[go: up one dir, main page]

JP2021146958A - Vehicle air conditioner and operation mode switching control method - Google Patents

Vehicle air conditioner and operation mode switching control method Download PDF

Info

Publication number
JP2021146958A
JP2021146958A JP2020050545A JP2020050545A JP2021146958A JP 2021146958 A JP2021146958 A JP 2021146958A JP 2020050545 A JP2020050545 A JP 2020050545A JP 2020050545 A JP2020050545 A JP 2020050545A JP 2021146958 A JP2021146958 A JP 2021146958A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heating operation
expansion device
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020050545A
Other languages
Japanese (ja)
Inventor
浩之 石野
Hiroyuki Ishino
浩之 石野
博之 井田
Hiroyuki Ida
博之 井田
記明 根本
Noriaki Nemoto
記明 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2020050545A priority Critical patent/JP2021146958A/en
Publication of JP2021146958A publication Critical patent/JP2021146958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To reduce the noise generated when switching between a heating operation that does not allow refrigerant to flow through an evaporator and a dehumidifying heating operation that allows the refrigerant to flow through.SOLUTION: In vehicle air conditioners equipped with refrigeration cycles, a compressor 11, a first heat exchanger 2, a first inflator 12, a passenger compartment outdoor heat exchanger 4, a second inflator 14, and a second heat exchanger 3 are connected in this order in a loop. The connection is made via a first bypass flow path 16 provided with a first refrigerant control unit 15 between the first heat exchanger 2 and the first inflator 12 and between the passenger compartment outdoor heat exchanger 4 and the second inflator 14. A backflow blocking unit 13 is provided on the downstream side of the passenger compartment outdoor heat exchanger 4 between the passenger compartment outdoor heat exchanger and the merging portion with the first bypass flow path 16. The connection is made via a second bypass flow path 18 provided with the second refrigerant control unit 17 between the passenger compartment outdoor heat exchanger 4 and the backflow blocking unit 13 and between the second heat exchanger 3 and the compressor 11. The second expansion device 14 is closed to switch to the heating operation, and the second inflator 14 is closed to switch to the dehumidifying heating operation.SELECTED DRAWING: Figure 3

Description

この発明は、運転モードを暖房運転と除湿暖房運転とに切り替え可能な冷凍サイクルを備えた車両用空調装置に関し、特に、暖房運転と除湿暖房運転との間で運転モードを切り替える際の騒音の発生を低減することが可能な車両用空調装置及び運転モード切替方法に関する。 The present invention relates to a vehicle air conditioner provided with a refrigeration cycle capable of switching an operation mode between a heating operation and a dehumidifying heating operation, and particularly generates noise when switching an operation mode between a heating operation and a dehumidifying heating operation. The present invention relates to a vehicle air conditioner and an operation mode switching method capable of reducing the number of vehicles.

従来、車両の室内をヒートポンプ式の冷凍サイクルで冷房又は暖房するだけでなく、除湿運転をも可能とした車両用空調装置が知られている。
例えば、特許文献1(特開2014−094671)には、圧縮機と、空調ユニット内に配置されてダンパ(エアミックスダンパ28)により通風量が調整される第1の熱交換器(放熱器4)と、第1の膨張装置(室外膨張弁6)と、外気と熱交換が可能な車室外熱交換器(室外熱交換器7)と、第2の膨張装置(室内膨張弁8)と、空調ユニット内に配置されて第1の熱交換器(放熱器4)よりも空調ユニット内の空気流れ方向上流側に配置された第2の熱交換器(吸熱器9)と、を少なくともこの順でループ状に接続した冷凍サイクルを備え、この冷凍サイクルに、第1の熱交換器(放熱器4)と第1の膨張装置(室外膨張弁6)との間の冷媒流路と、車室外熱交換器(室外熱交換器7)と第2の膨張装置(室内膨張弁8)との間の冷媒流路とを、第1の冷媒制御部(電磁弁22)を備えた第1のバイパス流路(冷媒配管13F)を介して接続し、また、車室外熱交換器(室外熱交換器7)と第2の膨張装置(室内膨張弁8)との間の冷媒流路のうち、第1のバイパス流路(冷媒配管13F)との合流部位より上流側の冷媒流路と第2の熱交換器(吸熱器9)と圧縮機との間の冷媒流路とを、第2の冷媒制御部(電磁弁21)を備えた第2のバイパス流路(冷媒配管13D)を介して接続したヒートポンプサイクルが開示されている。
Conventionally, there is known an air conditioner for a vehicle that not only cools or heats the interior of a vehicle with a heat pump type refrigeration cycle but also enables dehumidifying operation.
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2014-094671), a first heat exchanger (radiator 4), which is arranged in an air conditioning unit and whose ventilation amount is adjusted by a damper (air mix damper 28), is described in Patent Document 1 (Japanese Patent Laid-Open No. 2014-094671). ), The first expansion device (outdoor expansion valve 6), the vehicle outdoor heat exchanger (outdoor heat exchanger 7) capable of exchanging heat with the outside air, and the second expansion device (indoor expansion valve 8). At least in this order, the second heat exchanger (heat exchanger 9) arranged in the air conditioning unit and arranged upstream of the first heat exchanger (radiator 4) in the air flow direction in the air conditioning unit. A refrigeration cycle connected in a loop is provided, and the refrigeration cycle includes a refrigerant flow path between the first heat exchanger (radiator 4) and the first expansion device (outdoor expansion valve 6), and the outside of the vehicle interior. A first bypass provided with a first refrigerant control unit (electromagnetic valve 22) for the refrigerant flow path between the heat exchanger (outdoor heat exchanger 7) and the second expansion device (indoor expansion valve 8). Of the refrigerant flow paths connected via the flow path (fluident pipe 13F) and between the vehicle outdoor heat exchanger (outdoor heat exchanger 7) and the second expansion device (indoor expansion valve 8), the first The second refrigerant is formed between the refrigerant flow path on the upstream side of the confluence with the bypass flow path (fluid pipe 13F) of No. 1 and the refrigerant flow path between the second heat exchanger (heat exchanger 9) and the compressor. A heat pump cycle connected via a second bypass flow path (fluid pipe 13D) provided with a control unit (electromagnetic valve 21) is disclosed.

そして、外気温に応じて運転モードを切り替え、特に、外気温が0度付近となる環境下においては、その付近に設けられた閾値を境にして、圧縮機から吐出した冷媒を、第1の熱交換器(放熱器4)にて放熱させ、この放熱した冷媒を分岐させて、一方で減圧した後に第2の熱交換器(吸熱器9)を通して吸熱させると共に、他方で減圧した後に車室外熱交換器にて吸熱させる除湿暖房運転と、圧縮機から吐出した冷媒を、第1の熱交換器(放熱器4)にて放熱させ、この放熱した冷媒を分岐させず、減圧した後に車室外熱交換器にて吸熱させる暖房運転と、に切り替えるようにしている。 Then, the operation mode is switched according to the outside temperature, and particularly in an environment where the outside temperature is around 0 ° C., the refrigerant discharged from the compressor is subjected to the first, with the threshold value provided in the vicinity as a boundary. The heat is dissipated by the heat exchanger (radiator 4), and the radiated refrigerant is branched. In the dehumidifying and heating operation in which heat is absorbed by the heat exchanger, the refrigerant discharged from the compressor is radiated by the first heat exchanger (radiator 4), and the radiated refrigerant is not branched, but is decompressed and then outside the vehicle interior. It is switched to heating operation, which absorbs heat with a heat exchanger.

しかしながら、運転モードを空調ユニット内に配置された第2の熱交換器(吸熱器9)に冷媒を通流させない暖房運転から第2の熱交換器(吸熱器9)に冷媒を通流させる除湿暖房運転に切り替える場合には、第1の熱交換器(放熱器4)を通過した高圧冷媒が第1のバイパス通路を介して第2の膨張装置(室内膨張弁8)に一気に流れ込むため、突発的な異音を発生する不都合がある。 However, the operation mode is dehumidification in which the refrigerant is passed from the heating operation in which the refrigerant is not passed through the second heat exchanger (heat exchanger 9) arranged in the air conditioning unit to the second heat exchanger (heat exchanger 9). When switching to the heating operation, the high-pressure refrigerant that has passed through the first heat exchanger (radiator 4) flows into the second expansion device (indoor expansion valve 8) at once through the first bypass passage, so that it suddenly occurs. There is an inconvenience of generating a strange noise.

