[go: up one dir, main page]

JP2021187688A - Composite powder, granular powder, tablet, sintered sheet and sintered body - Google Patents

Composite powder, granular powder, tablet, sintered sheet and sintered body Download PDF

Info

Publication number
JP2021187688A
JP2021187688A JP2020091239A JP2020091239A JP2021187688A JP 2021187688 A JP2021187688 A JP 2021187688A JP 2020091239 A JP2020091239 A JP 2020091239A JP 2020091239 A JP2020091239 A JP 2020091239A JP 2021187688 A JP2021187688 A JP 2021187688A
Authority
JP
Japan
Prior art keywords
powder
glass
mass
sintered body
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020091239A
Other languages
Japanese (ja)
Other versions
JP7472653B2 (en
Inventor
芳夫 馬屋原
Yoshio Umayahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2020091239A priority Critical patent/JP7472653B2/en
Publication of JP2021187688A publication Critical patent/JP2021187688A/en
Application granted granted Critical
Publication of JP7472653B2 publication Critical patent/JP7472653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

To provide a composite powder that can be fired at 1000°C or lower, and has low dielectric properties in a high frequency region, and provide granular powder, a tablet, a sintered sheet and a sintered body.SOLUTION: A composite powder contains at least glass powder and alkaline-earth carbonate powder. The glass powder contains, as a glass composition, in mass%, SiO2 60-85%, B2O3 15-40%, R2O(Li2O+Na2O+K2O) 0.1-5.0%. The alkaline-earth carbonate powder is at least one selected from the group of MgCO3, CaCO3, SrCO3, BaCO3. Relative to 100 pts.mass of the glass powder, the alkaline-earth carbonate powder is 0.01-3.0 pts.mass.SELECTED DRAWING: None

Description

本発明は、2GHz以上の高周波領域において、低い比誘電率及び誘電正接を有する複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体に関する。特に、高周波回路分野における同軸線路、ミリ波レーダーの送受信モジュール、高周波用電子回路モジュール等に好適な複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体に関する。 The present invention relates to composite powders, granule powders, tablets, sheet sintered bodies and sintered bodies having a low relative permittivity and dielectric loss tangent in a high frequency region of 2 GHz or higher. In particular, the present invention relates to composite powders, granule powders, tablets, sheet sintered bodies and sintered bodies suitable for coaxial lines in the field of high frequency circuits, transmission / reception modules for millimeter wave radars, electronic circuit modules for high frequencies and the like.

従来から、電気信号回路の配線を保護、絶縁する目的で、絶縁性ガラスを含む誘電体材料が用いられている。この誘電体材料は、1000℃以下の温度で焼成し得るため、導体損失の低いAg、Cu等の低融点金属との同時焼成が可能であり、これらを内層導体として使用し得るという長所がある。 Conventionally, a dielectric material containing insulating glass has been used for the purpose of protecting and insulating the wiring of an electric signal circuit. Since this dielectric material can be fired at a temperature of 1000 ° C. or lower, it can be fired simultaneously with low melting point metals such as Ag and Cu, which have low conductor loss, and has the advantage that these can be used as inner layer conductors. ..

電気信号の周波数は、無線通信技術の発達とともに高くなり、近年では2GHz以上の通信周波数が用いられている。5Gと呼ばれる次世代の通信技術では更に高周波数化することが予定されており、25〜40GHzの電磁波が用いられる。また、自動車の衝突防止用などのミリ波レーダーでは75〜80GHzの周波数の電磁波が用いられる。これらの通信に用いる誘電体材料には、低誘電率(ε)、低誘電正接(tanδ)であることが有利であり、例えば、特許文献1に誘電率3.15〜3.74、誘電正接0.00317〜0.0171の誘電体材料が開示されている。 The frequency of electric signals has increased with the development of wireless communication technology, and in recent years, communication frequencies of 2 GHz or higher have been used. In the next-generation communication technology called 5G, it is planned to further increase the frequency, and electromagnetic waves of 25 to 40 GHz will be used. Further, electromagnetic waves having a frequency of 75 to 80 GHz are used in millimeter-wave radars for preventing collisions in automobiles. It is advantageous that the dielectric material used for these communications has a low dielectric constant (ε) and a low dielectric loss tangent (tan δ). Dielectric materials of 0.00317 to 0.0171 are disclosed.

特開2019−108263号公報Japanese Unexamined Patent Publication No. 2019-108263

しかし、特許文献1に記載の誘電体材料は、高周波領域における誘電特性が十分に低くないため、信号処理の速度を遅延化させるという問題がある。 However, the dielectric material described in Patent Document 1 has a problem that the speed of signal processing is delayed because the dielectric property in the high frequency region is not sufficiently low.

