載の撮像装置。
  12. 前記制御手段は、前記レンズの絞りを駆動する速度が所定の閾値より速い場合に、前記信頼度が低いと判定し、前記レンズの絞りを駆動する速度が前記所定の閾値より速い期間に撮像された画像を用いたフリッカーの検出結果を採用しないことを特徴とする請求項11に記載の撮像装置。
  13. 前記制御手段は、前記レンズの絞りの位置を監視し、絞りの位置に基づいて前記検出手段によるフリッカーの検出結果を補正することを特徴とする請求項10に記載の撮像装置。
  14. 前記制御手段は、フリッカーを検出する方法として、フリッカー検出用の複数の画像を用いてフリッカーを検出する第1の方法と、ライブビュー用の画像を用いてフリッカーを検出する第2の方法とを切り替えることを特徴とする請求項8乃至10のいずれか1項に記載の撮像装置。
  15. 前記制御手段は、前記レンズの絞りを駆動する速度が所定の閾値以下の場合に前記第1の方法を選択し、前記所定の閾値より速い場合に前記第2の方法を選択することを特徴とする請求項14に記載の撮像装置。
  16. レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、前記撮像素子から出力される画像からフリッカーを検出する検出手段と、を備える撮像装置を制御する方法であって、
    前記撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、前記レンズに対し、前記撮像素子が受光する光量の変化を引き起こす駆動操作に応じた前記レンズの駆動が行われる場合、前記撮像期間において前記レンズの駆動を調整する制御工程を有することを特徴とする撮像装置の制御方法。
  17. レンズにより結像された被写体像を撮像して画像を出力する撮像素子と、前記撮像素子から出力される画像からフリッカーを検出する検出手段と、を備える撮像装置を制御する方法であって、
    前記撮像素子によりフリッカーを検出するために被写体を撮像している撮像期間において、前記レンズに対し、前記撮像素子が受光する光量の変化を引き起こす駆動操作が行われる場合、前記検出手段によりフリッカーを検出する方法を変更する制御工程を有することを特徴とする撮像装置の制御方法。
  18. 請求項16または17に記載の制御方法をコンピュータに実行させるためのプログラム。
  19. 請求項16または17に記載の制御方法をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
JP2021026642A 2021-02-22 2021-02-22 撮像装置及びその制御方法、プログラム、記憶媒体 Active JP7678680B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021026642A JP7678680B2 (ja) 2021-02-22 2021-02-22 撮像装置及びその制御方法、プログラム、記憶媒体
CN202210156699.5A CN114979502B (zh) 2021-02-22 2022-02-21 摄像设备、摄像设备的控制方法和存储介质
US17/677,111 US11838647B2 (en) 2021-02-22 2022-02-22 Image capture apparatus capable of suppressing flicker reduction when detecting flicker during live view display, and method of controlling same
US18/503,760 US20240073544A1 (en) 2021-02-22 2023-11-07 Image capture apparatus, method of controlling same, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021026642A JP7678680B2 (ja) 2021-02-22 2021-02-22 撮像装置及びその制御方法、プログラム、記憶媒体

Publications (3)

Publication Number Publication Date
JP2022128228A true JP2022128228A (ja) 2022-09-01
JP2022128228A5 JP2022128228A5 (ja) 2024-02-22
JP7678680B2 JP7678680B2 (ja) 2025-05-16

Family

ID=82899967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021026642A Active JP7678680B2 (ja) 2021-02-22 2021-02-22 撮像装置及びその制御方法、プログラム、記憶媒体

Country Status (3)

