WO2019065039A1 - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- WO2019065039A1 WO2019065039A1 PCT/JP2018/031580 JP2018031580W WO2019065039A1 WO 2019065039 A1 WO2019065039 A1 WO 2019065039A1 JP 2018031580 W JP2018031580 W JP 2018031580W WO 2019065039 A1 WO2019065039 A1 WO 2019065039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- refrigerant
- high temperature
- temperature side
- air
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
Definitions
- the present disclosure relates to a refrigeration cycle apparatus.
- the refrigeration cycle of Patent Document 1 has a cooling mode for cooling the air blown into the vehicle compartment, which is an air conditioning target space, a heating mode for heating the blown air, and a dehumidifying heating for reheating the cooled and dehumidified blown air.
- the refrigerant circuit and the like can be switched according to a plurality of operation modes such as the mode.
- the refrigeration cycle apparatus of Patent Document 1 includes a plurality of heat exchangers such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator, and is configured to switch the function of each heat exchanger according to the operation mode. It is done.
- the outdoor heat exchanger functions as a radiator, and the indoor evaporator is switched to a refrigerant circuit functioning as a heat absorber.
- the indoor condenser functions as a radiator and the outdoor heat exchanger is switched to a refrigerant circuit functioning as a heat absorber.
- the indoor condenser functions as a radiator, and both the indoor evaporator and the outdoor heat exchanger are switched to a refrigerant circuit functioning as a heat absorber.
- Patent Document 1 a plurality of heat exchangers are provided, and according to the operation mode, the same heat exchanger (in Patent Document 1, outdoor heat exchanger)
- the refrigerant circuit needs a pressure adjusting valve and a switching valve, which complicates the circuit configuration.
- it is necessary to take an appropriate cycle balance in each operation mode it is also necessary to carry out complicated control when switching.
- the present disclosure is made in view of these points, and it is an object of the present invention to simplify switching control of circuit configuration and operation mode in a refrigeration cycle apparatus including a plurality of heat absorbers and configured to be able to switch the operation mode. I assume.
- a refrigeration cycle apparatus is A compressor that compresses and discharges the refrigerant; A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source; A branch unit that branches the flow of the high pressure refrigerant flowing out of the heating unit; A cooling decompression unit that decompresses the refrigerant that has flowed out from one of the refrigerant outlets in the branching unit; A heat sink for cooling which causes the refrigerant decompressed by the cooling decompression unit to heat exchange with the fluid to be subjected to heat exchange and evaporates; A heating pressure reducing portion that reduces the pressure of the refrigerant flowing out from the other refrigerant outlet in the branch portion; A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it; It has a circuit switching part which switches a refrigerant
- the circuit switching unit includes the refrigerant circuit on the cooling pressure reduction unit and the cooling heat sink side connected to the branch unit, the heating pressure reduction unit, and the heating heat sink side refrigerant circuit Can be switched.
- the refrigerant in the cooling mode, can be heat-exchanged by the heat sink for cooling, and switching can be made to a refrigerant circuit that cools the fluid to be heat-exchanged.
- the heating mode it is possible to switch to a refrigerant circuit that heats the fluid to be heat-exchanged by using the outside air as a heat source by exchanging heat between the outside air and the refrigerant, which are heat source fluids, by the heat absorber for heating.
- the refrigeration cycle apparatus it is not necessary to flow the high-pressure refrigerant into the cooling heat absorber and the heating heat absorber even when switching to any of the refrigerant circuits, so the cycle configuration does not become complicated.
- the refrigerant circuit can be switched with a simple configuration.
- the refrigeration cycle apparatus realizes a plurality of operation modes including a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration.
- a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration.
- a refrigeration cycle apparatus is A compressor that compresses and discharges the refrigerant; A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source; A cooling decompression unit that decompresses the refrigerant flowing out of the heating unit; A heat sink for cooling which causes the refrigerant reduced in pressure in the cooling pressure reduction section and the fluid for heat exchange to exchange heat and evaporate; A heating pressure reducing section that reduces the pressure of the refrigerant flowing from the cooling heat absorber; A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it; It has a circuit switching part which switches a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for cooling, and a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for heating
- the circuit switching unit switches the refrigerant circuit to heat exchange the refrigerant with the heat absorber for cooling in the cooling mode for cooling the heat exchange fluid, and heats the refrigerant for the heat absorber in the heating mode for heating the heat exchange fluid. Switch to the refrigerant circuit that exchanges heat.