そこで、本発明の目的は、1000℃以下の温度で焼成でき、しかも高周波領域において、低い誘電特性を有する複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体を提供することである。 Therefore, an object of the present invention is to provide a composite powder, a granule powder, a tablet, a sheet sintered body and a sintered body which can be fired at a temperature of 1000 ° C. or lower and have low dielectric properties in a high frequency region.

本発明者は、種々の実験を重ねた結果、アルカリホウケイ酸ガラスからなるガラス粉末にアルカリ土類炭酸塩粉末を添加した後、軟化点以上の温度で焼成すると、アルカリ土類炭酸塩から発生した二酸化炭素がガラス中に閉じ込められて気泡を形成することを見出した。そして、この気泡により、比誘電率を顕著に低下させつつ、低い誘電正接を維持し得ることも見出し、本発明として提案するものである。すなわち、本発明の複合粉末は、少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末であって、ガラス粉末が、ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有し、アルカリ土類炭酸塩粉末が、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上であり、ガラス粉末100質量部に対して、アルカリ土類炭酸塩粉末を0.01〜3.0質量部含むことを特徴とする。 As a result of repeated various experiments, the present inventor added alkaline earth carbonate powder to glass powder made of alkaline borosilicate glass and then fired at a temperature above the softening point to generate alkaline earth carbonate. We have found that carbon dioxide is trapped in glass and forms bubbles. It has also been found that the bubbles can maintain a low dielectric loss tangent while significantly reducing the relative permittivity, which is proposed as the present invention. That is, the composite powder of the present invention is a composite powder containing at least the glass powder and the alkaline earth carbonate powder, glass powder, as a glass composition, in mass%, SiO 2 60~85%, B 2 O 3 15-40%, R 2 O (Li 2 O + Na 2 O + K 2 O) 0.1 to 5.0%, alkaline earth carbonate powder is MgCO 3 , CaCO 3 , SrCO 3 , BaCO 3 . It is one kind or two or more kinds selected from the group, and is characterized by containing 0.01 to 3.0 parts by mass of alkaline earth carbonate powder with respect to 100 parts by mass of glass powder.

本発明の顆粒粉末は、少なくとも上記の複合粉末とバインダー樹脂とを含む顆粒粉末であって、複合粉末の含有量が80〜99質量%、バインダー樹脂の含有量が1〜20質量%であることが好ましい。 The granule powder of the present invention is a granule powder containing at least the above-mentioned composite powder and a binder resin, and the content of the composite powder is 80 to 99% by mass and the content of the binder resin is 1 to 20% by mass. Is preferable.

本発明のタブレットは、顆粒粉末を焼結させたタブレットにおいて、顆粒粉末が上記の顆粒粉末であることが好ましい。 The tablet of the present invention is a tablet obtained by sintering granule powder, and it is preferable that the granule powder is the above-mentioned granule powder.

本発明のシート焼結体は、複合粉末をシート状に焼結させたシート焼結体であって、複合粉末が上記の複合粉末であることが好ましい。 The sheet sintered body of the present invention is a sheet sintered body obtained by sintering a composite powder into a sheet shape, and the composite powder is preferably the above-mentioned composite powder.

本発明の焼結体は、ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有するガラスを少なくとも含み、気孔率が5〜40%であることを特徴とする。ここで、「気孔率」は、(1−(見かけ比重/真比重))×100(%)より算出した値である。なお、見かけ比重は焼結体の比重、真比重は気孔を含まないガラスの比重をアルキメデス法でそれぞれ測定することで算出することができる。 Sintered body of the present invention has a glass composition, in mass%, SiO 2 60~85%, B 2 O 3 15~40%, R 2 O (Li 2 O + Na 2 O + K 2 O) 0.1~5. It contains at least 0% glass and is characterized by a porosity of 5-40%. Here, the "porosity" is a value calculated from (1- (apparent specific gravity / true specific gravity)) × 100 (%). The apparent specific gravity can be calculated by measuring the specific density of the sintered body, and the true specific gravity can be calculated by measuring the specific gravity of the glass not including pores by the Archimedes method.

また、本発明の焼結体は、ガラスのガラス組成中にMgO+CaO+SrO+BaOを0.01〜3.0質量%含むことが好ましい。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量である。 Further, the sintered body of the present invention preferably contains 0.01 to 3.0% by mass of MgO + CaO + SrO + BaO in the glass composition of the glass. Here, "MgO + CaO + SrO + BaO" is the total amount of MgO, CaO, SrO and BaO.

