[go: up one dir, main page]

JP2022006607A - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
JP2022006607A
JP2022006607A JP2020108941A JP2020108941A JP2022006607A JP 2022006607 A JP2022006607 A JP 2022006607A JP 2020108941 A JP2020108941 A JP 2020108941A JP 2020108941 A JP2020108941 A JP 2020108941A JP 2022006607 A JP2022006607 A JP 2022006607A
Authority
JP
Japan
Prior art keywords
water
pipe
movable
water pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020108941A
Other languages
Japanese (ja)
Other versions
JP7339213B2 (en
Inventor
祐治 兼森
Yuji Kanemori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2020108941A priority Critical patent/JP7339213B2/en
Publication of JP2022006607A publication Critical patent/JP2022006607A/en
Application granted granted Critical
Publication of JP7339213B2 publication Critical patent/JP7339213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To efficiently decrease a temperature of cooling water for cooling a heat generating device.SOLUTION: A vertical shaft pump 10 includes: a cylindrical pump casing 12 whose lower parts 15, 16 are disposed in a water suction tank 1; and a cooling device 35 for cooling a heat generating device 26 by circulating cooling water. The cooling device 35 includes a movable member 47 disposed on an outer side of the lower parts 15, 16 of the pump casing 12 and movable in a radial direction while centering on the pump casing 12. The movable member 47 includes a water pipe 48 capable of flowing cooling water therethrough.SELECTED DRAWING: Figure 1

Description

本発明は、立軸ポンプに関する。 The present invention relates to a vertical shaft pump.

立軸ポンプは、ポンプケーシングと、ポンプケーシングに沿って配置された回転軸と、回転軸の下端側に取り付けられた羽根車とを備える。特許文献1に開示された立軸ポンプは、減速機を介して回転軸に接続された原動機と、この原動機を冷却するための冷却装置とを備える。冷却装置は、ポンプケーシングの下部外周に取り付けられた通水管を備え、原動機を冷却する冷却水を吸水槽内の水によって熱交換し、冷却水を降温させている。 The vertical shaft pump includes a pump casing, a rotary shaft arranged along the pump casing, and an impeller attached to the lower end side of the rotary shaft. The vertical shaft pump disclosed in Patent Document 1 includes a prime mover connected to a rotary shaft via a speed reducer and a cooling device for cooling the prime mover. The cooling device includes a water passage pipe attached to the lower outer periphery of the pump casing, and heats and exchanges the cooling water for cooling the prime mover with the water in the water absorption tank to lower the temperature of the cooling water.

特開2020-2815号公報Japanese Unexamined Patent Publication No. 2020-2815

吸水槽内には水流が速い領域と遅い領域が存在し、水流が遅い領域では水流が速い領域よりも冷却水の降温効率(熱交換性)が低いが、特許文献1では吸水槽内の水流について何も考慮されていない。そのため、冷却水の降温効率について、特許文献1の立軸ポンプには改善の余地がある。 In the water absorption tank, there are a region where the water flow is fast and a region where the water flow is slow, and in the region where the water flow is slow, the cooling water temperature lowering efficiency (heat exchangeability) is lower than in the region where the water flow is fast. Nothing is considered about. Therefore, there is room for improvement in the vertical shaft pump of Patent Document 1 regarding the cooling efficiency of the cooling water.

本発明は、発熱機器を冷却するための冷却水を効率的に降温できる立軸ポンプを提供することを課題とする。 An object of the present invention is to provide a vertical shaft pump capable of efficiently lowering the temperature of cooling water for cooling a heat generating device.

本発明の一態様は、吸水槽内に下部が配置された筒状のポンプケーシングと、冷却水を循環させて発熱機器を冷却する冷却装置とを備え、前記冷却装置は、前記ポンプケーシングの前記下部の外側に配置され、前記ポンプケーシングを中心として径方向に移動可能な可動部材を備え、前記可動部材は、前記冷却水を通水可能な通水管を有する、立軸ポンプを提供する。 One aspect of the present invention includes a tubular pump casing having a lower portion arranged in a water absorption tank, and a cooling device for circulating cooling water to cool a heat generating device, wherein the cooling device is the pump casing. A vertical shaft pump is provided which is arranged on the outside of the lower portion and includes a movable member which is movable in the radial direction about the pump casing, and the movable member has a water passage pipe through which the cooling water can pass.

本態様では、発熱機器を冷却する冷却装置は、ポンプケーシングを中心として径方向に移動可能な可動部材を備え、この可動部材が冷却水を通水可能な通水管を有する。よって、吸水槽内のうちの水流が速い領域に可動部材(通水管)を配置することで、冷却水を効率的に降温(熱交換)できる。また、吸水槽内において水流が速い領域は空気吸込渦が発生し易い部分であり、この領域に可動部材を配置することによって空気吸込渦の発生を抑制できる。 In this embodiment, the cooling device for cooling the heat generating device includes a movable member that can move in the radial direction around the pump casing, and the movable member has a water passage pipe through which cooling water can pass. Therefore, by arranging the movable member (water pipe) in the region of the water absorption tank where the water flow is fast, the cooling water can be efficiently lowered (heat exchange). Further, the region where the water flow is fast in the water absorption tank is a portion where an air suction vortex is likely to be generated, and the generation of the air suction vortex can be suppressed by arranging the movable member in this region.

本発明の立軸ポンプでは、発熱機器を冷却するための冷却水を効率的に降温できる。 In the vertical shaft pump of the present invention, the cooling water for cooling the heat generating device can be efficiently lowered.

本発明の第1実施形態に係る立軸ポンプの断面図。Sectional drawing of the vertical shaft pump which concerns on 1st Embodiment of this invention. 立軸ポンプが備える冷却装置の概略図。Schematic diagram of the cooling device provided in the vertical shaft pump. 図1の一部を拡大した断面図。FIG. 5 is an enlarged cross-sectional view of a part of FIG. 固定式通水管の平面図。Top view of a fixed water pipe. 図4AのB-B線断面図。FIG. 4A is a sectional view taken along line BB. 可動式通水管の一部を示す断面図。Sectional drawing which shows a part of a movable water pipe. 吸込水槽の平断面図。A plan sectional view of a suction water tank. 第2実施形態の立軸ポンプの一部を示す断面図。The cross-sectional view which shows the part of the vertical shaft pump of 2nd Embodiment. 図7Aとは異なる位置に可動部材が移動した状態を示す断面図。FIG. 6 is a cross-sectional view showing a state in which the movable member has moved to a position different from that of FIG. 7A. 第3実施形態の立軸ポンプの一部を示す断面図。The cross-sectional view which shows the part of the vertical shaft pump of 3rd Embodiment. 吸込水槽の平断面図。A plan sectional view of a suction water tank. 位置決め部材を示す斜視図。The perspective view which shows the positioning member. 第4実施形態の立軸ポンプが備える冷却装置の概略図。The schematic diagram of the cooling device provided in the vertical shaft pump of 4th Embodiment. 図11Aの冷却装置の作動状態の一例を示す概略図。FIG. 11A is a schematic view showing an example of an operating state of the cooling device of FIG. 11A.

以下、本発明の実施の形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係る立軸ポンプ10を示す。図1に示すように、立軸ポンプ10は、排水機場の吸水槽1に配置され、吸水槽1に流入した雨水等の液体を下流側へ排出する。
(First Embodiment)
FIG. 1 shows a vertical shaft pump 10 according to the first embodiment of the present invention. As shown in FIG. 1, the vertical shaft pump 10 is arranged in the water absorption tank 1 of the drainage pump station, and discharges the liquid such as rainwater that has flowed into the water absorption tank 1 to the downstream side.

図1及び図6を参照すると、吸水槽1は、上方を覆うポンプ床(据付床)2、下方を塞ぐ底壁3、水の流入方向Fの両側を塞ぐ一対の側壁4、及び水の流入方向Fの下流側端部を塞ぐ端壁5によって画定されている。雨水等の液体は、図1及び図6において左側(上流側)から右側(下流側)に向けて流入し、吸水槽1内に溜まる。 Referring to FIGS. 1 and 6, the water absorption tank 1 includes a pump floor (installation floor) 2 that covers the upper part, a bottom wall 3 that closes the lower part, a pair of side walls 4 that close both sides of the water inflow direction F, and an inflow of water. It is defined by an end wall 5 that closes the downstream end of the direction F. Liquids such as rainwater flow in from the left side (upstream side) to the right side (downstream side) in FIGS. 1 and 6 and collect in the water absorption tank 1.

図1に示すように、立軸ポンプ10は、ポンプケーシング12、回転軸20、羽根車23、駆動機構25、及び水冷式の冷却装置35を備え、定められた水位まで溜まった液体を吸水槽1から下流側へ排出する。 As shown in FIG. 1, the vertical shaft pump 10 includes a pump casing 12, a rotary shaft 20, an impeller 23, a drive mechanism 25, and a water-cooled cooling device 35, and collects liquid accumulated up to a predetermined water level in a water absorption tank 1. Discharge to the downstream side from.

ポンプケーシング12は、ポンプ床2に形成された貫通孔2aに上方から差し込み、ポンプ床2に固定されている。ポンプケーシング12は、吸水槽1内に配置された揚水管13と、ポンプ床2上に配置された吐出管17とを備える。 The pump casing 12 is inserted into the through hole 2a formed in the pump floor 2 from above and fixed to the pump floor 2. The pump casing 12 includes a pumping pipe 13 arranged in the water absorption tank 1 and a discharge pipe 17 arranged on the pump floor 2.

揚水管13は、ストレート管14、ベーンケース15、及びベルマウス16を備え、貫通孔2aから鉛直方向下向きに突出している。ストレート管14は、直径が一様な上部配管である。ベーンケース15は、径方向外向きに膨出した概ね楕円筒状の下部配管であり、ストレート管14の下端に接続されている。ベーンケース15の内部には、ベーンケース15と同軸で筒状の軸受ケーシング15aが設けられている。ベルマウス16は、下端に向けて次第に拡径した概ね円錐筒状の下部配管であり、ベーンケース15の下端に接続されている。ベルマウス16の下端は、底壁3に対して定められた間隔をあけて配置された吸込口16aである。 The pumping pipe 13 includes a straight pipe 14, a vane case 15, and a bell mouth 16, and protrudes downward from the through hole 2a in the vertical direction. The straight pipe 14 is an upper pipe having a uniform diameter. The vane case 15 is a substantially elliptical tubular lower pipe that bulges outward in the radial direction, and is connected to the lower end of the straight pipe 14. Inside the vane case 15, a cylindrical bearing casing 15a coaxial with the vane case 15 is provided. The bell mouth 16 is a substantially conical lower pipe whose diameter gradually increases toward the lower end, and is connected to the lower end of the vane case 15. The lower end of the bell mouth 16 is a suction port 16a arranged at a predetermined interval with respect to the bottom wall 3.

吐出管17は、揚水管13の上端に接続された吐出エルボ18と、ポンプ床2上に配置された送水管(図示せず)とを備える。吐出エルボ18は、軸線が90度湾曲した曲がり管であり、ストレート管14の上端に接続され、ポンプ床2から上方へ突出している。吐出エルボ18の下部には、ポンプケーシング12をポンプ床2に固定するためのベースプレート18aが設けられている。但し、ベースプレートはストレート管14の上端側に設けてもよい。 The discharge pipe 17 includes a discharge elbow 18 connected to the upper end of the pumping pipe 13 and a water pipe (not shown) arranged on the pump floor 2. The discharge elbow 18 is a curved pipe whose axis is curved by 90 degrees, is connected to the upper end of the straight pipe 14, and projects upward from the pump floor 2. A base plate 18a for fixing the pump casing 12 to the pump floor 2 is provided below the discharge elbow 18. However, the base plate may be provided on the upper end side of the straight pipe 14.