このような不都合に対処するためには、運転モードを切り替える場合に、圧縮機を一旦停止させ、圧縮機の吐出側の高圧側冷媒圧力が基準値以下となった後に冷媒回路を切り替え、その後再び圧縮機を稼働させる手法を採用することも考えられる(特許文献2参照)。 In order to deal with such inconvenience, when switching the operation mode, the compressor is temporarily stopped, the refrigerant circuit on the high pressure side of the discharge side of the compressor is switched below the reference value, and then the refrigerant circuit is switched again. It is also conceivable to adopt a method of operating the compressor (see Patent Document 2).

特開2014−094671号公報Japanese Unexamined Patent Publication No. 2014-094671 特開2012−250708号公報Japanese Unexamined Patent Publication No. 2012-250708

しかしながら、冷媒回路を切り替えるに当たり、圧縮機を一旦停止させ、圧縮機の吐出側の高圧側冷媒圧力が基準値以下となった後に冷媒回路を切り替える手法を採用すると、冷凍サイクルの運転モードを切り替える度に圧縮機を停止させる必要があり、また、圧縮機の吐出側の圧力が基準値以下に低下するまで切り替えることができない。しかも、圧縮機を停止状態から起動させるので、切り替わった運転モードで定常運転するまでに相当の時間を要する。 However, when switching the refrigerant circuit, if the compressor is temporarily stopped and the refrigerant circuit is switched after the high-pressure side refrigerant pressure on the discharge side of the compressor falls below the reference value, every time the operation mode of the refrigeration cycle is switched. It is necessary to stop the compressor, and the pressure cannot be switched until the pressure on the discharge side of the compressor drops below the reference value. Moreover, since the compressor is started from the stopped state, it takes a considerable amount of time to perform steady operation in the switched operation mode.

本発明は、係る事情に鑑みてなされたものであり、冷凍サイクルの運転モードを暖房運転と除湿暖房運転との間で切り替えるに当たり、騒音を発生させることなく、また、圧縮機を停止させることなく切り替えることが可能な車両用空調装置と、これを用いた運転モード切替方法を提供することを主たる課題としている。 The present invention has been made in view of the above circumstances, and when switching the operation mode of the refrigeration cycle between the heating operation and the dehumidifying heating operation, without generating noise and without stopping the compressor. The main task is to provide an air conditioner for vehicles that can be switched and an operation mode switching method using the air conditioner for vehicles.

上記課題を達成するために、本発明に係る車両用空調装置は、冷凍サイクル(100)と、前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)と、を備え、
前記冷凍サイクル(100)は、
圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13)との間の冷媒流路と前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続し、
前記制御手段(50)は、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を、前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2の熱交換器(3)を通流させることなく前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す暖房運転と、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を分岐させて、一方で前記第1のバイパス通路(16)を通過させて前記第2の膨張装置(14)で減圧した後に前記第2の熱交換器(3)を通して吸熱させると共に、他方で前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す除湿暖房運転と、
を切り替え可能としており、
前記制御手段(50)は、前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、前記第2の膨張装置(14)を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替える第1切替手段と、前記第2の膨張装置(14)を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替える第2切替手段とを有する
ことを特徴としている。
In order to achieve the above object, the vehicle air conditioner according to the present invention includes a refrigeration cycle (100) and a control means (50) for switching and controlling the operation mode of the refrigeration cycle (100).
The refrigeration cycle (100)
The compressor (11), the first heat exchanger (2) arranged in the air conditioning unit (1) and the ventilation amount is adjusted by the damper (10), and the first heat exchanger (2) arranged in the air conditioning unit (1). A second exchanger (3) arranged on the upstream side in the air conditioning unit (1) with respect to the first heat exchanger (2), and an outdoor heat exchanger (4) capable of exchanging heat with the outside air. ), A first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and a second expansion device (14) capable of narrowing and closing the refrigerant flow path. death,
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
Between the refrigerant flow path between the first heat exchanger (2) and the first expansion device (12) and between the vehicle interior heat exchanger (4) and the second expansion device (14). Is connected to the refrigerant flow path of the above via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), on the upstream side of the merging portion (A) with the first bypass flow path (16). A backflow blocking portion (13) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the refrigerant flow between the vehicle interior heat exchanger (4) and the backflow blocking portion (13). A second bypass flow path (18) provided with a second refrigerant control unit (17) for the refrigerant flow path between the path, the second heat exchanger (3), and the compressor (11). Connect via
The control means (50) is
The refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and the dissipated refrigerant is depressurized by the first expansion device (12), and then the outside heat of the passenger compartment is generated. A heating operation in which heat is absorbed by the exchanger (4) and then returned to the compressor (11) via the second bypass passage (18) without passing through the second heat exchanger (3). When,
The refrigerant discharged from the compressor (11) is radiated by the first heat exchanger (2), and the radiated refrigerant is branched, while passing through the first bypass passage (16). After depressurizing with the second inflator (14), heat is absorbed through the second heat exchanger (3), and on the other hand, after depressurizing with the first inflator (12), the outdoor heat exchanger is used. A dehumidifying / heating operation in which heat is absorbed in (4) and returned to the compressor (11) via the second bypass passage (18).
Can be switched,
The control means (50) switches from the dehumidifying heating operation to the heating operation by switching the second expansion device (14) from the throttle state to the closed state when switching between the heating operation and the dehumidifying heating operation. It is characterized by having a first switching means and a second switching means for switching from the heating operation to the dehumidifying heating operation by switching the second expansion device (14) from the closed state to the throttle state.

したがって、上述のヒートポンプサイクルを備えた車両用空調装置において、第2の膨張装置を閉状態と絞り状態とに切り替えることで暖房運転と除湿暖房運転とを切り替えるようにしたので、切り替えの前後で第2の膨張装置の流入側に高圧冷媒を常時供給させた状態にしておくことが可能となり、暖房運転から除湿暖房運転に切り替えられる場合でも、第2の膨張装置に作用する圧力が急激に変化することがなくなり(突発的に第2の膨張装置に高圧冷媒が流れ込むことがなくなり)、切替時の騒音の発生を回避することが可能となる。 Therefore, in the vehicle air conditioner equipped with the above-mentioned heat pump cycle, the heating operation and the dehumidifying heating operation are switched by switching the second expansion device between the closed state and the throttle state. It is possible to keep the high-pressure refrigerant constantly supplied to the inflow side of the second expansion device, and even when the heating operation is switched to the dehumidifying heating operation, the pressure acting on the second expansion device changes abruptly. (The high-pressure refrigerant does not suddenly flow into the second expansion device), and it is possible to avoid the generation of noise at the time of switching.

ここで、切り替えの前後で第2の膨張装置の流入側に高圧冷媒を常時供給する手段としては、制御手段(50)によって暖房運転と除湿暖房運転とを切り替えるに当たり、第1の冷媒制御部(15)を開状態に維持しておくとよい。
運転モードを暖房運転と除湿暖房運転とに切り替えるに当たり、第1の冷媒制御部を開状態に維持させることで、暖房運転と除湿暖房運転との間で運転モードを切り替えても、第1の冷媒制御部の前後で圧力差が生じることはないので(運転モードの切り替えの前後で第2の膨張装置の流入側に高圧冷媒を常時供給した状態にしておくことができるので)、暖房運転から除湿暖房運転に切り替わる場合に、高圧冷媒が第2の膨張装置に一気に流れ込む不都合を回避することが可能となる。
Here, as a means for constantly supplying the high-pressure refrigerant to the inflow side of the second expansion device before and after the switching, when the control means (50) switches between the heating operation and the dehumidifying heating operation, the first refrigerant control unit ( It is advisable to keep 15) open.
By keeping the first refrigerant control unit in the open state when switching the operation mode between the heating operation and the dehumidifying heating operation, even if the operation mode is switched between the heating operation and the dehumidifying heating operation, the first refrigerant Since there is no pressure difference between the front and back of the control unit (because the high-pressure refrigerant can be constantly supplied to the inflow side of the second expansion device before and after switching the operation mode), dehumidification is performed from the heating operation. When switching to the heating operation, it is possible to avoid the inconvenience that the high-pressure refrigerant flows into the second expansion device at once.