本発明の複合粉末、顆粒粉末、タブレット及びシート焼結体では、焼成時にアルカリ土類炭酸塩から二酸化炭素が発生して、ガラス中に気泡が発生する。その気泡により、高周波領域における誘電特性を十分に低下させることができる。従って、本発明の複合粉末、顆粒粉末、タブレット及びシート焼結体は、高周波用回路部材に好適である。 In the composite powder, granule powder, tablet and sheet sintered body of the present invention, carbon dioxide is generated from the alkaline earth carbonate during firing, and bubbles are generated in the glass. The bubbles can sufficiently reduce the dielectric properties in the high frequency region. Therefore, the composite powder, granule powder, tablet and sheet sintered body of the present invention are suitable for high frequency circuit members.

本発明の複合粉末は、少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末を含む。ガラス粉末は、ホウケイ酸ガラスを基本組成とし、RO(LiO+NaO+KO)を0.1質量%以上含むため、1000℃以下の温度で焼成可能である。また、アルカリホウケイ酸ガラスにおいて、アルカリ金属酸化物は、比誘電率や誘電正接を上昇させる原因となるが、その含有量を5質量%以下に低減すると、高周波領域での比誘電率や誘電正接の上昇を実用上問題のないレベルまで抑えることができる。 The composite powder of the present invention includes a composite powder containing at least a glass powder and an alkaline earth carbonate powder. Since the glass powder has a basic composition of borosilicate glass and contains R 2 O (Li 2 O + Na 2 O + K 2 O) in an amount of 0.1% by mass or more, it can be fired at a temperature of 1000 ° C. or lower. Further, in alkaline borosilicate glass, the alkali metal oxide causes an increase in the relative permittivity and the dielectric loss tangent, but when the content is reduced to 5% by mass or less, the relative permittivity and the dielectric loss tangent in the high frequency region are increased. Can be suppressed to a level where there is no practical problem.

アルカリホウケイ酸ガラスは、1000℃以下の温度で焼成しても結晶が析出しない非晶質のガラスであることが望ましい。これは、非晶質のガラスの方が、結晶性のガラスに比べて、焼成時における軟化流動性が良好であり、緻密な焼結体が得られるためである。 The alkaline borosilicate glass is preferably an amorphous glass in which crystals do not precipitate even when fired at a temperature of 1000 ° C. or lower. This is because amorphous glass has better softening fluidity at the time of firing than crystalline glass, and a dense sintered body can be obtained.

本発明に係るガラス粉末は、ガラス粉末が、ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有する。各成分の含有量を上記のように限定した理由を以下に示す。 Glass powder according to the present invention, the glass powder is a glass composition including, in mass%, SiO 2 60~85%, B 2 O 3 15~40%, R 2 O (Li 2 O + Na 2 O + K 2 O) 0. Contains 1-5.0%. The reasons for limiting the content of each component as described above are shown below.

SiOはガラスのネットワークを構成する成分であり、その含有量は60〜85%であり、好ましくは70〜83%である。SiOが少ないと、誘電正接が高くなり過ぎる。またSiOが多いと、溶融温度が高くなり、溶解性が低下する。 SiO 2 is a component constituting the glass network, and its content is 60 to 85%, preferably 70 to 83%. If the amount of SiO 2 is small, the dielectric loss tangent becomes too high. Further, when the amount of SiO 2 is large, the melting temperature becomes high and the solubility is lowered.

は、ガラスの粘度を調整する成分であり、その含有量は15〜40%であり、好ましくは20〜30%である。Bが少ないと、ガラスの粘度が高くなり、溶解性が低下する。またBが多いと、誘電正接が高くなる。 B 2 O 3 is a component that adjusts the viscosity of glass, and its content is 15 to 40%, preferably 20 to 30%. When the amount of B 2 O 3 is small, the viscosity of the glass becomes high and the solubility decreases. Further, when the amount of B 2 O 3 is large, the dielectric loss tangent becomes high.

アルカリ金属酸化物(LiO、NaO、KO)は、溶融性を高める成分であると共に、焼成温度を低下させる成分であり、その含有量は0.1〜5.0%であり、好ましくは0.5〜3.0%である。LiO+NaO+KOが多いと、誘電正接が高くなり、伝送信号の損失が大きくなる。一方、LiO+NaO+KOが少ないと、溶融性が低下すると共に、低温焼成が困難となる。 Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that increase the meltability and lower the firing temperature, and their content is 0.1 to 5.0%. Yes, preferably 0.5 to 3.0%. If the amount of Li 2 O + Na 2 O + K 2 O is large, the dielectric loss tangent becomes high and the loss of the transmission signal becomes large. On the other hand, if the amount of Li 2 O + Na 2 O + K 2 O is small, the meltability is lowered and low-temperature firing becomes difficult.

上記の成分以外にも、誘電特性を損なわない範囲でAl、MgO、CaO等の成分をそれぞれ3質量%まで添加してもよい。 In addition to the above components, components such as Al 2 O 3 , MgO, and CaO may be added up to 3% by mass, respectively, as long as the dielectric properties are not impaired.