- the circuit switching unit can switch between the refrigerant circuit that causes the refrigerant to exchange heat with the heat absorber for cooling and the refrigerant circuit that causes the refrigerant to exchange heat with the heat absorber for heating.
- the refrigerant in the cooling mode, can be heat-exchanged by the heat sink for cooling, and switching can be made to a refrigerant circuit that cools the fluid to be heat-exchanged.
- the heating mode it is possible to switch to a refrigerant circuit that heats the fluid to be heat-exchanged by using the outside air as a heat source by exchanging heat between the outside air and the refrigerant, which are heat source fluids, by the heat absorber for heating.
- the refrigeration cycle apparatus it is not necessary to flow the high-pressure refrigerant into the cooling heat absorber and the heating heat absorber even when switching to any of the refrigerant circuits, so the cycle configuration does not become complicated.
- the refrigerant circuit can be switched with a simple configuration.
- the refrigeration cycle apparatus realizes a plurality of operation modes including a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration.
- a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration.
- the refrigeration cycle apparatus 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains driving power for traveling a vehicle from a traveling electric motor.
- the refrigeration cycle apparatus 10 has a function of adjusting the temperature of the blowing air blown into the vehicle compartment, which is a space to be air conditioned, in the vehicle air conditioner 1. This blowing air corresponds to the heat exchange target fluid in the present disclosure.
- the said vehicle air conditioner 1 can implement
- the plurality of operation modes include a cooling mode, a heating mode, a dehumidifying heating mode, and the like.
- the cooling mode is an operation mode for cooling the air by cooling the air, and is an example of the cooling mode in the present disclosure.
- the heating mode is an operation mode in which the blowing air is heated to heat the vehicle interior, and is an example of the heating mode in the present disclosure.
- the dehumidifying and heating mode is an operation mode in which dehumidified heating is performed by reheating the cooled and dehumidified blowing air, and is an example of the heating mode in the present disclosure.
- an HFC refrigerant (specifically, R134a) is employed as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
- Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
- PAG oil polyalkylene glycol oil
- a portion of the refrigeration oil circulates in the cycle with the refrigerant.
- the compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10, and corresponds to the compressor in the present disclosure.
- the compressor 11 is disposed in a vehicle bonnet.
- the compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed.
- the rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from an air conditioning control device 60 described later.
- the outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side water-refrigerant heat exchanger 12 performs heat exchange between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 to heat the high temperature side heat medium. It is As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
- the high temperature side heat medium circuit 20 is a high temperature side water circuit that circulates the high temperature side heat medium.
- the water passage of the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, the high temperature side flow rate adjustment valve 24 and the like are arranged.
- the high temperature side heat medium pump 21 is a high temperature side water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the high temperature side water-refrigerant heat exchanger 12 in the high temperature side heat medium circuit 20.
- the high temperature side heat medium pump 21 is an electric pump of which the number of revolutions (that is, the water pressure feeding capacity) is controlled by a control voltage output from the air conditioning controller 60.
- the heater core 22 is disposed in a casing 51 of an indoor air conditioning unit 50 described later.
- the heater core 22 is a heat exchanger that heats the blown air by heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 16 described later. is there.
- the heater core 22 corresponds to the heater core in the present disclosure.
- the high temperature side radiator 23 performs heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan 30, and the heat of the high temperature side heat medium is the outside air It is a heat exchanger that radiates heat.
- the high temperature side radiator 23 corresponds to the high temperature side radiator in the present disclosure.
- the high temperature side radiator 23 is disposed on the front side in the vehicle bonnet. Therefore, when the vehicle is traveling, the high-temperature side radiator 23 can also be exposed to the traveling wind. As shown in FIG. 1, in the high temperature side heat medium circuit 20, the heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium.
- the high temperature side flow control valve 24 is constituted by an electric three-way flow control valve, and in the water passage on the outlet side of the high temperature side water-refrigerant heat exchanger 12, the heat medium inlet side of the heater core 22 and the high temperature side radiator It is arranged at the connection with the heat medium inlet side of the reference numeral 23.
- the inlet side of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the heat medium inlet side of the heater core 22 is connected to one outlet of the high temperature side flow control valve 24.
- the heat medium inlet side of the high temperature side radiator 23 is connected to the other outlet of the high temperature side flow control valve 24.
- the high temperature side flow rate adjustment valve 24 flows the high temperature side heat medium flowing into the heater core 22 and the high temperature side flows into the high temperature side radiator 23.
- the high temperature side flow ratio with the flow rate of the heat medium can be adjusted continuously.