回転軸20は、吐出管17を貫通して揚水管13の軸線Aに沿って配置され、水中軸受21によって回転可能に支持されている。より具体的には、回転軸20は、ポンプケーシング12の内部に配置された内側部20aと、ポンプケーシング12の外部に配置された外側部20bとを備える。内側部20aの下端は、軸受ケーシング15aを貫通し、軸受ケーシング15aと吸込口16aとの間に配置されている。回転軸20の外側部20bは、吐出管17から外部へ突出し、駆動機構25に機械的に接続されている。回転軸20のうち吐出エルボ18を貫通した部分は、軸封装置22によって水密にシールされている。 The rotary shaft 20 is arranged along the axis A of the pumping pipe 13 through the discharge pipe 17, and is rotatably supported by the underwater bearing 21. More specifically, the rotary shaft 20 includes an inner portion 20a arranged inside the pump casing 12 and an outer portion 20b arranged outside the pump casing 12. The lower end of the inner portion 20a penetrates the bearing casing 15a and is arranged between the bearing casing 15a and the suction port 16a. The outer portion 20b of the rotating shaft 20 projects outward from the discharge pipe 17 and is mechanically connected to the drive mechanism 25. The portion of the rotating shaft 20 that penetrates the discharge elbow 18 is watertightly sealed by the shaft sealing device 22.

羽根車23は、軸受ケーシング15aの下側に配置され、内側部20aの下端に取り付けられている。駆動機構25によって回転軸20が回転されると、羽根車23は、回転軸20と一体に回転し、ポンプケーシング12内を通して吸水槽1内の液体を下流側へ排出する。 The impeller 23 is arranged below the bearing casing 15a and attached to the lower end of the inner portion 20a. When the rotary shaft 20 is rotated by the drive mechanism 25, the impeller 23 rotates integrally with the rotary shaft 20 and discharges the liquid in the water absorption tank 1 to the downstream side through the inside of the pump casing 12.

駆動機構25は、回転軸20の外側部20bに機械的に接続され、回転軸20を回転させる。本実施形態の駆動機構25は、オペレータの指令によって駆動する駆動機26と、駆動機26の駆動力を回転軸20に伝達する伝達機構29とを備え、ポンプ床2上に配置されている。 The drive mechanism 25 is mechanically connected to the outer portion 20b of the rotary shaft 20 to rotate the rotary shaft 20. The drive mechanism 25 of the present embodiment includes a drive machine 26 that is driven by an operator's command and a transmission mechanism 29 that transmits the drive force of the drive machine 26 to the rotary shaft 20, and is arranged on the pump floor 2.

駆動機26には、内燃機関の1つであるディーゼル機関が用いられている。駆動機26は、回転軸20に対して交差する向き(水平方向)へ突出する出力軸27を備える。駆動機26は、駆動によって発熱する発熱機器であり、冷却用の熱交換器28を備える。熱交換器28は、通水された冷却水が駆動機26の熱を吸着することで、駆動機26の過熱を抑制する。 A diesel engine, which is one of the internal combustion engines, is used as the drive machine 26. The drive machine 26 includes an output shaft 27 that projects in a direction (horizontal direction) intersecting the rotation shaft 20. The drive machine 26 is a heat generating device that generates heat by driving, and includes a heat exchanger 28 for cooling. The heat exchanger 28 suppresses overheating of the drive machine 26 by adsorbing the heat of the drive machine 26 by the cooled water passed through the water exchanger 28.

伝達機構29は、出力軸27と回転軸20にそれぞれ接続され、出力軸27の回転速度に対する回転軸20の回転速度を低減して、回転軸20を回転させる減速機である。この伝達機構29は、駆動機26と同様に、駆動によって発熱する発熱機器であり、冷却用の熱交換器30を備える。熱交換器30は、通水された冷却水が伝達機構29の熱を吸着することで、伝達機構29の過熱を抑制する。 The transmission mechanism 29 is a speed reducer that is connected to the output shaft 27 and the rotary shaft 20, respectively, and reduces the rotational speed of the rotary shaft 20 with respect to the rotational speed of the output shaft 27 to rotate the rotary shaft 20. Like the drive machine 26, the transmission mechanism 29 is a heat generating device that generates heat by driving, and includes a heat exchanger 30 for cooling. The heat exchanger 30 suppresses overheating of the transfer mechanism 29 by adsorbing the heat of the transfer mechanism 29 by the passed cooling water.

冷却装置35は、熱交換器28,30に冷却水を循環供給し、駆動機26と伝達機構29の過熱を防止するために設けられている。図1及び図2に示すように、冷却装置35は、ポンプ床2上に配置された主流路37と、吸水槽1内に配置された再生流路45とを備える。主流路37では対象の発熱機器を冷却水で冷却し、再生流路45では冷却水自体を降温(再生)する。 The cooling device 35 is provided to circulate and supply cooling water to the heat exchangers 28 and 30 to prevent overheating of the drive machine 26 and the transmission mechanism 29. As shown in FIGS. 1 and 2, the cooling device 35 includes a main flow path 37 arranged on the pump floor 2 and a regeneration flow path 45 arranged in the water absorption tank 1. In the main flow path 37, the target heat generating device is cooled with cooling water, and in the regeneration flow path 45, the cooling water itself is cooled (regenerated).

主流路37には、熱交換器28,30と、再生流路45を構成する複数の通水管46,48とがそれぞれ接続されている。主流路37は、冷却水を循環させる循環ポンプ38と、補充用の冷却水を貯留したタンク39とを備える。 The heat exchangers 28 and 30 and the plurality of water pipes 46 and 48 constituting the regeneration flow path 45 are connected to the main flow path 37, respectively. The main flow path 37 includes a circulation pump 38 that circulates the cooling water and a tank 39 that stores the cooling water for replenishment.

循環ポンプ38の吸込口とタンク39とは配管40によって接続されている。主流路37内及び再生流路45内の冷却水が不足すると、配管40を通してタンク39内の冷却水が主流路37に補充される。循環ポンプ38の吐出口には配管41が接続されている。配管41の下流側は二又に分岐されており、そのうち、分岐配管41aが駆動機26の熱交換器28の入口に接続され、分岐配管41bが伝達機構29の熱交換器30の入口に接続されている。 The suction port of the circulation pump 38 and the tank 39 are connected by a pipe 40. When the cooling water in the main flow path 37 and the regeneration flow path 45 is insufficient, the cooling water in the tank 39 is replenished to the main flow path 37 through the pipe 40. A pipe 41 is connected to the discharge port of the circulation pump 38. The downstream side of the pipe 41 is bifurcated, of which the branch pipe 41a is connected to the inlet of the heat exchanger 28 of the drive machine 26 and the branch pipe 41b is connected to the inlet of the heat exchanger 30 of the transmission mechanism 29. Has been done.

駆動機26の熱交換器28の出口には、配管42の分岐配管42aが接続され、伝達機構29の熱交換器30の出口には、配管42の分岐配管42bが接続されている。熱交換器28,30側の配管42と循環ポンプ38側の配管40とは、接続配管43によって接続されている。 The branch pipe 42a of the pipe 42 is connected to the outlet of the heat exchanger 28 of the drive machine 26, and the branch pipe 42b of the pipe 42 is connected to the outlet of the heat exchanger 30 of the transmission mechanism 29. The pipe 42 on the heat exchanger 28, 30 side and the pipe 40 on the circulation pump 38 side are connected by a connection pipe 43.

再生流路45は、接続配管43に分岐接続されており、熱交換器28,30に供給する冷却水の温度を降下(再生)させるために設けられている。循環ポンプ38によって吐出された冷却水は、熱交換器28,30を通過する際に駆動機26及び伝達機構29それぞれの熱を吸着して昇温する。続いて、再生流路45を通過する際、吸水槽1内の水に熱が奪われて降温し、再び循環ポンプ38によって熱交換器28,30に供給される。 The regeneration flow path 45 is branched and connected to the connection pipe 43, and is provided to lower (regenerate) the temperature of the cooling water supplied to the heat exchangers 28 and 30. The cooling water discharged by the circulation pump 38 adsorbs the heat of the drive machine 26 and the transmission mechanism 29 as they pass through the heat exchangers 28 and 30, and raises the temperature. Subsequently, when passing through the regeneration flow path 45, heat is taken by the water in the water absorption tank 1 to lower the temperature, and the heat is supplied to the heat exchangers 28 and 30 again by the circulation pump 38.

再生流路45は、ポンプケーシング12に取り付けられた固定式通水管46と、ポンプケーシング12に取り付けられた複数の可動部材47がそれぞれ備える可動式通水管48と、これらを接続配管43(主流路37)にそれぞれ接続する接続管49とを備える。接続管49は、可撓性を有するフレキシブルチューブによって構成されている。本実施形態の可動式通水管48は4個用いられており、以下の説明では必要に応じて48A,48B,48C,48Dと言うことがある。 The regeneration flow path 45 includes a fixed water pipe 46 attached to the pump casing 12, a movable water pipe 48 provided by each of the plurality of movable members 47 attached to the pump casing 12, and a connecting pipe 43 (main flow path) connecting these. 37) is provided with a connecting pipe 49 to be connected to each. The connecting tube 49 is composed of a flexible tube having flexibility. Four movable water pipes 48 of this embodiment are used, and in the following description, they may be referred to as 48A, 48B, 48C, 48D as necessary.

図2に最も明瞭に示すように、固定式通水管46と可動式通水管48はそれぞれ、冷却水を通水可能な連通状態と通水不可能な遮断状態とに切り換える切換弁51A~51Jを介して接続配管43に接続されている。切換弁51A~51Jはそれぞれ、3つの接続ポート51a~51cを備え、個々のポート51a~51cの開状態と閉状態を切換可能な三方弁である。個々の切換弁51A~51Jにおいては、接続ポート51aに熱交換器28,30側が接続され、接続ポート51bに通水管46,48が接続され、接続ポート51cに循環ポンプ38側が接続されている。 As most clearly shown in FIG. 2, the fixed water pipe 46 and the movable water pipe 48 each have switching valves 51A to 51J for switching between a communication state in which cooling water can pass and a shutoff state in which cooling water cannot flow. It is connected to the connection pipe 43 via the connection pipe 43. The switching valves 51A to 51J are three-way valves having three connection ports 51a to 51c, respectively, and capable of switching between the open state and the closed state of the individual ports 51a to 51c. In the individual switching valves 51A to 51J, the heat exchangers 28 and 30 are connected to the connection port 51a, the water pipes 46 and 48 are connected to the connection port 51b, and the circulation pump 38 side is connected to the connection port 51c.

詳しくは、固定式通水管46の流入側は切換弁51Aを介して接続配管43に接続され、固定式通水管46の流出側は切換弁51Bを介して接続配管43に接続されている。可動式通水管48Aの流入側は切換弁51Cを介して接続配管43に接続され、可動式通水管48Aの流出側は切換弁51Dを介して接続配管43に接続されている。可動式通水管48Bの流入側は切換弁51Eを介して接続配管43に接続され、可動式通水管48Bの流出側は切換弁51Fを介して接続配管43に接続されている。可動式通水管48Cの流入側は切換弁51Gを介して接続配管43に接続され、可動式通水管48Cの流出側は切換弁51Hを介して接続配管43に接続されている。可動式通水管48Dの流入側は切換弁51Iを介して接続配管43に接続され、可動式通水管48Dの流出側は切換弁51Jを介して接続配管43に接続されている。 Specifically, the inflow side of the fixed water pipe 46 is connected to the connecting pipe 43 via the switching valve 51A, and the outflow side of the fixed water pipe 46 is connected to the connecting pipe 43 via the switching valve 51B. The inflow side of the movable water pipe 48A is connected to the connecting pipe 43 via the switching valve 51C, and the outflow side of the movable water pipe 48A is connected to the connecting pipe 43 via the switching valve 51D. The inflow side of the movable water pipe 48B is connected to the connecting pipe 43 via the switching valve 51E, and the outflow side of the movable water pipe 48B is connected to the connecting pipe 43 via the switching valve 51F. The inflow side of the movable water pipe 48C is connected to the connecting pipe 43 via the switching valve 51G, and the outflow side of the movable water pipe 48C is connected to the connecting pipe 43 via the switching valve 51H. The inflow side of the movable water pipe 48D is connected to the connecting pipe 43 via the switching valve 51I, and the outflow side of the movable water pipe 48D is connected to the connecting pipe 43 via the switching valve 51J.