本発明の複合粉末において、アルカリ土類炭酸塩粉末は、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上である。これらのアルカリ土類炭酸塩粉末を添加して、ガラス粉末の軟化点以上の温度で焼成すると、アルカリ土類炭酸塩から二酸化炭素が発生し、ガラス中に気泡を形成することができる。この気泡により、比誘電率が顕著に低下させつつ、低い誘電正接を維持することができる。 In the composite powder of the present invention, the alkaline earth carbonate powder is one or more selected from the group of MgCO 3 , CaCO 3 , SrCO 3 , and BaCO 3. When these alkaline earth carbonate powders are added and fired at a temperature equal to or higher than the softening point of the glass powder, carbon dioxide is generated from the alkaline earth carbonates, and bubbles can be formed in the glass. Due to these bubbles, a low dielectric loss tangent can be maintained while the relative permittivity is significantly reduced.

本発明の複合粉末において、アルカリ土類炭酸塩粉末の含有量は、ガラス粉末100質量部に対して、0.01〜3.0質量部であり、0.05〜2質量部が好ましい。アルカリ土類炭酸塩粉末が多いと、焼結体中の気孔率が大きくなり過ぎて、誘電正接が高くなる。アルカリ土類炭酸塩粉末が少ないと、誘電率を低下させることが困難になる。 In the composite powder of the present invention, the content of the alkaline earth carbonate powder is 0.01 to 3.0 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the glass powder. If the amount of alkaline earth carbonate powder is large, the porosity in the sintered body becomes too large, and the dielectric loss tangent becomes high. If the amount of alkaline earth carbonate powder is small, it becomes difficult to reduce the dielectric constant.

本発明の複合粉末は、ガラス粉末とアルカリ土類炭酸塩粉末だけで構成されていてもよいが、更にセラミックフィラー粉末を添加することもできる。セラミックフィラー粉末の混合割合は、好ましくは20〜50質量%、より好ましくは20〜45質量%である。セラミックフィラー粉末の割合をこのように限定した理由は、セラミックフィラー粉末が多くなると、焼結体の緻密化が困難になり、セラミックフィラー粉末が少なくなると、焼結体の曲げ強度が低下するためである。 The composite powder of the present invention may be composed only of glass powder and alkaline earth carbonate powder, but ceramic filler powder may be further added. The mixing ratio of the ceramic filler powder is preferably 20 to 50% by mass, more preferably 20 to 45% by mass. The reason for limiting the ratio of the ceramic filler powder in this way is that when the amount of the ceramic filler powder is large, it becomes difficult to densify the sintered body, and when the amount of the ceramic filler powder is small, the bending strength of the sintered body is lowered. be.

セラミックフィラー粉末としては、2GHz以上の高周波領域での比誘電率9以下、誘電正接が0.0010以下であるセラミックフィラー粉末を用いることが好ましく、例えばα−石英、α−クリストバライト、β−トリジマイト、α−アルミナ、ムライト、コージエライトの一種又は二種以上を使用することができる。このようにすれば、高周波領域において、複合粉末の比誘電率、誘電正接を低下させることができる。 As the ceramic filler powder, it is preferable to use a ceramic filler powder having a relative permittivity of 9 or less and a dielectric loss tangent of 0.0010 or less in a high frequency region of 2 GHz or more. One or more of α-alumina, mullite, and cordierite can be used. By doing so, the relative permittivity and the dielectric loss tangent of the composite powder can be lowered in the high frequency region.

本発明の顆粒粉末は、プレス成型により焼結体を作製する場合の顆粒であって、上記の複合粉末80〜99質量%とバインダー樹脂1〜20質量%を含むことが好ましい。バインダー樹脂を添加して、顆粒化することにより、充填性が向上し、プレス成型しても欠けやクラックが入らない成型体を作製することができる。 The granule powder of the present invention is a granule for producing a sintered body by press molding, and preferably contains 80 to 99% by mass of the above-mentioned composite powder and 1 to 20% by mass of a binder resin. By adding the binder resin and granulating it, the filling property is improved, and it is possible to produce a molded body that does not have chips or cracks even when press-molded.

顆粒粉末は、複合粉末、樹脂バインダー、溶剤を添加、混合して混合物を得た後、これをスプレードライヤー等の乾燥装置で乾燥することにより作製することできる。樹脂バインダーは、アクリル樹脂、ブチラール樹脂、ポリエチレングリコール等のポリエーテルであることが好ましい。溶剤は、エタノール、IPA、水等が好ましい。 The granule powder can be produced by adding and mixing a composite powder, a resin binder and a solvent to obtain a mixture, and then drying the mixture with a drying device such as a spray dryer. The resin binder is preferably a polyether such as an acrylic resin, butyral resin, or polyethylene glycol. The solvent is preferably ethanol, IPA, water or the like.