- the operation of the high temperature side flow control valve 24 is controlled by a control signal output from the air conditioning controller 60.
- the high temperature side flow rate adjustment valve 24 adjusts the high temperature side flow rate ratio
- the flow rate of the high temperature side heat medium flowing into the heater core 22 changes, and the air flow of the high temperature side heat medium in the heater core 22
- the amount of heat released to the air changes. That is, by adjusting the high temperature side flow rate ratio by the high temperature side flow rate adjustment valve 24, it is possible to adjust the heating amount of the blowing air in the heater core 22.
- a modulator 13 is connected to the outlet of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
- the modulator 13 is a refrigerant storage unit that separates the gas and liquid of the refrigerant flowing out of the high temperature side water-refrigerant heat exchanger 12 and stores the surplus liquid phase refrigerant.
- the modulator 13 is connected to the refrigerant inlet side of the branch portion 14a.
- the branch portion 14 a branches the flow of the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 and the modulator 13.
- the branch portion 14a is formed to be a three-way joint structure having three refrigerant inlets and outlets communicating with each other, one of the three inlets and outlets being a refrigerant inlet and the remaining two being a refrigerant outlet.
- coolant inlet side of the indoor evaporator 16 is connected to one refrigerant
- coolant inlet side of the outdoor evaporator 18 is connected to the other refrigerant
- the branch 14a corresponds to the branch in the present disclosure.
- the cooling expansion valve 15a is a cooling decompression unit that decompresses the refrigerant that has flowed out from one refrigerant outlet of the branching unit 14a at least in the cooling mode and the dehumidifying and heating mode.
- the cooling expansion valve 15a corresponds to the cooling pressure reducing portion in the present disclosure.
- the cooling expansion valve 15 a also functions as a cooling flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16.
- the cooling expansion valve 15a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the cooling expansion valve 15a is configured by a so-called electric expansion valve.
- the valve body of the cooling expansion valve 15a is configured to be able to change the passage opening degree of the refrigerant passage (in other words, the throttle opening degree).
- the electric actuator has a stepping motor that changes the throttle opening of the valve body.
- the operation of the cooling expansion valve 15 a is controlled by a control signal output from the air conditioning control device 60.
- the cooling expansion valve 15a is a variable throttling mechanism having a fully open function of fully opening the refrigerant passage when the throttling degree is fully opened and a fully closing function of closing the refrigerant passage when the throttling degree is fully closed. It is configured.
- the cooling expansion valve 15a can prevent the pressure reducing action of the refrigerant from being exhibited by fully opening the refrigerant passage. Further, the cooling expansion valve 15 a can block the flow of the refrigerant into the indoor evaporator 16 by closing the refrigerant passage. That is, the cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
- the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a.
- the indoor evaporator 16 is disposed in the casing 51 of the indoor air conditioning unit 50.
- the indoor evaporator 16 performs heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 15a and the blown air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blown air. It is an evaporator. That is, the indoor evaporator 16 corresponds to the heat sink for cooling in the present disclosure.
- the inlet side of the evaporation pressure adjusting valve 17 is connected to the refrigerant outlet of the indoor evaporator 16.
- the evaporation pressure adjustment valve 17 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure.
- the evaporation pressure control valve 17 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
- the evaporation pressure control valve 17 is configured to maintain the refrigerant evaporation temperature in the indoor evaporator 16 at a reference temperature (1 ° C. in the present embodiment) that can suppress the formation of frost on the indoor evaporator 16. ing.
- the outlet of the evaporating pressure adjusting valve 17 is connected to one refrigerant inlet side of the merging portion 14b.
- the merging portion 14b has a three-way joint structure similar to that of the branching portion 14a, in which two of the three inlets and outlets are used as a refrigerant inlet and the remaining one is used as a refrigerant outlet. As shown in FIG. 1, the merging portion 14 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 17 and the flow of the refrigerant flowing out of the outdoor evaporator 18.
- the heat absorption expansion valve 15 b is connected to the other refrigerant flow outlet in the branch portion 14 a.
- the heat absorption expansion valve 15 b is a heat absorption decompression section that decompresses and expands the liquid phase refrigerant that has flowed out from the other refrigerant outlet in the branch section 14 a at least in the heating mode and the dehumidifying heating mode.
- the heat absorption expansion valve 15 b functions as a heating pressure reduction unit in the present disclosure.
- the heat absorption expansion valve 15 b functions as a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the outdoor evaporator 18.