以上述べたように、本発明によれば、圧縮機、空調ユニット内の第1の熱交換器、第1の膨張装置、外気と熱交換が可能な車室外熱交換器、第2の膨張装置、及び空調ユニット内に配置されて第1の熱交換器よりも上流側に配置された第2の熱交換器を少なくともこの順でループ状に接続し、第1の熱交換器と第1の膨張装置との間の冷媒流路と車室外熱交換器と第2の膨張装置との間の冷媒流路とを、第1の冷媒制御部によって開閉可能な第1のバイパス流路を介して接続し、車室外熱交換器の下流側であって第1のバイパス流路との合流部位より上流側に逆流阻止部を設け、車室外熱交換器と逆流阻止部との間の冷媒流路と第2の熱交換器と圧縮機との間の冷媒流路とを、第2の冷媒制御部を備えた第2のバイパス流路を介して接続した冷凍サイクルを有する車両用空調装置において、第2の膨張装置を絞り状態から閉状態に切り替えることによって除湿暖房運転から暖房運転に切り替え、第2の膨張装置を閉状態から絞り状態に切り替えることによって暖房運転から除湿暖房運転に切り替えるようにしたので、切り替えの前後で第2の膨張装置の流入側に高圧冷媒を常時供給させた状態にしておくことが可能となり、運転モードを暖房運転と除湿暖房運転との間で切り替える場合でも、騒音の発生を防止することが可能となる。
また、圧縮機を停止させることなく、運転モードを暖房運転と除湿暖房運転との間で切り替えることができるので、切り替えるまでの時間を短縮することが可能となる。
As described above, according to the present invention, the compressor, the first heat exchanger in the air conditioning unit, the first inflator, the vehicle interior heat exchanger capable of exchanging heat with the outside air, and the second inflator. , And the second heat exchanger arranged in the air conditioning unit and located upstream of the first heat exchanger are connected in a loop at least in this order, and the first heat exchanger and the first heat exchanger are connected. The refrigerant flow path between the expansion device and the refrigerant flow path between the vehicle interior heat exchanger and the second expansion device are opened and closed by the first refrigerant control unit via the first bypass flow path. A backflow blocking section is provided on the downstream side of the vehicle interior heat exchanger and upstream of the confluence with the first bypass flow path, and the refrigerant flow path between the vehicle interior heat exchanger and the backflow blocking section is provided. In a vehicle air conditioner having a refrigeration cycle in which the refrigerant flow path between the second heat exchanger and the compressor is connected via a second bypass flow path provided with a second refrigerant control unit. By switching the second inflator from the throttled state to the closed state, the dehumidifying and heating operation is switched to the heating operation, and by switching the second inflator from the closed state to the throttled state, the heating operation is switched to the dehumidifying and heating operation. Therefore, it is possible to keep the high-pressure refrigerant constantly supplied to the inflow side of the second expansion device before and after the switching, and even when the operation mode is switched between the heating operation and the dehumidifying heating operation, the noise is generated. It is possible to prevent the occurrence.
Further, since the operation mode can be switched between the heating operation and the dehumidifying heating operation without stopping the compressor, it is possible to shorten the time until the switching.

図1は、本発明に係る車両用空調装置の構成例を示し、図1(a)はその全体構成図であり、図1(b)は、膨張装置、冷媒制御部、開閉弁及びダンパの状態を運転モード毎に示した表である。FIG. 1 shows a configuration example of a vehicle air conditioner according to the present invention, FIG. 1 (a) is an overall configuration diagram thereof, and FIG. 1 (b) shows an expansion device, a refrigerant control unit, an on-off valve, and a damper. It is a table which showed the state for each operation mode. 図2は、熱負荷と目標吹出温度との差に応じて切り替えられる冷凍サイクルの各運転モードを示す図であり、冷媒が流れている流路を太線で示し、高圧流路を太い実線で、低圧流路を太い破線で示す。FIG. 2 is a diagram showing each operation mode of the refrigeration cycle that can be switched according to the difference between the heat load and the target blowing temperature. The flow path through which the refrigerant is flowing is shown by a thick line, and the high-pressure flow path is shown by a thick solid line. The low pressure flow path is indicated by a thick dashed line. 図3は、除湿暖房(Parallel)運転と暖房運転との切り替え制御を説明する図であり、より具体的には、第2の冷媒制御部を開状態に維持した状態で、第2の膨張装置を絞り状態から閉状態に切り替えることで除湿暖房運転から暖房運転に切り替え、また、第2の膨張装置を閉状態から絞り状態に切り替えることで暖房運転から除湿暖房運転に切り替える制御を説明する図である。図において、高圧冷媒で満たされている経路を太い実線で、低圧冷媒で満たされている経路を太い破線で示す。FIG. 3 is a diagram illustrating switching control between dehumidifying and heating (Parallel) operation and heating operation, and more specifically, a second expansion device with the second refrigerant control unit maintained in an open state. The figure illustrates the control of switching from the dehumidifying heating operation to the heating operation by switching from the throttle state to the closed state, and switching from the heating operation to the dehumidification heating operation by switching the second expansion device from the closed state to the throttle state. be. In the figure, the path filled with the high-pressure refrigerant is shown by a thick solid line, and the path filled with the low-pressure refrigerant is shown by a thick broken line.

以下、本発明に係る車両用空調装置の実施形態を図面により説明する。
図1において、この発明に係る車両用空調装置が示され、車両用空調装置は、例えば自動車に搭載されるもので、空調ユニット1内に配置された第1及び第2の熱交換器2,3と、空調ユニット1外に配置され、外気と熱交換可能な車室外熱交換器4とを備えている。
Hereinafter, embodiments of the vehicle air conditioner according to the present invention will be described with reference to the drawings.
FIG. 1 shows a vehicle air conditioner according to the present invention, wherein the vehicle air conditioner is mounted on, for example, an automobile, and the first and second heat exchangers 2 and 2 are arranged in the air conditioner unit 1. 3 and an vehicle interior heat exchanger 4 which is arranged outside the air conditioning unit 1 and can exchange heat with the outside air.

空調ユニット1の最上流側には内外気切換装置6が設けられ、内気入口6aと外気入口6bとがインテークドア7によって選択的に開口されるようになっている。この空調ユニット1に選択的に導入される内気または外気は、送風機8の回転により吸引され、第1及び第2の熱交換器2,3に送られ、ここで熱交換されて所望の吹き出し口9a〜9cから車室内に供給されるようになっている。 An inside / outside air switching device 6 is provided on the most upstream side of the air conditioning unit 1, and the inside air inlet 6a and the outside air inlet 6b are selectively opened by the intake door 7. The inside air or outside air selectively introduced into the air conditioning unit 1 is sucked by the rotation of the blower 8 and sent to the first and second heat exchangers 2 and 3, where the heat is exchanged to obtain a desired outlet. It is supplied to the passenger compartment from 9a to 9c.

第1の熱交換器2は、第2の熱交換器3よりも空調ユニット1内の空気流れ方向下流側に配置されており、この第1の熱交換器2の空気流れ方向上流側には、ダンパ10が設けられている。ダンパ10は、第1の熱交換器2の通過風量が最大となる位置(暖房位置:開度100%)から最小となる位置(冷房位置:開度0%)まで可変できるようになっており、開度を調整することにより、第1の熱交換器2を通過する空気とバイパスする空気との割合を調整できるようになっている。
なお、ダンパ10は、エアミックスドアとも呼ばれる。また、この例では、空調ユニット1内の第1の熱交換器2の下流側に電気発熱式の加熱装置(PTC)5が配置されている。
The first heat exchanger 2 is arranged on the downstream side in the air flow direction in the air conditioning unit 1 with respect to the second heat exchanger 3, and is located on the upstream side in the air flow direction of the first heat exchanger 2. , The damper 10 is provided. The damper 10 can be changed from the position where the air volume passing through the first heat exchanger 2 is maximum (heating position: opening 100%) to the position where it is minimum (cooling position: opening 0%). By adjusting the opening degree, the ratio of the air passing through the first heat exchanger 2 and the air bypassing the first heat exchanger 2 can be adjusted.
The damper 10 is also called an air mix door. Further, in this example, the electric heat generating type heating device (PTC) 5 is arranged on the downstream side of the first heat exchanger 2 in the air conditioning unit 1.

第1の熱交換器2の冷媒流入側2aは、圧縮機11の吐出側αに接続され、第1の熱交換器2の冷媒流出側2bは、第1の膨張装置(E−1)12の流入側12aに接続されている。また、第2の熱交換器3の冷媒流出側3bは、アキュムレータ23を介して圧縮機11の吸入側βに接続されている。なお、第1の熱交換器2は、室内放熱器とか、インナーコンデンサとも呼ばれる。 The refrigerant inflow side 2a of the first heat exchanger 2 is connected to the discharge side α of the compressor 11, and the refrigerant outflow side 2b of the first heat exchanger 2 is the first expansion device (E-1) 12 It is connected to the inflow side 12a of. Further, the refrigerant outflow side 3b of the second heat exchanger 3 is connected to the suction side β of the compressor 11 via the accumulator 23. The first heat exchanger 2 is also called an indoor radiator or an inner capacitor.