本発明のタブレットは、上記の顆粒粉末をプレス成型した後、ガラス粉末の軟化点以下の温度で仮焼結したものであることが好ましい。プレス成型は、一軸プレス成型、静水圧プレス成型等により行うことができる。ガラス粉末の軟化点以下で仮焼結すると、成型体の強度を維持したまま樹脂成分を除去することができる。バインダー樹脂を除去すると、窒素等の非酸化性雰囲気でもガラスを着色させることなく焼成することができる。 The tablet of the present invention is preferably one in which the above-mentioned granule powder is press-molded and then tentatively sintered at a temperature equal to or lower than the softening point of the glass powder. Press molding can be performed by uniaxial press molding, hydrostatic press molding, or the like. By provisionally sintering below the softening point of the glass powder, the resin component can be removed while maintaining the strength of the molded body. When the binder resin is removed, the glass can be fired without coloring the glass even in a non-oxidizing atmosphere such as nitrogen.

本発明のシート焼結体は、複合粉末をシート状に焼結させたシート焼結体であって、複合粉末が上記の複合粉末であることが好ましい。本発明のシート焼結体は、以下の方法で作製することができる。複合粉末に対して、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては、例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等が好適に使用可能であり、可塑剤としては、例えばフタル酸ジブチル等が好適に使用可能であり、溶剤としては、例えばトルエン、メチルエチルケトン等が好適に使用可能である。ドクターブレード法によって、上記のスラリーをグリーンシートに成形する。更に、このグリーンシートを乾燥させ、所定寸法に切断し、機械的加工でバイアホールを形成、例えば銀導体や電極となる低抵抗金属材料をバイアホール及びグリーンシート表面に印刷する。その後、このようなグリーンシートの複数枚を積層し、熱圧着によって一体化する。得られた積層グリーンシートを焼成して、シート焼結体を得る。このようにして作製されたシート焼結体は、内部や表面に導体や電極を備えている。焼成温度は1000℃以下、特に800〜950℃の温度であることが望ましい。 The sheet sintered body of the present invention is a sheet sintered body obtained by sintering a composite powder into a sheet shape, and the composite powder is preferably the above-mentioned composite powder. The sheet sintered body of the present invention can be produced by the following method. A predetermined amount of a binder, a plasticizer and a solvent are added to the composite powder to prepare a slurry. As the binder, for example, polyvinyl butyral resin, methacrylic acid resin and the like can be preferably used, as the plasticizer, for example, dibutyl phthalate and the like can be preferably used, and as the solvent, for example, toluene, methyl ethyl ketone and the like can be used. Can be preferably used. The above slurry is molded into a green sheet by the doctor blade method. Further, the green sheet is dried, cut to a predetermined size, and mechanically processed to form a via hole, for example, a low resistance metal material to be a silver conductor or an electrode is printed on the via hole and the surface of the green sheet. After that, a plurality of such green sheets are laminated and integrated by thermocompression bonding. The obtained laminated green sheet is fired to obtain a sheet sintered body. The sheet sintered body thus produced is provided with conductors and electrodes inside and on the surface. The firing temperature is preferably 1000 ° C. or lower, particularly 800 to 950 ° C.

本発明の焼結体は、ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有するガラスを少なくとも含み、気孔率が5〜40%であることを特徴とする。本発明の焼成体の技術的特徴の一部は、既に記載済みであり、ここでは詳細な説明を省略する。 Sintered body of the present invention has a glass composition, in mass%, SiO 2 60~85%, B 2 O 3 15~40%, R 2 O (Li 2 O + Na 2 O + K 2 O) 0.1~5. It contains at least 0% glass and is characterized by a porosity of 5-40%. Some of the technical features of the fired body of the present invention have already been described, and detailed description thereof will be omitted here.

本発明の焼結体において、気孔率は5〜40%であり、好ましくは10〜35%、より好ましくは15〜30%である。気孔率が高過ぎると、焼結体の誘電正接が高くなる。一方、気孔率が少ないと、焼結体の誘電率を低下させることが困難になる。 In the sintered body of the present invention, the porosity is 5 to 40%, preferably 10 to 35%, and more preferably 15 to 30%. If the porosity is too high, the dielectric loss tangent of the sintered body will be high. On the other hand, if the porosity is small, it becomes difficult to reduce the dielectric constant of the sintered body.