切換弁51Aの接続ポート51aと51bを連通状態として接続ポート51cを遮断状態とし、切換弁51Bの接続ポート51bと51cを連通状態として接続ポート51aを遮断状態とすることで、主流路37内の冷却水を固定式通水管46に通水可能な連通状態となる。一方、切換弁51Aの接続ポート51aと51cを連通状態として接続ポート51bを遮断状態とし、切換弁51Bの接続ポート51aと51cを連通状態として接続ポート51bを遮断状態とすることで、主流路37内の冷却水を固定式通水管46に通水不可能な遮断状態となる。但し、遮断状態で冷却水は、接続配管43及び切換弁51A,51Bを通して、熱交換器28,30側から循環ポンプ38側へ流動可能である。 The connection ports 51a and 51b of the switching valve 51A are in a communicating state, the connection port 51c is in a cutoff state, and the connection ports 51b and 51c of the switching valve 51B are in a communication state, and the connection port 51a is in a cutoff state. The cooling water can be passed through the fixed water pipe 46 in a communication state. On the other hand, the connection ports 51a and 51c of the switching valve 51A are in a communicating state, the connection port 51b is in a cutoff state, the connection ports 51a and 51c of the switching valve 51B are in a communication state, and the connection port 51b is in a cutoff state. The cooling water inside cannot be passed through the fixed water pipe 46. However, the cooling water can flow from the heat exchanger 28, 30 side to the circulation pump 38 side through the connection pipe 43 and the switching valves 51A, 51B in the shutoff state.

切換弁51Cの接続ポート51aと51bを連通状態として接続ポート51cを遮断状態とし、切換弁51Dの接続ポート51bと51cを連通状態として接続ポート51aを遮断状態とすることで、主流路37内の冷却水を可動式通水管48Aに通水可能な連通状態となる。一方、切換弁51Cの接続ポート51aと51cを連通状態として接続ポート51bを遮断状態とし、切換弁51Dの接続ポート51aと51cを連通状態として接続ポート51bを遮断状態とすることで、主流路37内の冷却水を可動式通水管48Aに通水不可能な遮断状態となる。但し、遮断状態で冷却水は、接続配管43及び切換弁51C,51Dを通して、熱交換器28,30側から循環ポンプ38側へ流動可能である。 The connection ports 51a and 51b of the switching valve 51C are in a communicating state, the connection port 51c is in a cutoff state, and the connection ports 51b and 51c of the switching valve 51D are in a communication state, and the connection port 51a is in a cutoff state. The cooling water can be communicated to the movable water pipe 48A. On the other hand, the connection ports 51a and 51c of the switching valve 51C are in a communication state, the connection port 51b is in a cutoff state, and the connection ports 51a and 51c of the switching valve 51D are in a communication state, and the connection port 51b is in a cutoff state. The cooling water inside cannot be passed through the movable water pipe 48A. However, the cooling water can flow from the heat exchanger 28, 30 side to the circulation pump 38 side through the connection pipe 43 and the switching valves 51C, 51D in the shutoff state.

可動式通水管48Aと同様に、切換弁51E,51Fを介して接続配管43に接続した可動式通水管48B、切換弁51G,51Hを介して接続配管43に接続した可動式通水管48C、及び切換弁51I,51Jを介して接続配管43に接続した可動式通水管48Dも、対応する切換弁51E~51Jを切り換えることで、主流路37内の冷却水を通水可能な連通状態及び通水不可能な遮断状態に切り換えることができる。 Similar to the movable water pipe 48A, the movable water pipe 48B connected to the connecting pipe 43 via the switching valves 51E and 51F, the movable water pipe 48C connected to the connecting pipe 43 via the switching valves 51G and 51H, and The movable water pipe 48D connected to the connection pipe 43 via the switching valves 51I and 51J can also pass the cooling water in the main flow path 37 in a communication state and water flow by switching the corresponding switching valves 51E to 51J. It is possible to switch to an impossible cutoff state.

引き続いて図2を参照すると、通水管46,48の入口側と出口側にはそれぞれ、冷却水の温度を検出する温度センサ52が配設されている。より具体的には、接続配管43において、切換弁51Aの上流側には温度センサ52Aが、切換弁51B,51Cの間には温度センサ52Bが、切換弁51D,51Eの間には温度センサ52Cが、切換弁51F,51Gの間には温度センサ52Dが、切換弁51H,51Iの間には温度センサ52Eが、切換弁51Jの下流側には温度センサ52Fが、それぞれ介設されている。 Subsequently, referring to FIG. 2, temperature sensors 52 for detecting the temperature of the cooling water are arranged on the inlet side and the outlet side of the water pipes 46 and 48, respectively. More specifically, in the connecting pipe 43, the temperature sensor 52A is located upstream of the switching valve 51A, the temperature sensor 52B is located between the switching valves 51B and 51C, and the temperature sensor 52C is located between the switching valves 51D and 51E. However, a temperature sensor 52D is interposed between the switching valves 51F and 51G, a temperature sensor 52E is interposed between the switching valves 51H and 51I, and a temperature sensor 52F is interposed downstream of the switching valves 51J.

温度センサ52Aは、固定式通水管46の入口側の温度を検出する第1検出部として機能する。温度センサ52Bは、固定式通水管46の出口側の温度を検出する第2検出部、及び可動式通水管48Aの入口側の温度を検出する第1検出部として機能する。温度センサ52Cは、可動式通水管48Aの出口側の温度を検出する第2検出部、及び可動式通水管48Bの入口側の温度を検出する第1検出部として機能する。温度センサ52Dは、可動式通水管48Bの出口側の温度を検出する第2検出部、及び可動式通水管48Cの入口側の温度を検出する第1検出部として機能する。温度センサ52Eは、可動式通水管48Cの出口側の温度を検出する第2検出部、及び可動式通水管48Dの入口側の温度を検出する第1検出部として機能する。温度センサ52Fは、可動式通水管48Dの出口側の温度を検出する第2検出部として機能する。 The temperature sensor 52A functions as a first detection unit that detects the temperature on the inlet side of the fixed water pipe 46. The temperature sensor 52B functions as a second detection unit that detects the temperature on the outlet side of the fixed water pipe 46 and a first detection unit that detects the temperature on the inlet side of the movable water pipe 48A. The temperature sensor 52C functions as a second detection unit that detects the temperature on the outlet side of the movable water pipe 48A and a first detection unit that detects the temperature on the inlet side of the movable water pipe 48B. The temperature sensor 52D functions as a second detection unit that detects the temperature on the outlet side of the movable water pipe 48B and a first detection unit that detects the temperature on the inlet side of the movable water pipe 48C. The temperature sensor 52E functions as a second detection unit that detects the temperature on the outlet side of the movable water pipe 48C and a first detection unit that detects the temperature on the inlet side of the movable water pipe 48D. The temperature sensor 52F functions as a second detection unit that detects the temperature on the outlet side of the movable water pipe 48D.

入口側の温度センサ52A~52Eが示す検出温度T1と、出口側の温度センサ52B~52Fが示す検出温度T2との差を演算することで、固定式通水管46及び可動式通水管48A~48Dによる冷却水の熱交換効率を判断できる。そのため、例えば入口側と出口側の温度差が最も大きくなる領域に可動式通水管48A~48Dを配置することで、冷却水の熱交換効率を向上できる。 By calculating the difference between the detection temperature T1 indicated by the temperature sensors 52A to 52E on the inlet side and the detection temperature T2 indicated by the temperature sensors 52B to 52F on the outlet side, the fixed water passage pipe 46 and the movable water passage pipes 48A to 48D are calculated. The heat exchange efficiency of the cooling water can be determined. Therefore, for example, by arranging the movable water pipes 48A to 48D in the region where the temperature difference between the inlet side and the outlet side is the largest, the heat exchange efficiency of the cooling water can be improved.

また、温度センサ52A~52Fが示す検出温度の差によって、複数の可動式通水管48A~48Dのうちのいずれかの異常(例えば破損)の有無も判断できる。例えば、出入口の温度差が過度に大きい場合(例えば15度)、通水路46,48の破損によって出口側へ冷却水が流れていないと判断できる。この場合、対応する切換弁51A~51Jを切り換えることで、対象の通水路46,48を冷却経路から除外できる。よって、冷却水の熱交換効率の低下を抑制できる。 Further, it is possible to determine whether or not there is an abnormality (for example, breakage) in any of the plurality of movable water pipes 48A to 48D based on the difference in the detected temperatures indicated by the temperature sensors 52A to 52F. For example, when the temperature difference between the inlet and the outlet is excessively large (for example, 15 degrees), it can be determined that the cooling water is not flowing to the outlet side due to the damage of the water passages 46 and 48. In this case, the target water passages 46 and 48 can be excluded from the cooling path by switching the corresponding switching valves 51A to 51J. Therefore, it is possible to suppress a decrease in the heat exchange efficiency of the cooling water.

次に、固定式通水管46、及び可動式通水管48を含む可動部材47の具体的構成について説明する。 Next, a specific configuration of the movable member 47 including the fixed water pipe 46 and the movable water pipe 48 will be described.

図3及び図4Aに示すように、固定式通水管46は、ポンプケーシング12の下部を概ね取り囲む円弧状(C字状)で、伝熱性が良好な金属製のパイプによって構成されている。この固定式通水管46は、吸込口16aの上部外側に位置するように、ベルマウス16に形成された取付部16bに取り付けられている。 As shown in FIGS. 3 and 4A, the fixed water pipe 46 has an arc shape (C shape) that substantially surrounds the lower portion of the pump casing 12, and is composed of a metal pipe having good heat transfer properties. The fixed water pipe 46 is attached to a mounting portion 16b formed on the bell mouth 16 so as to be located on the upper outer side of the suction port 16a.

取付部16bは、ベルマウス16から径方向外向きに突出した板状のリブ16cと、リブ16cの外端に設けられた下側支持部16dと、下側支持部16dから上向きに突出した内側支持部16eとを備える。そのうち、リブ16c及び内側支持部16eは、ベルマウス16に対して周方向に間隔をあけて複数設けられ、残りの下側支持部16dは円環状に形成されている。 The mounting portion 16b has a plate-shaped rib 16c protruding radially outward from the bell mouth 16, a lower support portion 16d provided at the outer end of the rib 16c, and an inner side protruding upward from the lower support portion 16d. A support portion 16e is provided. Among them, a plurality of ribs 16c and inner support portions 16e are provided at intervals in the circumferential direction with respect to the bell mouth 16, and the remaining lower support portions 16d are formed in an annular shape.

図4Aを参照すると、固定式通水管46としては、直径が異なる3種4本の固定式通水管46A~46Dが用いられている。最も直径が小さい1本の固定式通水管46A、固定式通水管46Aよりも直径が大きい2本の固定式通水管46B,46C、及び最も直径が大きい1本の固定式通水管46Dは、ポンプケーシング12の径方向に間隔をあけて配置されている。そのうち、直径が同じ固定式通水管46B,46Cは、上下に間隔をあけて配置されている。但し、固定式通水管46の数は必要に応じて変更可能である。また、固定式通水管46の配置も必要に応じて変更可能であるが、隣接した固定式通水管46の隙間は一定にすることが好ましい。 Referring to FIG. 4A, as the fixed water pipes 46, three types of four fixed water pipes 46A to 46D having different diameters are used. The one fixed water pipe 46A with the smallest diameter, the two fixed water pipes 46B and 46C with a larger diameter than the fixed water pipe 46A, and the one fixed water pipe 46D with the largest diameter are pumps. The casings 12 are arranged at intervals in the radial direction. Among them, the fixed water pipes 46B and 46C having the same diameter are arranged vertically at intervals. However, the number of fixed water pipes 46 can be changed as needed. Further, although the arrangement of the fixed water pipes 46 can be changed as needed, it is preferable that the gap between the adjacent fixed water pipes 46 is constant.

C字状の固定式通水管46A~46Dの両端には、それぞれ接続部材54が取り付けられている。軸線Aが延びる方向から見て、一対の接続部材54を含めた固定式通水管46A~46Dの形状は、概ね円形状である。接続部材54はそれぞれ、一端を開口して他端を閉塞した筒状であり、一端の開口には可撓性を有する接続管49が接続されている。4本の固定式通水管46A~46Dは、接続部材54の外周部にそれぞれ接続されている。一対の接続部材54のうち、切換弁51Aに連なる方から冷却水が流入して、固定式通水管46A~46Dを通過した後、切換弁51Bに連なる方から冷却水が流出する。 Connecting members 54 are attached to both ends of the C-shaped fixed water pipes 46A to 46D, respectively. When viewed from the direction in which the axis A extends, the shapes of the fixed water pipes 46A to 46D including the pair of connecting members 54 are substantially circular. Each of the connecting members 54 has a cylindrical shape with one end opened and the other end closed, and a flexible connecting pipe 49 is connected to the opening at one end. The four fixed water pipes 46A to 46D are connected to the outer peripheral portion of the connecting member 54, respectively. Of the pair of connecting members 54, the cooling water flows in from the side connected to the switching valve 51A, passes through the fixed water pipes 46A to 46D, and then flows out from the side connected to the switching valve 51B.