前記第1の膨張装置12の流出側12bは、車室外熱交換器4の冷媒流入側4aに接続され、この車室外熱交換器4の冷媒流出側4bは、逆止弁13及び第2の膨張装置(E−2)14を介して第2の熱交換器3の冷媒流入側3aに接続されている。したがって、圧縮機11、第1の熱交換器2、第1の膨張装置12、車室外熱交換器4、逆止弁13、第2の膨張装置14、第2の熱交換器3、アキュムレータ23、圧縮機11の順でループ状に接続された冷凍サイクルが形成されている。 The outflow side 12b of the first expansion device 12 is connected to the refrigerant inflow side 4a of the vehicle interior heat exchanger 4, and the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 is the check valve 13 and the second check valve 13. It is connected to the refrigerant inflow side 3a of the second heat exchanger 3 via the expansion device (E-2) 14. Therefore, the compressor 11, the first heat exchanger 2, the first inflator 12, the passenger compartment outdoor heat exchanger 4, the check valve 13, the second inflator 14, the second heat exchanger 3, and the accumulator 23. , The refrigeration cycle connected in a loop in the order of the compressor 11 is formed.

また、第1の熱交換器2の冷媒流出側2bと第1の膨張装置12の流入側12aとの間の冷媒流路と、逆止弁13の流出側13bと第2の膨張装置14の流入側14aとの間の冷媒流路とは、第1の冷媒制御部(V−1)15を有する第1のバイパス流路16によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 2b of the first heat exchanger 2 and the inflow side 12a of the first expansion device 12, and the outflow side 13b of the check valve 13 and the second expansion device 14 The refrigerant flow path to the inflow side 14a is connected by a first bypass flow path 16 having a first refrigerant control unit (V-1) 15.

さらに、車室外熱交換器4の冷媒流出側4bと逆止弁13の流入側13aとの間の冷媒流路と、第2の熱交換器3の冷媒流出側3bとアキュムレータ23の流入側23aとの間の冷媒流路とは、第2の冷媒制御部(V−2)17を有する第2のバイパス流路18によって接続されている。 Further, the refrigerant flow path between the refrigerant outflow side 4b of the vehicle interior heat exchanger 4 and the inflow side 13a of the check valve 13, the refrigerant outflow side 3b of the second heat exchanger 3 and the inflow side 23a of the accumulator 23 The refrigerant flow path between the two is connected by a second bypass flow path 18 having a second refrigerant control unit (V-2) 17.

ここで、上述の構成例において、第1の膨張装置12は、外部からの制御信号によって冷媒流路を絞ること、閉じること及び全開にすることが可能な電磁膨張弁が用いられている。また、第2の膨張装置14は、外部からの制御信号によって冷媒流路を絞ること及び閉じることが可能な電磁制御弁が用いられている。
前記逆止弁13は、流路を開閉する開閉弁(V−3)19に置き換えてもよい。この逆止弁13又は開閉弁(V−3)19によって、逆流阻止部が構成されている。
Here, in the above-described configuration example, the first expansion device 12 uses an electromagnetic expansion valve capable of narrowing, closing, and fully opening the refrigerant flow path by a control signal from the outside. Further, the second expansion device 14 uses an electromagnetic control valve capable of narrowing and closing the refrigerant flow path by a control signal from the outside.
The check valve 13 may be replaced with an on-off valve (V-3) 19 that opens and closes the flow path. The check valve 13 or the on-off valve (V-3) 19 constitutes a check valve.

また、第1の冷媒制御部(V−1)15は、第1のバイパス流路16を開閉させる開閉弁によって構成され、また、第2の冷媒制御部(V−2)17は、第2のバイパス流路18を開閉させる開閉弁によって構成されている。 Further, the first refrigerant control unit (V-1) 15 is composed of an on-off valve that opens and closes the first bypass flow path 16, and the second refrigerant control unit (V-2) 17 is a second. It is composed of an on-off valve that opens and closes the bypass flow path 18 of the above.

上記第1及び第2の膨張装置12,14の動作、第1及び第2の冷媒制御部15,17や開閉弁19の開閉、ダンパ10の開度、圧縮機11の吐出量は、制御手段50(制御部50)からの制御信号で制御されるようになっている。なお、圧縮機11は、例えば電動式圧縮機が用いられる。 The operation of the first and second expansion devices 12 and 14, the opening and closing of the first and second refrigerant control units 15 and 17 and the on-off valve 19, the opening of the damper 10, and the discharge amount of the compressor 11 are controlled by means for controlling. It is controlled by a control signal from 50 (control unit 50). As the compressor 11, for example, an electric compressor is used.

制御部50は、A/D変換器やマルチプレクサ等を含む入力回路、ROM、RAM、CPU等を含む演算処理回路、駆動回路等を含む出力回路を備えたそれ自体公知のもので、車室外空気の温度(外気温)を検出する外気温度センサ51からの外気温信号や車室内温度を検出する内気温度センサ52からの内気温信号、日射量を検出する日射センサ53からの日射量信号、運転モード等を設定する操作部からの各種信号が入力され、これらの各種信号を予め定められた所定のプログラムに沿って処理するようになっている。 The control unit 50 is known in itself and includes an input circuit including an A / D converter, a multiplexer, etc., an arithmetic processing circuit including a ROM, RAM, a CPU, etc., an output circuit including a drive circuit, etc. The outside temperature signal from the outside air temperature sensor 51 that detects the temperature (outside temperature), the inside temperature signal from the inside air temperature sensor 52 that detects the vehicle interior temperature, the solar radiation amount signal from the solar radiation sensor 53 that detects the amount of solar radiation, and operation. Various signals from the operation unit that sets the mode and the like are input, and these various signals are processed according to a predetermined program.

この例において、冷凍サイクル100の運転モードの切り替え(膨張装置12,14、開閉弁19、冷媒制御部15、17、ダンパの作動状態の変更)は、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度が加味された目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて、図2に示されるように、切り替えられる。 In this example, switching the operation mode of the refrigeration cycle 100 (expansion devices 12, 14, on-off valves 19, refrigerant control units 15, 17, and changing the operating state of the damper) is the state of the heat load received by the refrigeration cycle (change of the operating state of the damper). The difference (Tm-) between the total signal (Tm) that takes into account the temperature of the outside air inside the vehicle, the temperature of the air inside the vehicle, the amount of solar radiation, etc. It is switched according to the size of Tset) as shown in FIG.

また、この例において、除湿運転モードは、冷房運転モードと暖房運転モードとの間を大きく3つに分けている(図2参照)。
・ 冷凍サイクルが受けている熱負荷が比較的高い中高熱負荷時であれば、室外熱交器4を冷房運転モードと同様に放熱器として用いて冷房運転モードと同様に冷媒を流し(第1の熱交換器2と車室外熱交換器4とを放熱器として用いて2段階に熱を放熱させるために第1の熱交換器2と車室外熱交換器4とに直列的に冷媒を流し)、エアミックスドアの開度調節により除湿空気を温度調節する除湿冷房運転モード(Series)に設定する。
・ 冷凍サイクルが受けている熱負荷が比較的低い中熱負荷時であれば、室外熱交器4を利用せずに、第1の熱交換器2のみを放熱器として用い、また、第2の熱交換器3のみを吸熱器として用いる(第1の熱交換器2からの冷媒を車室外熱交換器4を迂回させて流す迂回運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(By-Pass)という)に設定する。
・ 冷凍サイクルが受けている熱負荷がさらに低い中低熱負荷時であれば、吸熱能力を高めるために、車室外熱交換器4と第2の熱交換器3とをそれぞれ吸熱器として用いる2系統の流れを形成する(第1の熱交換器2からの冷媒を車室外熱交換器4と第2の熱交換器3に並列的に流す平行運転を行う)除湿暖房運転モード(以下、除湿暖房運転モード(Parallel)という)に設定する。
Further, in this example, the dehumidifying operation mode is roughly divided into three modes between the cooling operation mode and the heating operation mode (see FIG. 2).
-If the heat load received by the refrigeration cycle is relatively high, the outdoor heat exchanger 4 is used as a radiator as in the cooling operation mode, and the refrigerant flows in the same manner as in the cooling operation mode (first). In order to dissipate heat in two stages using the heat exchanger 2 and the passenger compartment outdoor heat exchanger 4 as radiators, a refrigerant is flowed in series with the first heat exchanger 2 and the passenger compartment outdoor heat exchanger 4. ), Set to the dehumidifying / cooling operation mode (Series) that adjusts the temperature of the dehumidified air by adjusting the opening of the air mix door.
-If the heat load received by the refrigeration cycle is a medium heat load, only the first heat exchanger 2 is used as a radiator without using the outdoor heat exchanger 4, and the second Dehumidifying / heating operation mode (hereinafter, dehumidifying / heating operation mode) uses only the heat exchanger 3 of (Called By-Pass)).
-If the heat load received by the refrigeration cycle is even lower at medium and low heat loads, two systems that use the passenger compartment outdoor heat exchanger 4 and the second heat exchanger 3 as heat exchangers in order to increase the heat absorption capacity. Dehumidifying and heating operation mode (hereinafter, dehumidifying and heating) that forms the flow of Set to the operation mode (called Parallel).