また、本発明の焼結体は、ガラスのガラス組成中にMgO+CaO+SrO+BaOを0.01〜3.0質量%、特に0.05〜2質量%含むことが好ましく、これらのアルカリ土類金属酸化物は、焼成時にアルカリ土類炭酸塩粉末をガラスに溶け込ませることにより、導入することが好ましい。MgO+CaO+SrO+BaOの含有量が多過ぎると、焼結体の誘電正接が高くなり易い。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、アルカリ土類金属炭酸塩粉末を導入し難くなり、焼結体の誘電率を低下させることが困難になる。 Further, the sintered body of the present invention preferably contains MgO + CaO + SrO + BaO in an amount of 0.01 to 3.0% by mass, particularly 0.05 to 2% by mass, and these alkaline earth metal oxides are contained in the glass composition of the glass. , It is preferable to introduce the alkaline earth carbonate powder by dissolving it in the glass at the time of firing. If the content of MgO + CaO + SrO + BaO is too large, the dielectric loss tangent of the sintered body tends to be high. On the other hand, if the content of MgO + CaO + SrO + BaO is too small, it becomes difficult to introduce the alkaline earth metal carbonate powder, and it becomes difficult to reduce the dielectric constant of the sintered body.

以下、実施例に基づいて本発明を説明する。なお、本発明は以下の実施例に何ら限定されない。以下の実施例は単なる例示である。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples. The following examples are merely examples.

本発明の実施例(試料No.1〜14)及び比較例(試料No.15、16)を表1、2に示す。 Examples (Sample Nos. 1 to 14) and Comparative Examples (Samples Nos. 15 and 16) of the present invention are shown in Tables 1 and 2.

Figure 2021187688
Figure 2021187688

Figure 2021187688
Figure 2021187688

次のようにして各試料を作製した。まず、表中のガラス組成になるように、各種酸化物のガラス原料を調合し、均一に混合した後、白金坩堝に入れて1550〜1650℃で3〜8時間溶融し、得られた溶融ガラスを水冷ローラーで薄板状に成形した。次いで、得られたガラスフィルムを粗砕した後、アルコールを加えてボールミルにより湿式粉砕し、平均粒径が1〜3μmとなるように分級して、ガラス粉末を得た。 Each sample was prepared as follows. First, glass raw materials of various oxides were mixed so as to have the glass composition in the table, mixed uniformly, and then placed in a platinum crucible and melted at 1550 to 1650 ° C. for 3 to 8 hours to obtain the obtained molten glass. Was formed into a thin plate with a water-cooled roller. Next, the obtained glass film was roughly crushed, alcohol was added, and the film was wet-ground by a ball mill and classified so that the average particle size was 1 to 3 μm to obtain a glass powder.

次に、上記のガラス粉末に対して、表中に示すアルカリ土類炭酸塩粉末(平均粒径が2〜5μm)を添加、混合して、複合粉末(誘電体材料)を得た。なお、表中では、アルカリ土類炭酸塩粉末の添加量をガラス粉末100質量部に対する割合で記載した。 Next, the alkaline earth carbonate powder (average particle size of 2 to 5 μm) shown in the table was added to and mixed with the above glass powder to obtain a composite powder (dielectric material). In the table, the amount of alkaline earth carbonate powder added is shown as a ratio to 100 parts by mass of the glass powder.

続いて、上記の複合粉末に対して、結合剤としてポリエチレングリコールを水溶液にして固形分として5質量%添加して均質混合、乾燥、分級して顆粒粉末を得た。得られた顆粒粉末を金型によりプレス成型、表中の焼成温度で焼成することにより、表中に示す組成を有する焼結体を得た。 Subsequently, polyethylene glycol was added as an aqueous solution of polyethylene glycol as a binder to the above composite powder in an amount of 5% by mass as a solid content, and the mixture was homogeneously mixed, dried and classified to obtain a granular powder. The obtained granule powder was press-molded with a mold and fired at the firing temperature shown in the table to obtain a sintered body having the composition shown in the table.

シート焼結体は以下のように作製した。上記の複合粉末に対して、結合剤としてポリビニルブチラールを15質量%、可塑剤としてブチルベンジルフタレートを4質量%、溶剤としてトルエンを30質量%添加して、スラリーを調整した。次いで、上記のスラリーをドクターブレード法によってグリーンシートに成形し、乾燥させ、所定寸法に切断した後、複数枚を積層し、熱圧着によって一体化した。更に、得られた積層グリーンシートを表中の温度で焼成することによってシート焼結体を得た。 The sheet sintered body was produced as follows. To the above composite powder, 15% by mass of polyvinyl butyral as a binder, 4% by mass of butylbenzyl phthalate as a plasticizer, and 30% by mass of toluene as a solvent were added to prepare a slurry. Next, the above slurry was formed into a green sheet by the doctor blade method, dried, cut to a predetermined size, and then a plurality of sheets were laminated and integrated by thermocompression bonding. Further, the obtained laminated green sheet was fired at the temperatures shown in the table to obtain a sheet sintered body.