複数の固定式通水管46A~46Dは、保持部材55によって保持されている。保持部材55は、接続部材54を基準として90度間隔をあけて3個配置されている。図4Bを参照すると、個々の保持部材55は、固定式通水管46A~46Dを個別に挿通する挿通孔55aを備え、一定間隔をあけて隣接した固定式通水管46A~46Dを保持する。 The plurality of fixed water pipes 46A to 46D are held by the holding member 55. Three holding members 55 are arranged at intervals of 90 degrees with respect to the connecting member 54. Referring to FIG. 4B, the individual holding members 55 are provided with insertion holes 55a through which the fixed water pipes 46A to 46D are individually inserted, and hold the adjacent fixed water pipes 46A to 46D at regular intervals.

図1及び図3に示すように、可動式通水管48は、螺旋状を呈するように湾曲させたパイプによって構成され、保持部材56に保持されている。可動式通水管48は、伝熱性が良好な材料(例えばキュプラニッケル銅合金)で形成されている。保持部材56は、水に対して浮力が得られる材料(例えばエンジニアリングプラスティク)で形成されている。これにより可動式通水管48は、吸水槽1内の水流に従って浮動可能である。可動式通水管48の上端と下端には、可撓性を有する接続管49がそれぞれ接続されている。これらの接続管49は、図2に示す切換弁51Cと51D、51Eと51F、51Gと51H、及び51Iと51Jのうち、いずれかに接続されている。 As shown in FIGS. 1 and 3, the movable water pipe 48 is composed of a pipe curved so as to exhibit a spiral shape, and is held by a holding member 56. The movable water pipe 48 is made of a material having good heat transfer properties (for example, cupra nickel copper alloy). The holding member 56 is made of a material (eg, engineering plastic) that provides buoyancy with respect to water. As a result, the movable water pipe 48 can float according to the water flow in the water absorption tank 1. Flexible connecting pipes 49 are connected to the upper and lower ends of the movable water pipe 48, respectively. These connecting pipes 49 are connected to any of the switching valves 51C and 51D, 51E and 51F, 51G and 51H, and 51I and 51J shown in FIG.

可動式通水管48の下端から上端までの全長は、次の構成を実現可能な寸法に設定されている。羽根車23が水に漬かった定常運転時に可動式通水管48の下部が水に漬かるように、可動式通水管48の下端は、羽根車23の下端よりも下方に位置し、吸込口16aよりも上方に位置するように配置されている。空気吸込渦Sが発生し難い水位では可動式通水管48全体が水に漬かり、空気吸込渦Sが発生し易い水位では可動式通水管48の上端が水面から露出するように、可動式通水管48の上端は、ベーンケース15の上端よりも下方に位置し、羽根車23の上端よりも上方に位置するように配置されている。 The total length from the lower end to the upper end of the movable water pipe 48 is set to a dimension that can realize the following configuration. The lower end of the movable water pipe 48 is located below the lower end of the impeller 23 and is located below the lower end of the impeller 23 so that the lower part of the movable water pipe 48 is submerged in water during steady operation when the impeller 23 is immersed in water. Is also arranged so as to be located above. At a water level where air suction vortex S is unlikely to occur, the entire movable water pipe 48 is immersed in water, and at a water level where air suction vortex S is likely to occur, the upper end of the movable water pipe 48 is exposed from the water surface. The upper end of the 48 is located below the upper end of the vane case 15 and above the upper end of the impeller 23.

ここで、空気吸込渦Sとは、図1に示すように、水面からポンプケーシング12の吸込口16aに向けて流れる水に、吸水槽1内の空気が連続的又は断続的に含まれる水流のことを意味する。例えば、吸水槽1内の水位がベーンケース15よりも高い場合、吸水槽1内の水の流れは低速であるため、空気吸込渦Sは発生し難い。排出により吸水槽1内の水位がベーンケース15よりも低くなると、吸水槽1内の水の流れが高速になるため、空気吸込渦Sが発生し易くなる。 Here, the air suction vortex S is a water flow in which the air in the water suction tank 1 is continuously or intermittently included in the water flowing from the water surface toward the suction port 16a of the pump casing 12, as shown in FIG. Means that. For example, when the water level in the water absorption tank 1 is higher than that of the vane case 15, the flow of water in the water absorption tank 1 is slow, so that the air suction vortex S is unlikely to occur. When the water level in the water absorption tank 1 becomes lower than that in the vane case 15 due to the discharge, the flow of water in the water absorption tank 1 becomes high speed, so that an air suction vortex S is likely to occur.

螺旋状の可動式通水管48の一側は、保持部材56によって保持されている。保持部材56は、可動式通水管48の上端から下端まで延びている。図5を参照すると、保持部材56は、可動式通水管48の一部分である個々のロール48aを個別に挿通する挿通部を備え、一定間隔をあけてポンプケーシング12の軸方向に隣接したロール48aを保持する。 One side of the spiral movable water pipe 48 is held by a holding member 56. The holding member 56 extends from the upper end to the lower end of the movable water pipe 48. Referring to FIG. 5, the holding member 56 is provided with an insertion portion through which individual rolls 48a, which are a part of the movable water pipe 48, are individually inserted, and the rolls 48a adjacent to the pump casing 12 in the axial direction at regular intervals. To hold.

本実施形態の保持部材56は、可動式通水管48の径方向内側に配置される内側部材56aと可動式通水管48の径方向外側に配置される外側部材56bとで構成されている。これらは、図示しない係止具又は係止構造によって係着され、一体化されている。可動式通水管48に対する保持部材56の取付位置は、ポンプケーシング12に最も近い位置としているが、必要に応じて変更が可能である。 The holding member 56 of the present embodiment is composed of an inner member 56a arranged radially inside the movable water pipe 48 and an outer member 56b arranged radially outside the movable water pipe 48. These are engaged and integrated by a locking tool or locking structure (not shown). The mounting position of the holding member 56 with respect to the movable water pipe 48 is the position closest to the pump casing 12, but it can be changed as needed.

図3に示すように、可動式通水管48を備える可動部材47は、ポンプケーシング12に対して周方向に間隔をあけて複数(本実施形態では4個)設けられている。図6を参照すると、水の流入方向Fの下流側両側に2個の可動部材47(可動式通水管48A,48B)が配置され、水の流入方向Fの上流側両側に2個の可動部材47(可動式通水管48C,48D)が配置されている。 As shown in FIG. 3, a plurality of movable members 47 provided with the movable water pipe 48 are provided at intervals in the circumferential direction with respect to the pump casing 12 (four in the present embodiment). Referring to FIG. 6, two movable members 47 (movable water pipes 48A and 48B) are arranged on both downstream sides of the water inflow direction F, and two movable members are arranged on both upstream sides of the water inflow direction F. 47 (movable water pipes 48C, 48D) are arranged.

個々の可動部材47は、それぞれ一対の連結部材61を有し、揚水管13の下部外側の取付枠58に移動可能に取り付けられている。この取付枠58は、一対の支持部材59及び軸部材60を備える。図6を参照すると、可動部材47はそれぞれ、揚水管13の外周部に最も近接した第1位置(図6において左側の2個)から、揚水管13の外周部から最も離反した第2位置(図6において右側の2個)を経て、概ね180度の角度範囲を個別に回転可能である。 Each movable member 47 has a pair of connecting members 61, and is movably attached to a mounting frame 58 on the lower outer side of the pumping pipe 13. The mounting frame 58 includes a pair of support members 59 and a shaft member 60. Referring to FIG. 6, each of the movable members 47 is located at the second position (the two on the left side in FIG. 6) closest to the outer peripheral portion of the pumping pipe 13 and the second position farthest from the outer peripheral portion of the pumping pipe 13. In FIG. 6, the two on the right side) can be individually rotated in an angle range of approximately 180 degrees.

支持部材59はそれぞれ、揚水管13に取り付けられている。具体的には、一対の支持部材59のうち、一方はベルマウス16の内側支持部16eに取り付けられ、その上方に位置するように他方がベーンケース15に取り付けられている。 Each of the support members 59 is attached to the pumping pipe 13. Specifically, one of the pair of support members 59 is attached to the inner support portion 16e of the bell mouth 16, and the other is attached to the vane case 15 so as to be located above the inner support portion 16e.

軸部材60は、揚水管13の軸線Aに沿って平行に延びる直管であり、下端と上端が支持部材(軸受け)59にそれぞれ回転可能に支持されている。軸部材60は、吸水槽1内に流入した水による負荷、及び可動部材47の回転による負荷では変形しない剛体(例えば金属)によって構成されている。軸部材60の全長に応じて、軸部材60の中間部分も支持部材によって回転可能に支持されてもよい。 The shaft member 60 is a straight pipe extending in parallel along the axis A of the pumping pipe 13, and the lower end and the upper end are rotatably supported by the support member (bearing) 59, respectively. The shaft member 60 is composed of a rigid body (for example, metal) that is not deformed by a load due to water flowing into the water absorption tank 1 and a load due to rotation of the movable member 47. Depending on the total length of the shaft member 60, the intermediate portion of the shaft member 60 may also be rotatably supported by the support member.

連結部材61は、軸部材60の上下2箇所に取り付けられ、軸部材60と可動式通水管48を連結する。軸部材60の全長に応じて連結部材61を3以上用いてもよい。連結部材61は、軸部材60に固着された円筒状の筒部62と、筒部62から突出したアーム63とを備える。軸部材60の回転によって可動式通水管48(可動部材47)は、揚水管13に対して水平方向に旋回する。つまり、可動部材47は、ポンプケーシング12の下部外側に配置され、ポンプケーシング12を中心として径方向に移動可能である。 The connecting member 61 is attached to two places above and below the shaft member 60, and connects the shaft member 60 and the movable water pipe 48. 3 or more connecting members 61 may be used depending on the total length of the shaft member 60. The connecting member 61 includes a cylindrical tubular portion 62 fixed to the shaft member 60, and an arm 63 protruding from the tubular portion 62. The movable water pipe 48 (movable member 47) rotates horizontally with respect to the pumping pipe 13 by the rotation of the shaft member 60. That is, the movable member 47 is arranged on the lower outer side of the pump casing 12, and can move in the radial direction about the pump casing 12.

アーム63は、軸部材60の軸線と交差する向きに突出している。アーム63の先端には、保持部材56の外側部材56bが取り付けられ、この保持部材56を介して可動式通水管48が取り付けられている。但し、アーム63の先端に可動式通水管48を直接取り付けてもよい。アーム63の全長は、統計的に空気吸込渦Sが発生し易い領域に可動式通水管48を配置可能な寸法に設定されている。 The arm 63 projects in a direction intersecting the axis of the shaft member 60. An outer member 56b of the holding member 56 is attached to the tip of the arm 63, and a movable water pipe 48 is attached via the holding member 56. However, the movable water pipe 48 may be directly attached to the tip of the arm 63. The total length of the arm 63 is set to a size that allows the movable water pipe 48 to be arranged in a region where an air suction vortex S is statistically likely to occur.

立軸ポンプ10の運転により吸水槽1内に空気吸込渦Sが発生すると、水面から吸込口16aにかけて水流が生じるため、周囲の水は空気吸込渦Sに向けて流れる。この水流に従って可動式通水管48は、空気吸込渦S上に浮動する。これにより、可動式通水管48が水面から吸込口16aに向けた水流の妨げになるため、空気吸込渦Sを効果的に消滅でき、その位置での以後の空気吸込渦Sの発生を抑制できる。 When an air suction vortex S is generated in the water suction tank 1 by the operation of the vertical shaft pump 10, a water flow is generated from the water surface to the suction port 16a, so that the surrounding water flows toward the air suction vortex S. According to this water flow, the movable water pipe 48 floats on the air suction vortex S. As a result, the movable water pipe 48 obstructs the water flow from the water surface toward the suction port 16a, so that the air suction vortex S can be effectively extinguished and the subsequent generation of the air suction vortex S at that position can be suppressed. ..