(各運転モードについて)
以上の各運転モードを得るために、膨張装置(第1の膨張装置(E−1)12,第2の膨張装置(E−2)14)、開閉弁(第1の冷媒制御部15,第3の開閉弁19)、第2の冷媒制御部17、及びダンパ10は、制御部50によって以下のように設定される。
なお、各運転モードでは、制御部50からの指示により送風機8が回転し、内外気切換装置6を通過した空気が第2の熱交換器3に送られ、続いて第1の熱交換器2に向けて流れる。
(About each operation mode)
In order to obtain each of the above operation modes, an expansion device (first expansion device (E-1) 12, second expansion device (E-2) 14), on-off valve (first refrigerant control unit 15, first The on-off valve 19) of No. 3, the second refrigerant control unit 17, and the damper 10 are set by the control unit 50 as follows.
In each operation mode, the blower 8 rotates according to the instruction from the control unit 50, the air that has passed through the inside / outside air switching device 6 is sent to the second heat exchanger 3, and then the first heat exchanger 2 Flow towards.

先ず、運転モードが冷房運転モードに設定される場合には、制御部50は、図1(b)に示されるように、第1の膨張装置(E−1)12を全開とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開き、またダンパ10を冷房位置(開度0%の位置、フルクールの位置)に設定する。 First, when the operation mode is set to the cooling operation mode, the control unit 50 fully opens the first expansion device (E-1) 12 and the second expansion device (E-1) 12 as shown in FIG. 1 (b). Squeeze the inflator (E-2) 14. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened and the damper 10 is placed in the cooling position (opening 0%). (Position of, full cool position).

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する空気が無いことからここで放熱することなく通過し、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は全開の状態であるため、圧縮機11から吐出された高温高圧の状態の冷媒が車室外熱交換器4に流入し、この車室外熱交換器で放熱(凝縮液化)される。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3で冷却され、第1の熱交換器2をバイパスしてそのまま冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 passes through the first heat exchanger 2 without radiating heat because there is no air passing through the first heat exchanger 2, and further expands to the first. Enter the vehicle interior heat exchanger 4 via the device 12. At this time, since the first expansion device 12 is in the fully open state, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the vehicle interior heat exchanger 4 and dissipates heat in the vehicle interior heat exchanger (). Condensed liquefaction). After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is cooled by the second heat exchanger 3, bypasses the first heat exchanger 2, and is supplied to the vehicle interior as it is as cold air.

運転モードが除湿冷房運転モード(Series)に設定される場合には、制御部50は、図1(b)にも示されるように、ダンパ10の位置と第1の膨張装置(E−1)12を除いて、第2の膨張装置(E−2)、冷媒制御部、開閉弁を冷房運転モードと同様に設定する。すなわち、第1の膨張装置(E−1)12を少し絞った状態とし、第2の膨張装置(E−2)14を絞る。また、第1及び第2の冷媒制御部15,17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を開く。そして、ダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidifying / cooling operation mode (Series), the control unit 50 sets the position of the damper 10 and the first expansion device (E-1) as shown in FIG. 1 (b). Except for 12, the second expansion device (E-2), the refrigerant control unit, and the on-off valve are set in the same manner as in the cooling operation mode. That is, the first inflator (E-1) 12 is slightly squeezed, and the second inflator (E-2) 14 is squeezed. Further, when the first and second refrigerant control units 15 and 17 are closed and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is opened. Then, the opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、図2に示されるように、第1の熱交換器2を通過する際に放熱され、さらに第1の膨張装置12を介して車室外熱交換器4に入る。この際、第1の膨張装置12は少し絞った状態であるため、ここで僅かに減圧膨張されて車室外熱交換器4に入るものの、この車室外熱交換器で放熱(凝縮液化)される。また、第1の膨張装置12は少し絞った状態であるため、全開の状態よりも第1の熱交換器2における冷媒の圧力が上昇し、第1の熱交換器2での放熱力を増大することができる。その後、車室外熱交換器で放熱された冷媒は、逆止弁13(又は、開閉弁19)を介して第2の膨張装置14に至り、この第2の膨張装置14で減圧されて第2の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した冷風として車室内に供給される。
Then, as shown in FIG. 2, the compressed refrigerant discharged from the compressor 11 is dissipated when passing through the first heat exchanger 2, and further, heat exchange outside the vehicle interior via the first expansion device 12. Enter vessel 4. At this time, since the first expansion device 12 is in a slightly squeezed state, it is slightly decompressed and expanded here to enter the vehicle interior heat exchanger 4, but heat is dissipated (condensed) by this vehicle interior heat exchanger. .. Further, since the first expansion device 12 is in a slightly throttled state, the pressure of the refrigerant in the first heat exchanger 2 is higher than in the fully opened state, and the heat dissipation force in the first heat exchanger 2 is increased. can do. After that, the refrigerant radiated by the vehicle interior heat exchanger reaches the second expansion device 14 via the check valve 13 (or the on-off valve 19), is depressurized by the second expansion device 14, and is second. It enters the heat exchanger 3 of the above, and after being endothermic (evaporated and vaporized) there, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the dry cold air is dried. It is supplied to the passenger compartment as.

次に、運転モードが除湿暖房運転モード(By‐Pass)に設定される場合には、図1(b)にも示されるように、制御部50は、第1の膨張装置12を閉とし、第2の膨張装置14を絞り、第1の冷媒制御部15を開き、第2の冷媒制御部17を閉じ、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、ダンパ10の開度を任意の中間位置に設定する。 Next, when the operation mode is set to the dehumidification / heating operation mode (By-Pass), the control unit 50 closes the first expansion device 12 as shown in FIG. 1 (b). When the second expansion device 14 is throttled, the first refrigerant control unit 15 is opened, the second refrigerant control unit 17 is closed, and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed. , The opening degree of the damper 10 is set to an arbitrary intermediate position.

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、車室外熱交換器4を迂回して第1のバイパス流路16を流れた後に、第2の膨張装置14に至り、この第2の膨張装置14で減圧されて、第2の熱交換器3に供給される。そして、この第2の熱交換器3で吸熱された後にアキュムレータ23を介して圧縮機11に戻される。
このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した温風として車室内に供給される。
この除湿暖房運転モード(By‐Pass)での暖房能力は、後述する除湿暖房運転モード(parallel)よりも小さい。
Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, bypasses the vehicle interior heat exchanger 4, and flows through the first bypass flow path 16. It reaches the second expansion device 14, is depressurized by the second expansion device 14, and is supplied to the second heat exchanger 3. Then, after the heat is absorbed by the second heat exchanger 3, it is returned to the compressor 11 via the accumulator 23.
Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the temperature becomes dry. It is supplied to the passenger compartment as wind.
The heating capacity in this dehumidifying / heating operation mode (By-Pass) is smaller than that in the dehumidifying / heating operation mode (parallel) described later.

運転モードが除湿暖房運転モード(parallel)に設定される場合には、図1(b)にも示されるように、制御部50は、第1及び第2の膨張装置12,14を絞り、第1及び第2の冷媒制御部15,17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10の開度を任意の中間位置に設定する。 When the operation mode is set to the dehumidification / heating operation mode (parallel), the control unit 50 throttles the first and second expansion devices 12 and 14 as shown in FIG. 1 (b). When the first and second refrigerant control units 15 and 17 are opened and the check valve 13 is replaced by the on-off valve 19, the on-off valve 19 is closed and the opening degree of the damper 10 is set to an arbitrary intermediate position. ..