Country Link
US (2) US11838647B2 (ja)
JP (1) JP7678680B2 (ja)
CN (1) CN114979502B (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080718A1 (ja) * 2012-11-22 2014-05-30 富士フイルム株式会社 撮像装置及び合焦制御方法
JP2016039596A (ja) * 2014-08-11 2016-03-22 キヤノン株式会社 撮像装置及びその制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104924A (en) * 1976-03-01 1977-09-02 Canon Inc Exposure information display unit of camera
JPS6053429B2 (ja) * 1979-01-25 1985-11-26 オムロン株式会社 ソケツトの製造方法
JP3123653B2 (ja) * 1990-03-07 2001-01-15 ソニー株式会社 固体撮像装置
JP4904749B2 (ja) * 2005-09-08 2012-03-28 ソニー株式会社 フリッカ低減方法、フリッカ低減回路及び撮像装置
JP5396862B2 (ja) * 2009-01-07 2014-01-22 リコーイメージング株式会社 撮像装置
JP6053429B2 (ja) * 2012-09-27 2016-12-27 オリンパス株式会社 撮像装置および撮像装置の絞り制御方法
JP6466786B2 (ja) * 2015-06-12 2019-02-06 オリンパス株式会社 撮像装置、撮像方法およびプログラム
JP6525757B2 (ja) 2015-06-17 2019-06-05 キヤノン株式会社 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体
JP6614853B2 (ja) * 2015-08-07 2019-12-04 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP2018093275A (ja) * 2016-11-30 2018-06-14 オリンパス株式会社 撮像装置およびフリッカ判定方法
JP2019161499A (ja) * 2018-03-14 2019-09-19 オリンパス株式会社 撮像装置
JP6494829B2 (ja) * 2018-03-20 2019-04-03 キヤノン株式会社 撮像装置、制御方法、プログラム及び記憶媒体
JP6816210B2 (ja) * 2018-06-29 2021-01-20 キヤノン株式会社 撮像装置およびその制御方法、プログラム
US11012634B2 (en) * 2018-06-29 2021-05-18 Canon Kabushiki Kaisha Image pickup apparatus capable of performing image pickup with reduced flicker influence, method for controlling the same, and storage medium
JP2020014052A (ja) 2018-07-13 2020-01-23 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP7278750B2 (ja) 2018-11-14 2023-05-22 キヤノン株式会社 撮像装置
JP2020088667A (ja) * 2018-11-28 2020-06-04 キヤノン株式会社 撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080718A1 (ja) * 2012-11-22 2014-05-30 富士フイルム株式会社 撮像装置及び合焦制御方法
JP2016039596A (ja) * 2014-08-11 2016-03-22 キヤノン株式会社 撮像装置及びその制御方法

Also Published As

Publication number Publication date
CN114979502B (zh) 2025-06-10
US11838647B2 (en) 2023-12-05
CN114979502A (zh) 2022-08-30
JP7678680B2 (ja) 2025-05-16
US20220272249A1 (en) 2022-08-25
US20240073544A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US9106830B2 (en) Image capture apparatus and method for tracking a subject
US10244159B2 (en) Image capturing apparatus and control method thereof
JP6370134B2 (ja) 撮像装置、その制御方法、および制御プログラム
US8970716B2 (en) Image-capturing apparatus and control method of the image-capturing apparatus
WO2018123342A1 (ja) 撮像装置、フリッカ検出方法、およびコンピュータ読取可能な記録媒体
US8823863B2 (en) Image capturing apparatus and control method therefor
US10284767B2 (en) Shooting device, shooting method, and non-transitory computer readable recording medium storing program
JP2017038169A (ja) 撮像装置、その制御方法、および制御プログラム
JP2013031010A (ja) 撮像装置、撮像方法およびプログラム
JP2015111252A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2011078074A (ja) 撮像装置およびその制御方法
JP6505295B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2013042300A (ja) 撮像装置及びフリッカー発生周波数検出方法
JP7678680B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP7650162B2 (ja) 撮像装置及びその制御方法
JP7674898B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6456038B2 (ja) 電子機器、光量変化特性の算出方法、プログラム及び記憶媒体
JP2022171438A (ja) 露光制御装置、撮像装置、制御方法及びプログラム
JP7649187B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2020072392A (ja) 撮像装置、撮像装置の制御方法およびプログラム
US11516408B2 (en) Image capturing apparatus, method for driving image capturing apparatus to detect flicker during shooting
JP2016012791A (ja) 撮像装置、その制御方法、および制御プログラム
JP2015028591A (ja) 撮像装置、撮像装置の制御方法、プログラム、および、記憶媒体
JP2019022023A (ja) 撮像装置およびその制御方法
JP2022170438A (ja) 電子機器及びその制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250502

R150 Certificate of patent or registration of utility model

Ref document number: 7678680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150