図1を参照すると、立軸ポンプ10には、ポンプケーシング12に対して可動部材47を強制的に回転させるための回転機構65が設けられている。回転機構65は、ロッド66A~66Cと、ロッド66Aの上端に着脱可能に取り付ける操作部材68とを備え、可動部材47毎に設けられている。 Referring to FIG. 1, the vertical shaft pump 10 is provided with a rotation mechanism 65 for forcibly rotating the movable member 47 with respect to the pump casing 12. The rotation mechanism 65 includes rods 66A to 66C and an operation member 68 detachably attached to the upper end of the rod 66A, and is provided for each movable member 47.

第1のロッド66A、第2のロッド66B、及び第3のロッド66Cは、この順でポンプ床2から下側へ配置されており、それぞれ自在継手67によって互いの角度を変更可能に接続されている。ロッド66Aの上端は、吐出エルボ18のベースプレート18aを貫通して、ポンプ床2の上側に突出している。ロッド66Cの下端は、軸部材60の上端に接続されている。 The first rod 66A, the second rod 66B, and the third rod 66C are arranged downward from the pump floor 2 in this order, and are connected to each other by a universal joint 67 so that their angles can be changed. There is. The upper end of the rod 66A penetrates the base plate 18a of the discharge elbow 18 and projects upward from the pump floor 2. The lower end of the rod 66C is connected to the upper end of the shaft member 60.

個々のロッド66A~66Cは中空状であり、内部に接続管49が挿通されている。ロッド66Aから導出された接続管49が、切換弁51A~51Jに接続される。自在継手67が位置する部分では、接続管49はロッド66A~66Cから外部に導出(迂回)されている。つまり、接続管49の大部分は、ロッド66A~66C内に配置されている。但し、接続管49はロッド66A~66Cの外面に沿って配置されてもよく、その配管構造は必要に応じて変更が可能である。 The individual rods 66A to 66C are hollow, and a connecting pipe 49 is inserted therein. The connecting pipe 49 derived from the rod 66A is connected to the switching valves 51A to 51J. At the portion where the universal joint 67 is located, the connecting pipe 49 is led out (detoured) from the rods 66A to 66C. That is, most of the connecting pipe 49 is arranged in the rods 66A to 66C. However, the connecting pipe 49 may be arranged along the outer surface of the rods 66A to 66C, and the pipe structure thereof can be changed as needed.

操作部材68は、ロッド66Aの上端に着脱可能に取り付けられるレバーである。ロッド66Aに対する操作部材68の取り付けは、操作部材68の操作によってロッド66Aを回転でき、操作部材68の着脱が可能な取付構造であれば、いずれでも適用できる。また、ベースプレート18aには、ロッド66A又は操作部材68を回転不可能に保持する保持機構を設けることが好ましい。保持機構としては、ロッド66A又は操作部材68を覆うようにベースプレート18aに取付可能なカバーを設け、このカバーによってロッド66A又は操作部材68を回転不可能に保持する構成を用いることができる。 The operating member 68 is a lever that is detachably attached to the upper end of the rod 66A. The attachment of the operating member 68 to the rod 66A can be applied to any attachment structure as long as the rod 66A can be rotated by operating the operating member 68 and the operating member 68 can be attached and detached. Further, it is preferable that the base plate 18a is provided with a holding mechanism for holding the rod 66A or the operating member 68 in a non-rotatable manner. As the holding mechanism, a cover that can be attached to the base plate 18a is provided so as to cover the rod 66A or the operating member 68, and the rod 66A or the operating member 68 can be held non-rotatably by this cover.

操作部材68の操作によってロッド66Aを回転させると、ロッド66B,66C、軸部材60、及び連結部材61を介して可動式通水管48を、ポンプケーシング12に対して希望位置に配置できる。また、可動式通水管48を移動させた後、ロッド66A又は操作部材68を保持機構で保持することで、吸水槽1に対する可動式通水管48の配置を維持できる。また、ロッド66A又は操作部材68を保持することなくフリーの状態にすることで、吸水槽1内の水流に従って可動式通水管48を浮動させることができる。 When the rod 66A is rotated by operating the operating member 68, the movable water pipe 48 can be arranged at a desired position with respect to the pump casing 12 via the rods 66B and 66C, the shaft member 60, and the connecting member 61. Further, by holding the rod 66A or the operating member 68 with the holding mechanism after moving the movable water pipe 48, the arrangement of the movable water pipe 48 with respect to the water absorption tank 1 can be maintained. Further, by leaving the rod 66A or the operating member 68 in a free state without holding the rod 66A, the movable water pipe 48 can be floated according to the water flow in the water absorption tank 1.

このように、本実施形態では、水流に従った浮動、又は回転機構65による強制移動によって、吸水槽1内において水流が最も速い領域である空気吸込渦Sが発生し易い領域に可動式通水管48を配置できる。 As described above, in the present embodiment, the movable water pipe is located in the region where the air suction vortex S, which is the region where the water flow is the fastest, is likely to be generated in the water absorption tank 1 by floating according to the water flow or forced movement by the rotation mechanism 65. 48 can be placed.

以上のように構成した立軸ポンプ10は、以下の特徴を有する。 The vertical shaft pump 10 configured as described above has the following features.

駆動機26及び伝達機構29を冷却する冷却装置35は、吸水槽1内に位置するポンプケーシング12の下部を中心として径方向に移動可能な可動部材47を備え、この可動部材47が冷却水を通水可能な通水管48を有する。そのため、吸水槽1内のうちの水流が速い領域に可動部材47(可動式通水管48)を配置することで、冷却水を効率的に降温(熱交換)できる。よって、発熱機器である駆動機26と伝達機構29の過熱を抑制できる。 The cooling device 35 for cooling the drive machine 26 and the transmission mechanism 29 includes a movable member 47 that can move radially around the lower portion of the pump casing 12 located in the water absorption tank 1, and the movable member 47 provides cooling water. It has a water passage pipe 48 capable of passing water. Therefore, by arranging the movable member 47 (movable water pipe 48) in the region of the water absorption tank 1 where the water flow is fast, the cooling water can be efficiently lowered (heat exchange). Therefore, overheating of the drive machine 26 and the transmission mechanism 29, which are heat generating devices, can be suppressed.

また、吸水槽1内において水流が速い領域は空気吸込渦Sが発生し易い部分であり、この領域に可動部材47を配置することによって、空気吸込渦Sを効果的に消滅でき、その位置での以後の空気吸込渦Sの発生を抑制できる。よって、ポンプ床2の劣化を引き起こすポンプ10の振動を抑制できる。 Further, in the water absorption tank 1, the region where the water flow is fast is a portion where the air suction vortex S is likely to be generated, and by arranging the movable member 47 in this region, the air suction vortex S can be effectively extinguished, and at that position. It is possible to suppress the subsequent generation of the air suction vortex S. Therefore, the vibration of the pump 10 that causes the deterioration of the pump floor 2 can be suppressed.

可動式通水管48を備える可動部材47がポンプケーシング12に複数配置されているため、冷却水の熱交換効率を向上できる。また、主流路37と可動式通水管48を連通状態と遮断状態に切り換える切換弁51を備えるため、複数の可動式通水管48のうち、破損した一部だけを冷却経路から除外できる。よって、冷却水の熱交換効率の低下を防止できるとともに、冷却装置35を構成する配管内に吸水槽1内の異物が混入することを防止できる。また、ポンプ10の運転を停止することなく、冷却装置35を継続して使用できるため、信頼性を向上できる。 Since a plurality of movable members 47 including the movable water pipe 48 are arranged in the pump casing 12, the heat exchange efficiency of the cooling water can be improved. Further, since the switching valve 51 for switching the main flow path 37 and the movable water pipe 48 between the communication state and the shutoff state is provided, only a part of the plurality of movable water pipes 48 that has been damaged can be excluded from the cooling path. Therefore, it is possible to prevent a decrease in the heat exchange efficiency of the cooling water and prevent foreign matter in the water absorption tank 1 from being mixed into the piping constituting the cooling device 35. Further, since the cooling device 35 can be continuously used without stopping the operation of the pump 10, the reliability can be improved.

可動式通水管48の出入口にそれぞれ温度センサ52が配置されているため、これらが検出した温度の差によって熱交換効率を個別に判断できる。そのため、温度差が最も大きくなる領域に可動部材47(可動式通水管48)を配置することで、冷却水の熱交換効率を確実に向上できる。 Since the temperature sensors 52 are arranged at the entrances and exits of the movable water pipe 48, the heat exchange efficiency can be individually determined by the difference in temperature detected by them. Therefore, by arranging the movable member 47 (movable water pipe 48) in the region where the temperature difference is the largest, the heat exchange efficiency of the cooling water can be surely improved.

可動式通水管48が螺旋状に形成されているため、吸水槽1内の水に接することが可能な距離を確保できる。よって、可動式通水管48による熱交換効率を向上できる。 Since the movable water pipe 48 is formed in a spiral shape, it is possible to secure a distance that allows contact with the water in the water absorption tank 1. Therefore, the heat exchange efficiency of the movable water pipe 48 can be improved.

可動式通水管48のうち隣接した一部分を保持する保持部材56を備えるため、吸水槽1内の水流又はポンプケーシング12の振動による可動式通水管48自体の振動を抑制できる。よって、可動式通水管48の損傷、及びポンプケーシング12に対する可動式通水管48の取付部分の損傷を抑制できる。 Since the holding member 56 that holds an adjacent portion of the movable water pipe 48 is provided, it is possible to suppress the vibration of the movable water pipe 48 itself due to the water flow in the water absorption tank 1 or the vibration of the pump casing 12. Therefore, damage to the movable water pipe 48 and damage to the attachment portion of the movable water pipe 48 to the pump casing 12 can be suppressed.

可動部材47を回転させるロッド66A~66Cを備え、可動式通水管48には可撓性を有する接続管49が接続されているため、ポンプケーシング12に対する可動部材47の移動と、冷却水の循環とを両立できる。また、接続管49の大部分がロッド66A~66C内に配置されているため、接続管49には吸水槽1内の水流による負荷が加わり難い。よって、接続管49自体の損傷、及び接続管49と可動式通水管48の接続部分の損傷を抑制できる。 Since the rods 66A to 66C for rotating the movable member 47 are provided and the flexible connecting pipe 49 is connected to the movable water pipe 48, the movable member 47 moves with respect to the pump casing 12 and the cooling water circulates. Can be compatible with. Further, since most of the connecting pipe 49 is arranged in the rods 66A to 66C, it is difficult for the connecting pipe 49 to be loaded by the water flow in the water absorbing tank 1. Therefore, damage to the connecting pipe 49 itself and damage to the connecting portion between the connecting pipe 49 and the movable water pipe 48 can be suppressed.

ポンプケーシング12を取り囲む固定式通水管46を備え、この固定式通水管46がポンプケーシング12の径方向に間隔をあけて複数配置されているため、冷却水の熱交換効率を更に向上できる。また、隣接した固定式通水管46を保持する保持部材55を備えるため、吸水槽1内の水流又はポンプケーシングの振動による固定式通水管46自体の振動を抑制できる。よって、固定式通水管46の損傷、及びポンプケーシング12に対する固定式通水管46の取付部分の損傷を抑制できる。 A fixed water pipe 46 surrounding the pump casing 12 is provided, and a plurality of the fixed water pipes 46 are arranged at intervals in the radial direction of the pump casing 12, so that the heat exchange efficiency of the cooling water can be further improved. Further, since the holding member 55 for holding the adjacent fixed water pipe 46 is provided, the vibration of the fixed water pipe 46 itself due to the water flow in the water absorption tank 1 or the vibration of the pump casing can be suppressed. Therefore, damage to the fixed water pipe 46 and damage to the attachment portion of the fixed water pipe 46 to the pump casing 12 can be suppressed.

(第2実施形態)
図7A及び図7Bは第2実施形態の立軸ポンプ10を示す。この立軸ポンプ10は、水流に従った可動式通水管48の浮動を促進するために、可動部材47に中空状の浮子部材70を備えさせた点で、第1実施形態の立軸ポンプ10と相違する。
(Second Embodiment)
7A and 7B show the vertical shaft pump 10 of the second embodiment. This vertical shaft pump 10 is different from the vertical shaft pump 10 of the first embodiment in that the movable member 47 is provided with a hollow float member 70 in order to promote the floating of the movable water pipe 48 according to the water flow. do.