すると、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、その後分岐されて、一方は、第1のバイパス流路16を通って第2の膨張装置14へ至り、ここで減圧されて第2の熱交換器3で吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。また、それと同時に、他方は、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の開閉弁17を通って、アキュムレータ23を介して圧縮機11に戻される。このため、空調ユニット1の上流側から送られてきた空気は、第2の熱交換器3によって除湿され、第1の熱交換器2を通過する際に一部が加熱されて、乾燥した温風として車室内に供給される。 Then, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, and then branched, and one of them passes through the first bypass flow path 16 and expands to the second. It reaches the device 14, where it is depressurized, absorbed (evaporated and vaporized) by the second heat exchanger 3, and then returned to the compressor 11 via the accumulator 23. At the same time, the other is decompressed by the first expansion device 12 to reach the vehicle interior heat exchanger 4, where heat is absorbed (evaporated and vaporized) and then passed through the second on-off valve 17 to pass the accumulator 23. It is returned to the compressor 11 via. Therefore, the air sent from the upstream side of the air conditioning unit 1 is dehumidified by the second heat exchanger 3, and a part of the air is heated when passing through the first heat exchanger 2, and the temperature becomes dry. It is supplied to the passenger compartment as wind.

なお、上述の例では、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)と除湿暖房運転モード(By-Pass)とを、冷凍サイクルが受けている熱負荷の状況(車室外空気の温度、車室内空気の温度、日射量等が加味される総合信号(Tm))と乗員により設定された希望室内温度(Tset)が加味される目標吹出温度(Tset)との差(Tm-Tset)の大きさに応じて切り替えるようにしたが、除湿暖房運転モードとして、除湿暖房運転モード(Parallel)のみを用いるようにしてもよい。 In the above example, the dehumidifying / heating operation mode (Parallel) and the dehumidifying / heating operation mode (By-Pass) are set as the dehumidifying / heating operation mode. The difference (Tm-Tset) between the total signal (Tm) that takes into account the temperature of the air inside the vehicle, the amount of solar radiation, etc., and the target blowout temperature (Tset) that takes into account the desired room temperature (Tset) set by the occupants. Although it is switched according to the size, only the dehumidifying / heating operation mode (Parallel) may be used as the dehumidifying / heating operation mode.

ところで、以上の構成において、暖房運転を除く全ての運転モードでは、第2の熱交換器3へ冷媒を供給し、この第2の熱交換器3を通過する空気を除湿又は冷却するようにしている。これに対して、暖房運転においては、第2の熱交換器3への冷媒の供給を止め、空調ユニット内に吸引される空気を最大限に加熱する。このため、従来においては、運転モードを暖房運転モードに設定する場合には、第1の膨張装置12を絞り、第1の冷媒制御部15を閉じ、第2の冷媒制御部17を開き、逆止弁13を開閉弁19で代用する場合には、その開閉弁19を閉じ、またダンパ10を暖房位置(開度100%の位置、フルホットの位置)に設定するようにしていた。
これにより、圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の冷媒制御部17を通って、アキュムレータ23を介して圧縮機11に戻される。
By the way, in the above configuration, in all the operation modes except the heating operation, the refrigerant is supplied to the second heat exchanger 3 to dehumidify or cool the air passing through the second heat exchanger 3. There is. On the other hand, in the heating operation, the supply of the refrigerant to the second heat exchanger 3 is stopped, and the air sucked into the air conditioning unit is heated to the maximum. Therefore, conventionally, when the operation mode is set to the heating operation mode, the first expansion device 12 is throttled, the first refrigerant control unit 15 is closed, the second refrigerant control unit 17 is opened, and vice versa. When the on-off valve 13 is used as a substitute for the stop valve 13, the on-off valve 19 is closed and the damper 10 is set to the heating position (position of 100% opening, full hot position).
As a result, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, decompressed by the first expansion device 12, and reaches the vehicle interior heat exchanger 4. After being absorbed (evaporated and vaporized), it is returned to the compressor 11 via the accumulator 23 through the second refrigerant control unit 17.

しかし、暖房運転と除湿暖房運転との間で運転モードを切り替える場合に、第1の冷媒制御部(開閉弁)を動作させ、暖房運転時には閉とし、除湿暖房運転時には開として運転モードを切り替える手法を採用すると、暖房運転においては、高圧冷媒が第2の膨張装置へ供給されなくなるので、第1の冷媒制御部と第2の膨張装置との間の経路の圧力は徐々に低下してくる。その後、暖房運転から除湿暖房運転に切り替えられると(第1の冷媒制御部を開にすると)、第1の熱交換器2と第1の膨張装置12との間の冷媒経路の高圧冷媒が第1のバイパス流路16を介して一気に第2の膨張装置14へ流れ込み、異音を発生させる不都合がある。 However, when switching the operation mode between the heating operation and the dehumidifying heating operation, the first refrigerant control unit (on-off valve) is operated and closed during the heating operation and opened during the dehumidifying and heating operation to switch the operation mode. When the above is adopted, in the heating operation, the high-pressure refrigerant is not supplied to the second expansion device, so that the pressure in the path between the first refrigerant control unit and the second expansion device gradually decreases. After that, when the heating operation is switched to the dehumidifying heating operation (when the first refrigerant control unit is opened), the high-pressure refrigerant in the refrigerant path between the first heat exchanger 2 and the first expansion device 12 becomes the first. There is an inconvenience that it flows into the second expansion device 14 at once through the bypass flow path 16 of 1 and generates an abnormal noise.

そこで、本発明においては、暖房運転においては、第2の膨張装置14を閉にすると共に第1の冷媒制御部15を開とし、暖房運転においても第1の熱交換器2と第1の膨張装置12との間の高圧冷媒を第2の膨張装置14の流入口まで導いておき、暖房運転から除湿暖房運転に切り替えられた場合に、第2の膨張装置14に高圧冷媒が一気に流れ込まないようにして、異音の発生を抑えるようにしている。 Therefore, in the present invention, in the heating operation, the second expansion device 14 is closed and the first refrigerant control unit 15 is opened, and the first heat exchanger 2 and the first expansion are also performed in the heating operation. The high-pressure refrigerant between the device 12 and the device 12 is guided to the inlet of the second expansion device 14, so that the high-pressure refrigerant does not flow into the second expansion device 14 at once when the heating operation is switched to the dehumidifying heating operation. I try to suppress the generation of abnormal noise.

すなわち、暖房運転と除湿暖房運転との切り替えを第1の冷媒制御部15の開閉で対応していた従来の手法に代え、第1の冷媒制御部15は開状態で維持させておき(第1の冷媒制御部15を動作させず)、第2の膨張装置14の開閉だけで運転モードを暖房運転と除湿暖房運転とに切り替えるようにしている。 That is, instead of the conventional method in which the switching between the heating operation and the dehumidifying heating operation is supported by opening and closing the first refrigerant control unit 15, the first refrigerant control unit 15 is maintained in the open state (first). The operation mode is switched between the heating operation and the dehumidifying heating operation only by opening and closing the second expansion device 14 without operating the refrigerant control unit 15 of the above.

より具体的に説明すると、図3に示されるように、除湿暖房運転(Parallel)時には、第1及び第2の冷媒制御部15,17を開とし、第1及び第2の膨張装置12,14を絞り状態とする。これにより、圧縮機から吐出した冷媒は、前述した通り、第1の熱交換器2で放熱(凝縮液化)され、その後分岐されて、一方は、第1のバイパス流路16を通って第2の膨張装置14へ至り、ここで減圧されて第2の熱交換器3で吸熱(蒸発気化)された後にアキュムレータ23を介して圧縮機11に戻される。また、それと同時に、他方は、第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の開閉弁17を通って、アキュムレータ23を介して圧縮機11に戻される。
なお、図3において、高圧冷媒で満たされている経路は太い実線で、低圧冷媒で満たされている経路は太い破線で示されている。
More specifically, as shown in FIG. 3, during the dehumidifying and heating operation (Parallel), the first and second refrigerant control units 15 and 17 are opened, and the first and second expansion devices 12 and 14 are opened. Is in the squeezed state. As a result, the refrigerant discharged from the compressor is radiated (condensed and liquefied) by the first heat exchanger 2 as described above, and then branched, and one of them passes through the first bypass flow path 16 and is second. It reaches the expansion device 14 of the above, where the pressure is reduced, heat is absorbed (evaporated and vaporized) by the second heat exchanger 3, and then returned to the compressor 11 via the accumulator 23. At the same time, the other is decompressed by the first expansion device 12 to reach the vehicle interior heat exchanger 4, where heat is absorbed (evaporated and vaporized) and then passed through the second on-off valve 17 to pass the accumulator 23. It is returned to the compressor 11 via.
In FIG. 3, the path filled with the high-pressure refrigerant is shown by a thick solid line, and the path filled with the low-pressure refrigerant is shown by a thick broken line.