このようにして得られた各試料について、誘電特性を測定した。その結果を表中に示す。ガラスの比誘電率と誘電正接は、焼結体を直径13mm、高さ6.5mmの円柱に加工し、両端短絡形誘電体共振器法(JIS R1627)に基づいて、温度25℃、測定周波数16GHzで測定した値である。 The dielectric properties of each sample thus obtained were measured. The results are shown in the table. For the relative permittivity and dielectric loss tangent of glass, the sintered body is processed into a cylinder with a diameter of 13 mm and a height of 6.5 mm, and the temperature is 25 ° C. and the measurement frequency is based on the short-end dielectric resonator method (JIS R1627). It is a value measured at 16 GHz.

気孔率の測定は、(1−(見かけ比重/真比重))×100(%)より求めた。なお、見かけ比重は焼結体の比重、真比重は気孔を含まないガラスの比重をアルキメデス法でそれぞれ求めたものである。 The porosity was measured from (1- (apparent specific gravity / true specific gravity)) × 100 (%). The apparent density is the density of the sintered body, and the true density is the density of the glass that does not contain pores, respectively, by the Archimedes method.

表から明らかなように、試料No.1〜14は、比誘電率が2.0〜3.8、誘電正接が0.0017〜0.0035であった。これに対し、試料No.15は、アルカリ土類炭酸塩粉末の添加量が多いため、焼結体中の気孔率が大きくなり過ぎて、誘電正接が0.0055であった。試料No.16は、アルカリ土類炭酸塩粉末の添加量が少ないため、誘電率が4.3であった。 As is clear from the table, the sample No. In 1 to 14, the relative permittivity was 2.0 to 3.8, and the dielectric loss tangent was 0.0017 to 0.0035. On the other hand, the sample No. In No. 15, since the amount of the alkaline earth carbonate powder added was large, the porosity in the sintered body became too large, and the dielectric loss tangent was 0.0055. Sample No. In No. 16, the dielectric constant was 4.3 because the amount of the alkaline earth carbonate powder added was small.

Claims (6)

少なくともガラス粉末とアルカリ土類炭酸塩粉末とを含む複合粉末であって、
ガラス粉末が、ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有し、
アルカリ土類炭酸塩粉末が、MgCO、CaCO、SrCO、BaCOの群から選ばれる1種又は2種以上であり、
ガラス粉末100質量部に対して、アルカリ土類炭酸塩粉末を0.01〜3.0質量部含むことを特徴とする複合粉末。
A composite powder containing at least glass powder and alkaline earth carbonate powder.
Glass powder, as a glass composition, in mass%, containing SiO 2 60~85%, B 2 O 3 15~40%, the R 2 O (Li 2 O + Na 2 O + K 2 O) 0.1~5.0% death,
The alkaline earth carbonate powder is one or more selected from the group of MgCO 3 , CaCO 3 , SrCO 3 , and BaCO 3.
A composite powder characterized by containing 0.01 to 3.0 parts by mass of alkaline earth carbonate powder with respect to 100 parts by mass of glass powder.
少なくとも請求項1に記載の複合粉末とバインダー樹脂とを含む顆粒粉末であって、
複合粉末の含有量が80〜99質量%、バインダー樹脂の含有量が1〜20質量%であ
ることを特徴とする顆粒粉末。
A granular powder containing at least the composite powder according to claim 1 and a binder resin.
A granular powder having a composite powder content of 80 to 99% by mass and a binder resin content of 1 to 20% by mass.
顆粒粉末を焼結させたタブレットにおいて、
顆粒粉末が請求項2に記載の顆粒粉末であることを特徴とするタブレット。
In tablets in which granule powder is sintered
A tablet according to claim 2, wherein the granule powder is the granule powder according to claim 2.
複合粉末をシート状に焼結させたシート焼結体であって、
複合粉末が請求項1に記載の複合粉末であることを特徴とするシート焼結体。
A sheet sintered body obtained by sintering a composite powder into a sheet.
A sheet sintered body, wherein the composite powder is the composite powder according to claim 1.
ガラス組成として、質量%で、SiO 60〜85%、B 15〜40%、RO(LiO+NaO+KO) 0.1〜5.0%を含有するガラスを少なくとも含み、
気孔率が5〜40%であることを特徴とする焼結体。
As a glass composition, in mass%, SiO 2 60~85%, B 2 O 3 15~40%, the R 2 O (Li 2 O + Na 2 O + K 2 O) glasses containing 0.1 to 5.0% at least Including,
A sintered body having a porosity of 5 to 40%.
ガラス組成中にMgO+CaO+SrO+BaOを0.01〜3.0質量%含むことを特徴とする請求項5に記載の焼結体。 The sintered body according to claim 5, wherein the glass composition contains 0.01 to 3.0% by mass of MgO + CaO + SrO + BaO.
JP2020091239A 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body Active JP7472653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091239A JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091239A JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Publications (2)

Publication Number Publication Date
JP2021187688A true JP2021187688A (en) 2021-12-13
JP7472653B2 JP7472653B2 (en) 2024-04-23