浮子部材70は、強度に優れた樹脂(例えばエンジニアリングプラスチック (Engineering plastic) )によって形成されている。浮子部材70は、可動式通水管48の内径よりも小さい外径の円筒状本体の両端に、空間部分を密閉する閉鎖部70aを備える。閉鎖部70aはそれぞれ、所定の厚みを有し、径方向に貫通した挿通孔70bを備える。 The float member 70 is made of a resin having excellent strength (for example, Engineering plastic). The float member 70 is provided with closing portions 70a for sealing a space portion at both ends of a cylindrical main body having an outer diameter smaller than the inner diameter of the movable water pipe 48. Each of the closing portions 70a has a predetermined thickness and includes an insertion hole 70b penetrating in the radial direction.

可動式通水管48は、浮子部材70の外周に配置され、第1実施形態と同様に接続管49によって主流路37に接続されている。浮子部材70への可動式通水管48の取り付けは、取り付けを実現できる取付構造であればいずれでも適用できる。 The movable water pipe 48 is arranged on the outer periphery of the float member 70, and is connected to the main flow path 37 by the connecting pipe 49 as in the first embodiment. The attachment of the movable water pipe 48 to the float member 70 can be applied to any attachment structure that can realize the attachment.

アーム63は、挿通孔70bの直径よりも小さい直径を有しており、挿通孔70bを貫通し、浮子部材70の移動を許容する。アーム63の先端には、浮子部材70の脱落を防ぐために、挿通孔70bの直径よりも大径の抜止部63aが設けられている。 The arm 63 has a diameter smaller than the diameter of the insertion hole 70b, penetrates the insertion hole 70b, and allows the float member 70 to move. At the tip of the arm 63, a retaining portion 63a having a diameter larger than the diameter of the insertion hole 70b is provided in order to prevent the float member 70 from falling off.

このように構成した可動部材47は、吸水槽1内の水流に従って浮動可能な浮子部材70を備えるため、可動式通水管48も吸水槽1内の水流に従って確実に浮動する。しかも、浮子部材70(可動式通水管48)は、軸部材60に対して回転する方向への移動だけでなく、図7A及び図7Bに示すように、アーム63に沿ってポンプケーシング12に対して接近及び離反する方向への移動も可能である。 Since the movable member 47 configured in this way includes a float member 70 that can float according to the water flow in the water absorption tank 1, the movable water pipe 48 also floats reliably according to the water flow in the water absorption tank 1. Moreover, the float member 70 (movable water pipe 48) not only moves in the direction of rotation with respect to the shaft member 60, but also with respect to the pump casing 12 along the arm 63 as shown in FIGS. 7A and 7B. It is also possible to move in the direction of approaching and separating.

このように、第2実施形態の立軸ポンプ10では、吸水槽1内の水流が速い領域に可動式通水管48を確実に自動配置できるため、冷却水の熱交換効率を確実に向上できる。また、吸水槽1内において水流が速い部分は空気吸込渦Sが発生し易い部分であるため、空気吸込渦Sの発生も効率的に抑制できる。 As described above, in the vertical shaft pump 10 of the second embodiment, the movable water pipe 48 can be reliably and automatically arranged in the region where the water flow is fast in the water absorption tank 1, so that the heat exchange efficiency of the cooling water can be reliably improved. Further, since the portion of the water absorption tank 1 where the water flow is fast is a portion where the air suction vortex S is likely to be generated, the generation of the air suction vortex S can be efficiently suppressed.

(第3実施形態)
図8から図10は第3実施形態の立軸ポンプ10を示す。この立軸ポンプ10は、ポンプケーシング12の外側の所定位置に可動部材47を配置するために、回転機構65に位置決め部材72を備えさせた点で、第1実施形態の立軸ポンプ10と相違する。
(Third Embodiment)
8 to 10 show the vertical shaft pump 10 of the third embodiment. The vertical shaft pump 10 is different from the vertical shaft pump 10 of the first embodiment in that the rotary mechanism 65 is provided with a positioning member 72 in order to dispose the movable member 47 at a predetermined position outside the pump casing 12.

位置決め部材72は、揚水管13の外周部に最も近接した第1位置(図9において左側の2個)から、揚水管13の外周部から最も離反した第2位置(図9において右側の2個)の範囲の所定位置に、可動式通水管48を位置決めするために設けられている。位置決め部材72は、軸部材60の上端と可動式通水管48の上部とに、それぞれ回転可能に接続されたパンタグラフジャッキからなる。なお、本実施形態では、支持部材59に対して軸部材60が回転不可能に接合され、軸部材60に対して連結部材61が回転可能に配置されている。 The positioning member 72 is the second position (two on the right side in FIG. 9) that is farthest from the outer peripheral portion of the pumping pipe 13 from the first position (two on the left side in FIG. 9) closest to the outer peripheral portion of the pumping pipe 13. ) Is provided to position the movable water pipe 48 at a predetermined position in the range of). The positioning member 72 comprises a pantograph jack rotatably connected to the upper end of the shaft member 60 and the upper portion of the movable water pipe 48, respectively. In this embodiment, the shaft member 60 is non-rotatably joined to the support member 59, and the connecting member 61 is rotatably arranged with respect to the shaft member 60.

位置決め部材72は、4個の可動式通水管48にそれぞれ配置されており、可動式通水管48を第1位置と第2位置に個別に移動させる。図10を参照すると、個々の位置決め部材(パンタグラフジャッキ)72は、4本のアーム73A~73D、2個の接続部材76、及び1本のネジ軸80を備える。 The positioning member 72 is arranged in each of the four movable water pipes 48, and the movable water pipes 48 are individually moved to the first position and the second position. Referring to FIG. 10, each positioning member (pantograph jack) 72 includes four arms 73A-73D, two connecting members 76, and one screw shaft 80.

アーム73A~73Bの全長は全て同一寸法であり、第1位置から第2位置までの移動距離に応じて設定されている。2本のアーム73A,73Bの一端は、ピン74によって互いに回転可能に接続され、他の2本のアーム73C,73Dの一端は、ピン74によって互いに回転可能に接続されている。アーム73A,73Cの他端は、ピン75によって一方の接続部材76にそれぞれ回転可能に接続され、他のアーム73B,73Dの他端は、ピン75によって他方の接続部材76にそれぞれ回転可能に接続されている。 The total lengths of the arms 73A to 73B are all the same size, and are set according to the moving distance from the first position to the second position. One ends of the two arms 73A and 73B are rotatably connected to each other by a pin 74, and one ends of the other two arms 73C and 73D are rotatably connected to each other by a pin 74. The other ends of the arms 73A and 73C are rotatably connected to one connecting member 76 by pins 75, and the other ends of the other arms 73B and 73D are rotatably connected to the other connecting member 76 by pins 75. Has been done.

接続部材76は、可動式通水管48に固着されたブラケット77、又は軸部材60に固定されたブラケット78を接続する接続部76aを備える。接続部76aは、水平方向に延びる凹溝からなり、垂直方向に貫通するピン孔76bを備える。可動式通水管48のブラケット77は、保持部材56から突出し、接続部76aに差込可能な板厚の逆L字状の部材である。ブラケット77は、ピン孔76bに一致するピン孔77aを備え、ピン79によって接続部76aに回転可能に接続されている。軸部材60のブラケット78は、接続部76aに差込可能な板厚の平板部材であり、ピン孔76bに一致するピン孔78aを備え、ピン79によって接続部76aに回転可能に接続されている。 The connecting member 76 includes a bracket 77 fixed to the movable water pipe 48, or a connecting portion 76a for connecting the bracket 78 fixed to the shaft member 60. The connecting portion 76a is composed of a concave groove extending in the horizontal direction, and includes a pin hole 76b penetrating in the vertical direction. The bracket 77 of the movable water pipe 48 is an inverted L-shaped member having a plate thickness that protrudes from the holding member 56 and can be inserted into the connecting portion 76a. The bracket 77 has a pin hole 77a that matches the pin hole 76b and is rotatably connected to the connection portion 76a by a pin 79. The bracket 78 of the shaft member 60 is a flat plate member having a plate thickness that can be inserted into the connection portion 76a, has a pin hole 78a that matches the pin hole 76b, and is rotatably connected to the connection portion 76a by a pin 79. ..

ネジ軸80は、アーム73A,73Bの交差部分とアーム73C,73Dの交差部分とを貫通している。ネジ軸80の下端は、アーム73C,73Dの交差部分に配置された軸受け81に回転可能に接続されている。ネジ軸80の上端側は、アーム73A,73Bの交差部分に配置されたナット(図示せず)を貫通して上方に突出している。ネジ軸80の上端には、四角柱状の頭部80aが設けられている。頭部80aには、図1に示すロッド66Cの下端が接続されている。 The screw shaft 80 penetrates the intersection of the arms 73A and 73B and the intersection of the arms 73C and 73D. The lower end of the screw shaft 80 is rotatably connected to a bearing 81 arranged at the intersection of the arms 73C and 73D. The upper end side of the screw shaft 80 penetrates a nut (not shown) arranged at the intersection of the arms 73A and 73B and projects upward. A square columnar head 80a is provided at the upper end of the screw shaft 80. The lower end of the rod 66C shown in FIG. 1 is connected to the head 80a.

ロッド66A~66Cを介して頭部80aを操作してネジ軸80を正転させると、一対の接続部材76が近接するようにアーム73A~73Dが移動する。頭部80aを操作してネジ軸80を逆転させると、一対の接続部材76が離反するようにアーム73A~73Dが移動する。これらの移動状態は、ネジ軸80とナットの間の抵抗により保持される。 When the head 80a is operated via the rods 66A to 66C to rotate the screw shaft 80 in the normal direction, the arms 73A to 73D move so that the pair of connecting members 76 are close to each other. When the head 80a is operated to reverse the screw shaft 80, the arms 73A to 73D move so that the pair of connecting members 76 separate from each other. These moving states are held by the resistance between the screw shaft 80 and the nut.

図9に示すように、軸部材60のブラケット78は、可動式通水管48を回転させる向きの反対側に突出されている。図9の左側2個のように、位置決め部材72は、接続部材76を離反させることで可動式通水管48を押圧し、軸部材60に対して可動式通水管48を回転させて、揚水管13に対して可動式通水管48を近接させた第1位置に移動させる。図9の右側2個のように、位置決め部材72は、接続部材76を近接させることで可動式通水管48を引っ張り、軸部材60に対して可動式通水管48を回転させて、揚水管13に対して可動式通水管48を離反させた第2位置に移動させる。 As shown in FIG. 9, the bracket 78 of the shaft member 60 projects to the opposite side of the direction in which the movable water pipe 48 is rotated. As shown in the two left sides of FIG. 9, the positioning member 72 presses the movable water pipe 48 by separating the connecting member 76, rotates the movable water pipe 48 with respect to the shaft member 60, and pumps the water pipe. The movable water pipe 48 is moved to the first position close to 13. As shown in the two on the right side of FIG. 9, the positioning member 72 pulls the movable water pipe 48 by bringing the connecting member 76 close to each other, rotates the movable water pipe 48 with respect to the shaft member 60, and causes the pumping pipe 13 to rotate. The movable water pipe 48 is moved to the second position separated from the movable water pipe 48.

第1位置又は第2位置に移動された可動式通水管48は、ネジ軸80を回転させない限り、その位置に保持される。また、可動式通水管48は、第1位置と第2位置に限られず、位置決め部材72によって第1位置と第2位置の間の任意の位置に保持される。 The movable water pipe 48 moved to the first position or the second position is held in that position unless the screw shaft 80 is rotated. Further, the movable water pipe 48 is not limited to the first position and the second position, but is held at an arbitrary position between the first position and the second position by the positioning member 72.

この第3実施形態の立軸ポンプ10では、ポンプケーシング12に対して可動部材47(可動式通水管48)を位置決めする位置決め部材72を備えるため、吸水槽1内の水流が速い領域(つまり空気吸込渦Sの発生領域)に可動式通水管48を確実に配置できる。また、所定位置に配置した可動式通水管48は、水流の影響によって移動することはない。よって、冷却水の熱交換効率を確実に向上でき、空気吸込渦の発生を効果的に抑制できる。 Since the vertical shaft pump 10 of the third embodiment includes a positioning member 72 for positioning the movable member 47 (movable water pipe 48) with respect to the pump casing 12, a region (that is, air suction) in which the water flow in the water absorption tank 1 is fast (that is, air suction). The movable water pipe 48 can be reliably arranged in the vortex S generation region). Further, the movable water pipe 48 arranged at a predetermined position does not move due to the influence of the water flow. Therefore, the heat exchange efficiency of the cooling water can be surely improved, and the generation of the air suction vortex can be effectively suppressed.