その後、暖房運転に移行する場合には、第2の冷媒制御部17のみならず第1の冷媒制御部15も開状態に維持し、その状態で第2の膨張装置14を閉とする。なお、ダンパ10を暖房位置(開度100%の位置、フルホットの位置)に設定する。
これにより圧縮機11から吐出された圧縮冷媒は、第1の熱交換器2で放熱(凝縮液化)され、その後、第1のバイパス通路に流れようとしても第2の膨張装置14によって流通を阻止されているので、第1のバイパス通路を流れることなく第1の膨張装置12で減圧されて車室外熱交換器4に至り、ここで吸熱(蒸発気化)された後に第2の冷媒制御部17を通って、アキュムレータ23を介して圧縮機11に戻される。
After that, when shifting to the heating operation, not only the second refrigerant control unit 17 but also the first refrigerant control unit 15 is maintained in an open state, and the second expansion device 14 is closed in that state. The damper 10 is set to a heating position (a position where the opening degree is 100%, a position where the damper is fully hot).
As a result, the compressed refrigerant discharged from the compressor 11 is dissipated (condensed and liquefied) by the first heat exchanger 2, and then even if it tries to flow into the first bypass passage, the flow is blocked by the second expansion device 14. Therefore, the pressure is reduced by the first expansion device 12 without flowing through the first bypass passage to reach the vehicle interior heat exchanger 4, where heat is absorbed (evaporated and vaporized) and then the second refrigerant control unit 17 is used. It is returned to the compressor 11 via the accumulator 23.

さらに、その後に、再び除湿暖房運転に移行する場合には、第1の冷媒制御部15は開となっているため、第2の膨張装置14の流入口まで高圧冷媒(第1の熱交換器2と第1の膨張装置12との間の冷媒経路の冷媒)で満たされており、その後第2の膨張装置14が開となった場合でも、高圧冷媒が第2の膨張装置14に一気に流れ込むことがないので、突発的な異音の発生を抑えることが可能となる。 Further, when the operation shifts to the dehumidifying / heating operation again after that, since the first refrigerant control unit 15 is open, the high-pressure refrigerant (first heat exchanger) reaches the inflow port of the second expansion device 14. Even if it is filled with the refrigerant in the refrigerant path between the 2 and the first expansion device 12) and then the second expansion device 14 is opened, the high-pressure refrigerant flows into the second expansion device 14 at once. Since there is no such thing, it is possible to suppress the generation of sudden abnormal noise.

このように、暖房運転と除湿暖房運転との間の切り替えにおいては、第1の冷媒制御部15を開状態に維持した状態で、第2の膨張装置14を閉とすることで暖房運転とし、第2の膨張装置14を絞り状態とすることで除湿暖房運転とするので、切り替え前後で第2の膨張装置14に作用する圧力が急変することがなくなり(第1の冷媒制御部15の前後で圧力差が生じないようにすることができ)、突発的に第2の膨張装置14に高圧冷媒が流れ込むことがなくなり、運転モードの切替時の騒音の発生を回避することが可能となる。
また、上述の切り替えにおいては、圧縮機をわざわざ停止させる必要がないので、運転モードの切り替え時間を短縮することも可能となる。
In this way, in the switching between the heating operation and the dehumidifying heating operation, the heating operation is performed by closing the second expansion device 14 while keeping the first refrigerant control unit 15 in the open state. Since the dehumidifying and heating operation is performed by setting the second expansion device 14 in the throttle state, the pressure acting on the second expansion device 14 does not suddenly change before and after the switching (before and after the first refrigerant control unit 15). (It is possible to prevent a pressure difference from occurring), and the high-pressure refrigerant does not suddenly flow into the second expansion device 14, and it is possible to avoid the generation of noise when switching the operation mode.
Further, in the above-mentioned switching, it is not necessary to bother to stop the compressor, so that it is possible to shorten the switching time of the operation mode.

なお、以上の形態において、本発明の目的を逸脱しない範囲で適宜変更してもよい。例えば、冷凍サイクルの運転モードを切り替える指標して、冷凍サイクル100が受けている熱負荷と目標吹出温度との差を用いるようにしたが、冷凍サイクル100が受けている熱負荷の代表として、外気温度を用いたり、第2の熱交換器3の冷却温度(EVA温度)等を用いたりしてもよい。 In addition, in the above form, it may be changed as appropriate within the range which does not deviate from the object of this invention. For example, the difference between the heat load received by the refrigeration cycle 100 and the target blowing temperature is used as an index for switching the operation mode of the refrigeration cycle. However, as a representative of the heat load received by the refrigeration cycle 100, the outside air is used. The temperature may be used, or the cooling temperature (EVA temperature) of the second heat exchanger 3 or the like may be used.

1 空調ユニット
2 第1の熱交換器
3 第2の熱交換器
4 車室外熱交換器
11 圧縮機
12 第1の膨張装置
13 逆止弁
14 第2の膨張装置
15 第1の冷媒制御部
16 第1のバイパス流路
17 第2の冷媒制御部
18 第2のバイパス流路
19 開閉弁
50 制御手段
100 冷凍サイクル
1 Air conditioning unit 2 1st heat exchanger 3 2nd heat exchanger 4 Outdoor heat exchanger 11 Compressor 12 1st expansion device 13 Check valve 14 2nd expansion device 15 1st refrigerant control unit 16 1st bypass flow path 17 2nd refrigerant control unit 18 2nd bypass flow path 19 On-off valve 50 Control means 100 Refrigeration cycle

Claims (4)