Family

ID=78848082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091239A Active JP7472653B2 (en) 2020-05-26 2020-05-26 Composite powder, granular powder, tablet, sintered sheet and sintered body

Country Status (1)

Country Link
JP (1) JP7472653B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532444B1 (en) * 1973-12-13 1978-01-28
JPH10236834A (en) * 1996-12-25 1998-09-08 Asahi Glass Co Ltd Supporting member for electron gun and its production
JPH11116272A (en) * 1997-10-20 1999-04-27 Murata Mfg Co Ltd Glass powder for high frequency and electric insulating layer using same
JP2005132714A (en) * 2003-10-08 2005-05-26 Tottori Prefecture Foamed glass manufacturing method and foamed glass
JP2008208022A (en) * 2007-01-30 2008-09-11 Nippon Electric Glass Co Ltd Flat panel displaying device
JP2014234341A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
JP2019099400A (en) * 2017-11-29 2019-06-24 株式会社村田製作所 Glass-ceramic-ferrite composition and electronic component
JP2019108263A (en) * 2017-11-07 2019-07-04 フエロ コーポレーション Low dielectric constant (low k) dielectric composition for high frequency application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4047050B2 (en) 2002-04-11 2008-02-13 日本特殊陶業株式会社 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP2011187772A (en) 2010-03-10 2011-09-22 Panasonic Corp Ceramic electronic component, and method of manufacturing the same
JP5816782B2 (en) 2010-03-10 2015-11-18 パナソニックIpマネジメント株式会社 Ceramic electronic component and manufacturing method thereof
JP5803453B2 (en) 2011-09-07 2015-11-04 日本電気硝子株式会社 Glass ceramic dielectric material and glass ceramic dielectric
JP5974262B2 (en) 2011-09-15 2016-08-23 パナソニックIpマネジメント株式会社 Common mode noise filter and manufacturing method thereof
DE102017127624A1 (en) 2017-11-22 2019-05-23 Schott Ag Coated glass or glass-ceramic substrate, coating comprising closed pores and method for coating a substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532444B1 (en) * 1973-12-13 1978-01-28
JPH10236834A (en) * 1996-12-25 1998-09-08 Asahi Glass Co Ltd Supporting member for electron gun and its production
JPH11116272A (en) * 1997-10-20 1999-04-27 Murata Mfg Co Ltd Glass powder for high frequency and electric insulating layer using same
JP2005132714A (en) * 2003-10-08 2005-05-26 Tottori Prefecture Foamed glass manufacturing method and foamed glass
JP2008208022A (en) * 2007-01-30 2008-09-11 Nippon Electric Glass Co Ltd Flat panel displaying device
JP2014234341A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Glass member
JP2019108263A (en) * 2017-11-07 2019-07-04 フエロ コーポレーション Low dielectric constant (low k) dielectric composition for high frequency application
JP2019099400A (en) * 2017-11-29 2019-06-24 株式会社村田製作所 Glass-ceramic-ferrite composition and electronic component

Also Published As

Publication number Publication date
JP7472653B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
KR102154974B1 (en) Low k dielectric compositions for high frequency applications
JP4868663B2 (en) Low temperature fired porcelain composition
JP5835640B2 (en) Crystalline glass powder
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
TWI784286B (en) Glass powder, dielectric material, sintered body, and high-frequency circuit components
JP2001287984A (en) Glass ceramic composition
CN1183057C (en) Low temperature sintered ceramics and electronic components
JP2008214176A (en) Ceramic powder for green sheet and multilayer ceramic substrate
JP2004339049A (en) Lead-free glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric and method of producing laminated dielectric
US11939258B2 (en) Glass powder, dielectric material, sintered body, and high frequency circuit member
JP3890779B2 (en) Glass ceramic composition
KR100704318B1 (en) Low Temperature Fired Low Loss Ceramic Dielectric Composition
JP7472653B2 (en) Composite powder, granular powder, tablet, sintered sheet and sintered body
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
US20230096796A1 (en) Low temperature co-fired substrate composition
JP4407199B2 (en) Crystallized lead-free glass, glass ceramic composition, green sheet and electronic circuit board
JP7632314B2 (en) Glass composition and composite powder material
JP3494184B2 (en) Glass ceramic composition
JP4442077B2 (en) Porcelain composition for high frequency components
JPH068189B2 (en) Oxide dielectric material
JP4872990B2 (en) Ceramic powder for green sheet, multilayer ceramic substrate, and method for producing multilayer ceramic substrate
WO2022064906A1 (en) Glass ceramic dielectric material, sintered body, and circuit member for high-frequency use
JP2001348268A (en) Low temperature sintered dielectric material and dielectric
JP2012051767A (en) Crystalline glass powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150