(第4実施形態)
図11Aは第4実施形態の立軸ポンプ10が備える冷却装置35を示す。この冷却装置35は、通水管46,48A~48Dに連通する副流路85をポンプ床2上に設け、個々の通水管46,48に流れる冷却水の流量を調整可能とした点で、第1実施形態の冷却装置35と相違する。
(Fourth Embodiment)
FIG. 11A shows a cooling device 35 included in the vertical shaft pump 10 of the fourth embodiment. In this cooling device 35, an auxiliary flow path 85 communicating with the water pipes 46, 48A to 48D is provided on the pump floor 2, and the flow rate of the cooling water flowing through the individual water pipes 46, 48 can be adjusted. It is different from the cooling device 35 of one embodiment.

通水管46,48A~48Dはそれぞれ、第1実施形態と同様に切換弁51A~51Jを介して接続配管43に接続されている。切換弁51A~51Jはそれぞれ、4つの接続ポート51a~51dを備え、個々のポート51a~51dの開状態と閉状態を切換可能な四方弁である。そのうち、接続ポート51aには熱交換器28,30側が接続され、接続ポート51bには通水管46,48が接続され、接続ポート51cには循環ポンプ38側が接続されている。残りの接続ポート51dには、副流路85が接続されている。 The water pipes 46, 48A to 48D are connected to the connecting pipe 43 via switching valves 51A to 51J, respectively, as in the first embodiment. The switching valves 51A to 51J are four-way valves having four connection ports 51a to 51d, respectively, and capable of switching between the open state and the closed state of the individual ports 51a to 51d. Among them, the heat exchangers 28 and 30 are connected to the connection port 51a, the water pipes 46 and 48 are connected to the connection port 51b, and the circulation pump 38 side is connected to the connection port 51c. A subchannel 85 is connected to the remaining connection port 51d.

副流路85は、切換弁51A~51Jの接続ポート51dにそれぞれ接続された配管86A~86Jと、これらの配管86A~86Jに接続された共通配管87とを備える。共通配管87は、接続配管43のうちの切換弁51Jの下流側に接続されている。 The sub-flow path 85 includes pipes 86A to 86J connected to the connection ports 51d of the switching valves 51A to 51J, respectively, and common pipe 87 connected to these pipes 86A to 86J. The common pipe 87 is connected to the downstream side of the switching valve 51J in the connecting pipe 43.

複数の配管86A~86Jのうち、可動式通水管48A~48Dの出口側に接続された配管86D,86F,86H,86Jには、可動式通水管48A~48Dを流れる冷却水の流量を個別に調整するための流量調整弁88がそれぞれ介設されている。流量調整弁88は、開度の調整によって通過可能な水量を調整可能な可変式の絞り弁であり、開度調整は電動式及び手動式のいずれでもよい。 Of the plurality of pipes 86A to 86J, the pipes 86D, 86F, 86H, 86J connected to the outlet side of the movable water pipes 48A to 48D have individual flow rates of cooling water flowing through the movable water pipes 48A to 48D. A flow rate adjusting valve 88 for adjusting is interposed. The flow rate adjusting valve 88 is a variable throttle valve that can adjust the amount of water that can pass by adjusting the opening degree, and the opening degree adjustment may be either an electric type or a manual type.

第4実施形態の冷却装置35には、可動式通水管48A~48Dにそれぞれ接続された副流路85を備えるため、可動式通水管48A~48Dを直列及び並列のいずれの状態でも接続できる。また、副流路85には流量調整弁88が介設されているため、可動式通水管48A~48Dに対する通水量を個別に設定できる。よって、吸水槽1内の水流に応じて冷却水全体の熱交換効率を向上できる。 Since the cooling device 35 of the fourth embodiment includes sub-flow passages 85 connected to the movable water pipes 48A to 48D, the movable water pipes 48A to 48D can be connected in either a series or parallel state. Further, since the flow rate adjusting valve 88 is interposed in the sub-flow path 85, the amount of water flowing through the movable water pipes 48A to 48D can be individually set. Therefore, the heat exchange efficiency of the entire cooling water can be improved according to the water flow in the water absorption tank 1.

切換弁51A~51Jの切り換えによって複数の通水路46,48を直列に接続した場合、冷却経路全体の流体抵抗が大きくなるため、冷却流量が低下するが、冷却水の降温効率を増大する。よって、熱交換器28,30から流出した直後の出口側温度と、熱交換器28,30に流入する直前の入口側温度との差が大きくなる。 When a plurality of water passages 46 and 48 are connected in series by switching the switching valves 51A to 51J, the fluid resistance of the entire cooling path increases, so that the cooling flow rate decreases, but the cooling efficiency of the cooling water increases. Therefore, the difference between the outlet side temperature immediately after flowing out of the heat exchangers 28 and 30 and the inlet side temperature immediately before flowing into the heat exchangers 28 and 30 becomes large.

切換弁51A~51Jの切り換えによって複数の通水路46,48を並列に接続した場合、冷却経路全体の流体抵抗は小さくなるため、冷却流量は増大するが、冷却水の降温効率は低下する。よって、熱交換器28,30から流出した直後の出口側温度と、熱交換器28,30に流入する直前の入口側温度との差は小さくなる。 When a plurality of water passages 46 and 48 are connected in parallel by switching the switching valves 51A to 51J, the fluid resistance of the entire cooling path becomes small, so that the cooling flow rate increases, but the cooling efficiency of the cooling water decreases. Therefore, the difference between the outlet side temperature immediately after flowing out of the heat exchangers 28 and 30 and the inlet side temperature immediately before flowing into the heat exchangers 28 and 30 becomes small.

前述のように、吸水槽1の内部では領域によって流速が異なるため、特に可動式通水管48A~48Dにおいては配置によって冷却効率がそれぞれ異なる。よって、可動式通水管48A~48Dのうち、水流が速くて冷却効率が良好な領域に配置したものについては並列に接続して冷却水を集中的に流し、水流が遅くて冷却効率が好ましくない領域に配置したものについては直列に接続して冷却水の冷却効率を高めるように、冷却経路を変更する。 As described above, since the flow velocity varies depending on the region inside the water absorption tank 1, the cooling efficiency differs depending on the arrangement, especially in the movable water pipes 48A to 48D. Therefore, among the movable water flow pipes 48A to 48D, those arranged in the region where the water flow is fast and the cooling efficiency is good are connected in parallel to allow the cooling water to flow intensively, and the water flow is slow and the cooling efficiency is not preferable. Those placed in the area are connected in series and the cooling path is changed so as to improve the cooling efficiency of the cooling water.

図11Bは、冷却経路と冷却水が流れる一部の流量を調整した状態の一例を示す。図11Bにおいて、複数の接続ポート51a~51dのうち、白抜き部分は開状態を示し、黒塗り部分は閉状態を示す。また、冷却経路において、冷却水が流れる部分を実線で示し、冷却水が流れない部分を破線で示す。 FIG. 11B shows an example of a state in which the cooling path and the flow rate of a part of the cooling water flow are adjusted. In FIG. 11B, of the plurality of connection ports 51a to 51d, a white portion indicates an open state and a black-painted portion indicates a closed state. Further, in the cooling path, the portion where the cooling water flows is shown by a solid line, and the portion where the cooling water does not flow is shown by a broken line.

図11Bの例では、固定式通水管46から流出した冷却水Q1の一部(冷却水Q2)を可動式通水管48Aで冷却し、可動式通水管48Aから流出する冷却水Q2の一部(冷却水Q3)を可動式通水管48B~48Dで冷却した後、全ての冷却水を合流させている。可動式通水管48Aから流出した冷却水Q3とQ2-Q3の流量比については、配管86Dに介設した流量調整弁88によって調整されている。 In the example of FIG. 11B, a part of the cooling water Q1 (cooling water Q2) flowing out from the fixed water flow pipe 46 is cooled by the movable water flow pipe 48A, and a part of the cooling water Q2 flowing out from the movable water flow pipe 48A (cooling water Q2). After cooling the cooling water Q3) with the movable water passage pipes 48B to 48D, all the cooling waters are merged. The flow rate ratio of the cooling water Q3 and Q2-Q3 flowing out from the movable water pipe 48A is adjusted by the flow rate adjusting valve 88 interposed in the pipe 86D.

このように、第4実施形態の立軸ポンプ10では、通水管46,48A~48Dに対する通水量を個別に設定できるため、吸水槽1内の水流に応じて冷却水全体の熱交換効率を向上できる。また、複数の可動式通水管46,48A~48Dのうちの一部が破損した場合、破損した一部だけを冷却経路から除外できる。 As described above, in the vertical shaft pump 10 of the fourth embodiment, since the amount of water flowing through the water pipes 46, 48A to 48D can be individually set, the heat exchange efficiency of the entire cooling water can be improved according to the water flow in the water absorption tank 1. .. Further, when a part of the plurality of movable water pipes 46, 48A to 48D is damaged, only the damaged part can be excluded from the cooling path.

なお、本発明の立軸ポンプ10は、前記実施形態の構成に限定されず、種々の変更が可能である。 The vertical shaft pump 10 of the present invention is not limited to the configuration of the above embodiment, and various modifications can be made.

例えば、可動部材47(可動式通水管48)の数は、4本に限られず、1本のみであってもよく、必要に応じて変更が可能である。また、吸水槽1に対する可動部材47の配置も必要に応じて変更が可能である。 For example, the number of movable members 47 (movable water pipes 48) is not limited to four, and may be only one, and can be changed as needed. Further, the arrangement of the movable member 47 with respect to the water absorption tank 1 can be changed as needed.

第1実施形態のように、第2実施形態に示す浮動性が良い浮子部材70を用いていない可動部材47であっても、第2実施形態のように可動式通水管48をアーム63に沿って移動可能としてもよい。 Even if the movable member 47 does not use the float member 70 having good floating property as in the first embodiment, the movable water pipe 48 is installed along the arm 63 as in the second embodiment. It may be movable.

第3実施形態の位置決め部材72は、パンタグラフジャッキに限られず、ポンプケーシング12に対して可動部材47を所定の回転角度に位置決めできる構成であれば、必要に応じて変更が可能である。 The positioning member 72 of the third embodiment is not limited to the pantograph jack, and can be changed as needed as long as the movable member 47 can be positioned at a predetermined rotation angle with respect to the pump casing 12.

第4実施形態の立軸ポンプ10においては、第1実施形態から第3実施形態に示す可動部材47のうち、いずれでも使用できる。 In the vertical shaft pump 10 of the fourth embodiment, any of the movable members 47 shown in the first to third embodiments can be used.

冷却対象の発熱機器は、駆動機26及び伝達機構29に限られず、駆動機26のみであってもよいし、伝達機構29のみであってもよい。また、大容量ポンプ用のスラスト軸受であってもよく、冷却対象の発熱機器も必要に応じて変更が可能である。 The heat generating device to be cooled is not limited to the drive device 26 and the transmission mechanism 29, and may be only the drive device 26 or only the transmission mechanism 29. Further, it may be a thrust bearing for a large-capacity pump, and the heat generating device to be cooled can be changed as needed.