冷凍サイクル(100)と、前記冷凍サイクル(100)の運転モードを切り替え制御する制御手段(50)と、を備え、
前記冷凍サイクル(100)は、
圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13)との間の冷媒流路と前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続し、
前記制御手段(50)は、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を、前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2の熱交換器(3)を通流させることなく前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す暖房運転と、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を分岐させて、一方で前記第1のバイパス通路(16)を通過させて前記第2の膨張装置(14)で減圧した後に前記第2の熱交換器(3)を通して吸熱させると共に、他方で前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す除湿暖房運転と、
を切り替え可能としている車両用空調装置において、
前記制御手段(50)は、前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、前記第2の膨張装置(14)を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替える第1切替手段と、前記第2の膨張装置(14)を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替える第2切替手段とを有する
ことを特徴とする車両用空調装置。
A refrigeration cycle (100) and a control means (50) for switching and controlling the operation mode of the refrigeration cycle (100) are provided.
The refrigeration cycle (100)
The compressor (11), the first heat exchanger (2) arranged in the air conditioning unit (1) and the ventilation amount is adjusted by the damper (10), and the first heat exchanger (2) arranged in the air conditioning unit (1). A second exchanger (3) arranged on the upstream side in the air conditioning unit (1) with respect to the first heat exchanger (2), and an outdoor heat exchanger (4) capable of exchanging heat with the outside air. ), A first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and a second expansion device (14) capable of narrowing and closing the refrigerant flow path. death,
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
Between the refrigerant flow path between the first heat exchanger (2) and the first expansion device (12) and between the vehicle interior heat exchanger (4) and the second expansion device (14). Is connected to the refrigerant flow path of the above via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), on the upstream side of the merging portion (A) with the first bypass flow path (16). A backflow blocking portion (13) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the refrigerant flow between the vehicle interior heat exchanger (4) and the backflow blocking portion (13). A second bypass flow path (18) provided with a second refrigerant control unit (17) for the refrigerant flow path between the path, the second heat exchanger (3), and the compressor (11). Connect via
The control means (50) is
The refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and the dissipated refrigerant is depressurized by the first expansion device (12), and then the outside heat of the passenger compartment is generated. A heating operation in which heat is absorbed by the exchanger (4) and then returned to the compressor (11) via the second bypass passage (18) without passing through the second heat exchanger (3). When,
The refrigerant discharged from the compressor (11) is radiated by the first heat exchanger (2), and the radiated refrigerant is branched, while passing through the first bypass passage (16). After depressurizing with the second inflator (14), heat is absorbed through the second heat exchanger (3), and on the other hand, after depressurizing with the first inflator (12), the outdoor heat exchanger is used. Dehumidifying and heating operation in which heat is absorbed in (4) and returned to the compressor (11) via the second bypass passage (18).
In the vehicle air conditioner that can be switched
The control means (50) switches from the dehumidifying heating operation to the heating operation by switching the second expansion device (14) from the throttled state to the closed state when switching between the heating operation and the dehumidifying heating operation. Vehicle air conditioning having a first switching means and a second switching means for switching from the heating operation to the dehumidifying heating operation by switching the second expansion device (14) from the closed state to the throttle state. Device.
前記制御手段(50)は、前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、前記第1の冷媒制御部(15)を開状態に維持することを特徴とする請求項1記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the control means (50) keeps the first refrigerant control unit (15) in an open state when switching between the heating operation and the dehumidifying heating operation. Device. 圧縮機(11)と、空調ユニット(1)内に配置されてダンパ(10)により通風量が調整される第1の熱交換器(2)と、前記空調ユニット(1)内に配置されて前記第1の熱交換器(2)よりも前記空調ユニット(1)内の上流側に配置された第2の交換器(3)と、外気と熱交換が可能な車室外熱交換器(4)と、冷媒流路を絞ること、開閉することが可能な第1の膨張装置(12)と、冷媒流路を絞ること及び閉じることが可能な第2の膨張装置(14)と、を有し、
前記圧縮機(11)、前記第1の熱交換器(2)、前記第1の膨張装置(12)、前記車室外熱交換器(4)、前記第2の膨張装置(14)、及び前記第2の熱交換器(3)を少なくともこの順でループ状に接続し、
前記第1の熱交換器(2)と前記第1の膨張装置(12)との間の冷媒流路と前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路とを、第1の冷媒制御部(15)によって開閉可能な第1のバイパス流路(16)を介して接続し、
前記車室外熱交換器(4)と前記第2の膨張装置(14)との間の冷媒流路のうち、前記第1のバイパス流路(16)との合流部位(A)より上流側に該合流部位(A)から上流側への冷媒の流れを阻止する逆流阻止部(13)を設けると共に、前記車室外熱交換器(4)と前記逆流阻止部(13)との間の冷媒流路と前記第2の熱交換器(3)と前記圧縮機(11)との間の冷媒流路とを、第2の冷媒制御部(17)を備えた第2のバイパス流路(18)を介して接続した冷凍サイクルを有する車両用空調装置の運転モード切替制御方法において、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を、前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、しかる後に前記第2の熱交換器(3)を通流させることなく前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す暖房運転と、
前記圧縮機(11)から吐出した冷媒を、前記第1の熱交換器(2)にて放熱させ、この放熱した冷媒を分岐させて、一方で前記第1のバイパス通路(16)を通過させて前記第2の膨張装置(14)で減圧した後に前記第2の熱交換器(3)を通して吸熱させると共に、他方で前記第1の膨張装置(12)で減圧した後に前記車室外熱交換器(4)にて吸熱させ、前記第2のバイパス通路(18)を介して前記圧縮機(11)に戻す除湿暖房運転と、
を切り替えるにあたり、
前記第2の膨張装置(14)を絞り状態から閉状態に切り替えることによって前記除湿暖房運転から前記暖房運転に切り替え、また、前記第2の膨張装置(14)を閉状態から絞り状態に切り替えることによって前記暖房運転から前記除湿暖房運転に切り替えることを特徴とする車両用空調装置の運転モード切替制御方法。
The compressor (11), the first heat exchanger (2) arranged in the air conditioning unit (1) and the ventilation amount is adjusted by the damper (10), and the first heat exchanger (2) arranged in the air conditioning unit (1). A second exchanger (3) arranged on the upstream side in the air conditioning unit (1) with respect to the first heat exchanger (2), and an outdoor heat exchanger (4) capable of exchanging heat with the outside air. ), A first expansion device (12) capable of narrowing and opening and closing the refrigerant flow path, and a second expansion device (14) capable of narrowing and closing the refrigerant flow path. death,
The compressor (11), the first heat exchanger (2), the first inflator (12), the outdoor heat exchanger (4), the second inflator (14), and the above. Connect the second heat exchanger (3) in a loop at least in this order.
Between the refrigerant flow path between the first heat exchanger (2) and the first expansion device (12) and between the vehicle interior heat exchanger (4) and the second expansion device (14). Is connected to the refrigerant flow path of the above via a first bypass flow path (16) that can be opened and closed by the first refrigerant control unit (15).
Of the refrigerant flow paths between the vehicle interior heat exchanger (4) and the second expansion device (14), upstream of the merging portion (A) with the first bypass flow path (16). A backflow blocking portion (13) that blocks the flow of the refrigerant from the merging portion (A) to the upstream side is provided, and the refrigerant flow between the vehicle interior heat exchanger (4) and the backflow blocking portion (13). A second bypass flow path (18) provided with a second refrigerant control unit (17) for the refrigerant flow path between the path, the second heat exchanger (3), and the compressor (11). In the operation mode switching control method of a vehicle air conditioner having a refrigeration cycle connected via
The refrigerant discharged from the compressor (11) is dissipated by the first heat exchanger (2), and the dissipated refrigerant is depressurized by the first expansion device (12), and then the outside heat of the passenger compartment is generated. A heating operation in which heat is absorbed by the exchanger (4) and then returned to the compressor (11) via the second bypass passage (18) without passing through the second heat exchanger (3). When,
The refrigerant discharged from the compressor (11) is radiated by the first heat exchanger (2), and the radiated refrigerant is branched, while passing through the first bypass passage (16). After depressurizing with the second inflator (14), heat is absorbed through the second heat exchanger (3), and on the other hand, after depressurizing with the first inflator (12), the outdoor heat exchanger is used. Dehumidifying and heating operation in which heat is absorbed in (4) and returned to the compressor (11) via the second bypass passage (18).
In switching
Switching from the dehumidifying heating operation to the heating operation by switching the second expansion device (14) from the throttle state to the closed state, and switching the second expansion device (14) from the closed state to the throttle state. A method for controlling operation mode switching of an air conditioner for a vehicle, which comprises switching from the heating operation to the dehumidifying heating operation.
前記暖房運転と前記除湿暖房運転とを切り替えるに当たり、前記第1の冷媒制御部(15)を開状態に維持することを特徴とする請求項3記載の車両用空調装置の運転モード切替制御方法。 The operation mode switching control method for a vehicle air conditioner according to claim 3, wherein the first refrigerant control unit (15) is maintained in an open state when switching between the heating operation and the dehumidifying heating operation.
JP2020050545A 2020-03-23 2020-03-23 Vehicle air conditioner and operation mode switching control method Pending JP2021146958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020050545A JP2021146958A (en) 2020-03-23 2020-03-23 Vehicle air conditioner and operation mode switching control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020050545A JP2021146958A (en) 2020-03-23 2020-03-23 Vehicle air conditioner and operation mode switching control method

Publications (1)

Publication Number Publication Date
JP2021146958A true JP2021146958A (en) 2021-09-27

Family

ID=77850638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020050545A Pending JP2021146958A (en) 2020-03-23 2020-03-23 Vehicle air conditioner and operation mode switching control method

Country Status (1)

Country Link
JP (1) JP2021146958A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217947A (en) * 2018-06-21 2019-12-26 株式会社デンソー Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217947A (en) * 2018-06-21 2019-12-26 株式会社デンソー Air conditioner

Similar Documents

Publication Publication Date Title
JP5367186B2 (en) Air conditioner for vehicles
JP6073651B2 (en) Air conditioner for vehicles
JP5929372B2 (en) Refrigeration cycle equipment
JP6418787B2 (en) Air conditioner for vehicles
JP6590558B2 (en) Air conditioner for vehicles
CN112533782A (en) Method for operating a refrigeration system for a vehicle comprising a refrigerant circuit having a heat pump function
WO2011108567A1 (en) Air conditioning apparatus for vehicle and method for switching operation thereof
WO2013145537A1 (en) Air conditioner device for vehicle
JP7117945B2 (en) Heat pump system for vehicle air conditioner
CN112440665A (en) Air conditioner for vehicle
JP5796007B2 (en) Operation control method for vehicle air conditioner
JP3486851B2 (en) Air conditioner
JP6582800B2 (en) Heat exchange system
JP2002019443A (en) Heat pump cycle
WO2019065039A1 (en) Refrigeration cycle device
JP6375796B2 (en) Refrigeration cycle equipment
JP2021146958A (en) Vehicle air conditioner and operation mode switching control method
JP7321906B2 (en) Vehicle air conditioner and operation mode switching method
WO2019167822A1 (en) Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle
JP2022117351A (en) temperature control system
JP2021030825A (en) Vehicle air conditioner
JP2021142871A (en) Vehicle air conditioner and operation mode switching control method
KR100853175B1 (en) Automotive air conditioning system
JP7494139B2 (en) Vehicle air conditioning system
WO2018003352A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231121