1…吸水槽
2…ポンプ床
2a…貫通孔
3…底壁
4…側壁
5…端壁
10…立軸ポンプ
12…ポンプケーシング
13…揚水管
14…ストレート管
15…ベーンケース(下部)
15a…軸受ケーシング
16…ベルマウス(下部)
16a…吸込口
16b…取付部
16c…リブ
16d…下側支持部
16e…内側支持部
17…吐出管
18…吐出エルボ
18a…ベースプレート
20…回転軸
20a…内側部
20b…外側部
21…水中軸受
22…軸封装置
23…羽根車
25…駆動機構
26…駆動機(発熱機器)
27…出力軸
28…熱交換器
29…伝達機構(発熱機器)
30…熱交換器
35…冷却装置
37…主流路
38…循環ポンプ
39…タンク
40…配管
41…配管
41a,41b…分岐配管
42…配管
42a,42b…分岐配管
43…接続配管
45…再生流路
46,46A~46D…固定式通水管
47…可動部材
48,48A~48D…可動式通水管
48a…ロール
49…接続管
51A~51J…切換弁
51a~51c…接続ポート
52,52A~52F…温度センサ(検出部)
54…接続部材
55…保持部材
55a…挿通孔
56…保持部材
56a…内側部材
56b…外側部材
58…取付枠
59…支持部材
60…軸部材
61…連結部材
62…筒部
63…アーム
63a…抜止部
65…回転機構
66,66A~66C…ロッド
67…自在継手
68…操作部材
70…浮子部材
70a…閉鎖部
70b…挿通孔
72…位置決め部材
73A~73B…アーム
74…ピン
75…ピン
76…接続部材
76a…接続部
76b…ピン孔
77…ブラケット
77a…ピン孔
78…ブラケット
78a…ピン孔
79…ピン
80…ネジ軸
80a…頭部
81…軸受け
85…副流路
86A~86J…配管
87…共通配管
88…流量調整弁
A…軸線
F…流入方向
S…空気吸込渦
1 ... Water absorption tank 2 ... Pump floor 2a ... Through hole 3 ... Bottom wall 4 ... Side wall 5 ... End wall 10 ... Vertical shaft pump 12 ... Pump casing 13 ... Pumping pipe 14 ... Straight pipe 15 ... Vane case (bottom)
15a ... Bearing casing 16 ... Bellmouth (bottom)
16a ... Suction port 16b ... Mounting part 16c ... Rib 16d ... Lower support part 16e ... Inner support part 17 ... Discharge pipe 18 ... Discharge elbow 18a ... Base plate 20 ... Rotating shaft 20a ... Inner part 20b ... Outer part 21 ... Underwater bearing 22 ... Shaft sealing device 23 ... Impeller 25 ... Drive mechanism 26 ... Driver (heat generating device)
27 ... Output shaft 28 ... Heat exchanger 29 ... Transmission mechanism (heat generating device)
30 ... Heat exchanger 35 ... Cooling device 37 ... Main flow path 38 ... Circulation pump 39 ... Tank 40 ... Piping 41 ... Piping 41a, 41b ... Branch piping 42 ... Piping 42a, 42b ... Branch piping 43 ... Connection piping 45 ... Regeneration flow path 46, 46A to 46D ... Fixed water pipe 47 ... Movable member 48, 48A to 48D ... Movable water pipe 48a ... Roll 49 ... Connection pipe 51A to 51J ... Switching valve 51a to 51c ... Connection port 52, 52A to 52F ... Temperature Sensor (detector)
54 ... Connecting member 55 ... Holding member 55a ... Insertion hole 56 ... Holding member 56a ... Inner member 56b ... Outer member 58 ... Mounting frame 59 ... Support member 60 ... Shaft member 61 ... Connecting member 62 ... Cylinder 63 ... Arm 63a ... Part 65 ... Rotation mechanism 66, 66A-66C ... Rod 67 ... Universal joint 68 ... Operating member 70 ... Floating member 70a ... Closing part 70b ... Insertion hole 72 ... Positioning member 73A-73B ... Arm 74 ... Pin 75 ... Pin 76 ... Connection Member 76a ... Connection part 76b ... Pin hole 77 ... Bracket 77a ... Pin hole 78 ... Bracket 78a ... Pin hole 79 ... Pin 80 ... Screw shaft 80a ... Head 81 ... Bearing 85 ... Sub-flow path 86A-86J ... Piping 87 ... Common Piping 88 ... Flow control valve A ... Axis F ... Inflow direction S ... Air suction vortex

Claims (12)

吸水槽内に下部が配置された筒状のポンプケーシングと、
冷却水を循環させて発熱機器を冷却する冷却装置と
を備え、
前記冷却装置は、前記ポンプケーシングの前記下部の外側に配置され、前記ポンプケーシングを中心として径方向に移動可能な可動部材を備え、
前記可動部材は、前記冷却水を通水可能な通水管を有する、立軸ポンプ。
A cylindrical pump casing with the lower part located inside the water absorption tank,
Equipped with a cooling device that circulates cooling water to cool the heat generating equipment.
The cooling device is arranged outside the lower portion of the pump casing and includes a movable member that is radially movable around the pump casing.
The movable member is a vertical shaft pump having a water pipe through which the cooling water can pass.
前記可動部材は、前記ポンプケーシングに対して周方向に間隔をあけて複数配置されており、
前記冷却装置は、
複数の前記可動部材がそれぞれ備える前記通水管と前記発熱機器が接続された主流路と、
前記通水管に対して前記主流路内の前記冷却水を通水可能な連通状態と通水不可能な遮断状態とに個別に切り換える複数の切換弁と
を備える、請求項1に記載の立軸ポンプ。
A plurality of the movable members are arranged at intervals in the circumferential direction with respect to the pump casing.
The cooling device is
A main flow path to which the water pipe provided by each of the plurality of movable members and the heat generating device are connected,
The vertical shaft pump according to claim 1, further comprising a plurality of switching valves that individually switch between a communication state in which the cooling water in the main flow path can pass and a shutoff state in which water cannot pass through the water pipe. ..
前記冷却装置は、
前記切換弁にそれぞれ接続された副流路と、
前記副流路に介設され、複数の前記通水管を流れる前記冷却水の流量を個別に調整する複数の流量調整弁と
を備える、請求項2に記載の立軸ポンプ。
The cooling device is
The sub-flow paths connected to the switching valves, respectively,
The vertical shaft pump according to claim 2, further comprising a plurality of flow rate adjusting valves that are interposed in the sub-flow path and individually adjust the flow rate of the cooling water flowing through the plurality of water pipes.
前記冷却装置は、
前記通水管の入口側の温度を検出する第1検出部と、
前記通水管の出口側の温度を検出する第2検出部と
を備える、請求項1から3のいずれか1項に記載の立軸ポンプ。
The cooling device is
A first detection unit that detects the temperature on the inlet side of the water pipe, and
The vertical shaft pump according to any one of claims 1 to 3, further comprising a second detection unit for detecting the temperature on the outlet side of the water pipe.
前記通水管は、螺旋状をなし、全体として円筒状を呈する、請求項1から4のいずれか1項に記載の立軸ポンプ。 The vertical shaft pump according to any one of claims 1 to 4, wherein the water pipe has a spiral shape and a cylindrical shape as a whole. 前記通水管のうち、前記ポンプケーシングの軸方向に隣接した一部分を保持する保持部材を備える、請求項5に記載の立軸ポンプ。 The vertical shaft pump according to claim 5, further comprising a holding member for holding a portion of the water pipe adjacent to the pump casing in the axial direction. 前記ポンプケーシングに対して前記可動部材を回転させるための中空状のロッドを備え、
前記冷却装置は、前記通水管と前記発熱機器を接続する可撓性を有する接続管を備え、
前記接続管の大部分は、前記ロッド内に配置されている、
請求項1から6のいずれか1項に記載の立軸ポンプ。
A hollow rod for rotating the movable member with respect to the pump casing is provided.
The cooling device includes a flexible connecting pipe for connecting the water pipe and the heat generating device.
Most of the connecting pipe is located in the rod.
The vertical shaft pump according to any one of claims 1 to 6.
前記可動部材は、前記吸水槽内の水流に従って浮動可能な中空状の浮子部材を有し、
前記通水管は、前記浮子部材の外周に配置されている、
請求項1から7のいずれか1項に記載の立軸ポンプ。
The movable member has a hollow float member that can float according to the water flow in the water absorption tank.
The water pipe is arranged on the outer periphery of the float member.
The vertical shaft pump according to any one of claims 1 to 7.
前記ポンプケーシングの外側の所定位置に前記可動部材を位置決めする位置決め部材を備える、請求項1から7のいずれか1項に記載の立軸ポンプ。 The vertical shaft pump according to any one of claims 1 to 7, further comprising a positioning member for positioning the movable member at a predetermined position outside the pump casing. 前記冷却装置は、前記ポンプケーシングの前記下部を取り囲む円弧状で、前記冷却水を通水可能な固定式通水管を備える、請求項1から9のいずれか1項に記載の立軸ポンプ。 The vertical shaft pump according to any one of claims 1 to 9, wherein the cooling device has a fixed water pipe having an arc shape surrounding the lower portion of the pump casing and capable of passing the cooling water. 前記固定式通水管は、前記ポンプケーシングの径方向に間隔をあけて複数配置されている、請求項10に記載の立軸ポンプ。 The vertical shaft pump according to claim 10, wherein a plurality of fixed water pipes are arranged at intervals in the radial direction of the pump casing. 前記ポンプケーシングの径方向に隣接した前記固定式通水管を保持する保持部材を備える、請求項11に記載の立軸ポンプ。 The vertical shaft pump according to claim 11, further comprising a holding member for holding the fixed water pipe adjacent to the pump casing in the radial direction.
JP2020108941A 2020-06-24 2020-06-24 Vertical shaft pump Active JP7339213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020108941A JP7339213B2 (en) 2020-06-24 2020-06-24 Vertical shaft pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020108941A JP7339213B2 (en) 2020-06-24 2020-06-24 Vertical shaft pump

Publications (2)

Publication Number Publication Date
JP2022006607A true JP2022006607A (en) 2022-01-13
JP7339213B2 JP7339213B2 (en) 2023-09-05

Family

ID=80110318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108941A Active JP7339213B2 (en) 2020-06-24 2020-06-24 Vertical shaft pump

Country Status (1)

Country Link
JP (1) JP7339213B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175095A (en) * 2007-01-17 2008-07-31 Kubota Corp Suction nozzle and pump with suction nozzle
JP2011021534A (en) * 2009-07-15 2011-02-03 Torishima Pump Mfg Co Ltd Pump
JP2018178827A (en) * 2017-04-11 2018-11-15 株式会社酉島製作所 Vertical pump
JP2019035389A (en) * 2017-08-18 2019-03-07 株式会社酉島製作所 Vertical shaft pump
JP2020002815A (en) * 2018-06-26 2020-01-09 株式会社荏原製作所 Pump system, and cooling system for pump driving machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175095A (en) * 2007-01-17 2008-07-31 Kubota Corp Suction nozzle and pump with suction nozzle
JP2011021534A (en) * 2009-07-15 2011-02-03 Torishima Pump Mfg Co Ltd Pump
JP2018178827A (en) * 2017-04-11 2018-11-15 株式会社酉島製作所 Vertical pump
JP2019035389A (en) * 2017-08-18 2019-03-07 株式会社酉島製作所 Vertical shaft pump
JP2020002815A (en) * 2018-06-26 2020-01-09 株式会社荏原製作所 Pump system, and cooling system for pump driving machine

Also Published As

Publication number Publication date
JP7339213B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP5736149B2 (en) Vertical fluid heat exchanger
CN101410623B (en) Compressor unit
KR20180009389A (en) Wind tunnel turning vane heat exchanger
JP7120826B2 (en) Cooling system for pump system and pump drive
US6139267A (en) Fluid machine
JP6549084B2 (en) Vertical fluid heat exchanger
KR101280998B1 (en) Bidirectional pump with external motor
KR101717024B1 (en) air cooling or Water cooling vertical inline type of small scale hydropower
JP2022006607A (en) Vertical shaft pump
CN111256191B (en) Open and closed buried pipe sub-catchment and its control method
CN106122751A (en) Float-ball type self-balancing steam trap connection and hydrophobic flow area computational methods thereof
JP5626058B2 (en) Hot water storage water heater
JP5973483B2 (en) Closed circulation refrigerant cooling system
CN212431836U (en) Mixed cooling device and circulating cooling water system
KR101860407B1 (en) Injection mold device for cooling fan in radiator
KR101557135B1 (en) Apparatus for operating cleaning balls
CN210831393U (en) Floating ball trap valve capable of being maintained on line
JP6192103B2 (en) Water tank, flap gate and gate weir
RU2731502C1 (en) Precessional hydraulic turbine
KR101897226B1 (en) Heat supplying system using hot waste water
JP6802083B2 (en) Vertical pump
US4188173A (en) Vertical pump with free floating check valve
JP3166708U (en) Vertical fluid heat exchanger
CN113035519A (en) Cooling system of wind generating set and wind generating set
CN103925233A (en) Method and device for self-circulation cooling of mechanical seal of emulsified liquid lift pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7339213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150