- the basic configuration of the heat absorption expansion valve 15b is the same as that of the cooling expansion valve 15a. That is, the heat absorption expansion valve 15b is an electric variable throttle mechanism, and has a valve body and an electric actuator. Then, the heat absorption expansion valve 15b has a full open function and a full close function, as with the cooling expansion valve 15a.
- the heat absorption expansion valve 15b can prevent the depressurizing action of the refrigerant from being exhibited by fully opening the refrigerant passage, and blocking the flow of the refrigerant to the outdoor evaporator 18 by closing the refrigerant passage.
- the heat absorption expansion valve 15b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
- the refrigerant inlet side of the outdoor evaporator 18 is connected to the outlet of the heat absorption expansion valve 15b.
- the outdoor evaporator 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air blown from the outside air fan 30 in at least the heating mode and the dehumidifying heating mode, and evaporates the low pressure refrigerant to make the refrigerant It is an endothermic evaporator that exerts an endothermic effect.
- the outdoor evaporator 18 functions as a heating heat sink in the present disclosure, and the outside air functions as a heat source fluid.
- the outdoor evaporator 18 is disposed on the front side in the vehicle bonnet.
- the other refrigerant inlet side of the merging portion 14 b is connected to the refrigerant outlet of the outdoor evaporator 18.
- the suction port side of the compressor 11 is connected to the refrigerant
- the indoor air conditioning unit 50 which comprises the vehicle air conditioner 1 is demonstrated.
- the indoor air conditioning unit 50 forms an air passage for blowing out the blowing air whose temperature has been adjusted by the refrigeration cycle apparatus 10 to an appropriate place in the vehicle compartment in the vehicle air conditioner 1.
- the indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., instrument panel) at the foremost part of the passenger compartment.
- the indoor air conditioning unit 50 is configured by housing a blower 52, an indoor evaporator 16, a heater core 22 and the like in an air passage formed inside a casing 51 forming the outer shell thereof.
- the casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is molded of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
- an internal / external air switching device 53 is disposed on the most upstream side of the flow of the blown air of the casing 51.
- the inside / outside air switching device 53 switches and introduces inside air (air in the vehicle interior) and outside air (air outside the vehicle) into the casing 51.
- the inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing inside air into the casing 51 and the outside air introduction port for introducing outside air by means of the inside / outside air switching door.
- the introduction rate with the introduction air volume can be changed.
- the inside and outside air switching door is driven by an electric actuator for the inside and outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
- a blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air.
- the blower 52 is constituted by an electric blower which drives a centrifugal multi-blade fan by an electric motor, and functions to blow air taken in via the inside / outside air switching device 53 toward the vehicle interior for blowing.
- the blowing air blown by the blower 52 corresponds to the heat exchange target fluid in the present disclosure.
- the rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the air conditioning control device 60.
- the indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 52. That is, the indoor evaporator 16 is disposed upstream of the heater core 22 in the flow of the blown air.
- a cold air bypass passage 55 is formed, in which the blown air having passed through the indoor evaporator 16 is allowed to bypass the heater core 22 and flow downstream.
- An air mix door 54 is disposed on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22.
- the air mix door 54 adjusts the air volume ratio of the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 55 in the blown air after passing through the indoor evaporator 16.
- the air mix door 54 is driven by an electric actuator for driving the air mix door.
- the operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
- a mixing space 56 for mixing the air heated by the heater core 22 and the air not passing through the cold air bypass passage 55 and not heated by the heater core 22.
- an opening for blowing out the air (air-conditioned air) mixed in the mixing space into the vehicle compartment is disposed.
- the face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
- the foot opening hole is an opening hole for blowing the conditioned air toward the feet of the occupant.
- the defroster opening hole is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
- face opening holes, foot opening holes, and defroster opening holes are respectively provided in the passenger compartment via a duct that forms an air passage, face outlet, foot outlet, and defroster outlet (all not shown) )It is connected to the.
- the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio of the air volume passing the heater core 22 and the air volume passing the cold air bypass passage 55 by the air mix door 54.
- the temperature of the air (air-conditioned air) blown out from the outlets into the vehicle compartment is also adjusted.
- a defroster door (not shown) is arranged to adjust the opening area of the hole.
- These face door, foot door, and defroster door constitute an air outlet mode switching device that switches the air outlet from which the conditioned air is blown out.
- the face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are operated to rotate in conjunction with each other.
- the operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
- the air conditioning control device 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof.
- the air-conditioning control apparatus 60 performs various calculations and processing based on the air-conditioning control program memorize
- the control target devices in the first embodiment include the compressor 11, the cooling expansion valve 15a, the heat absorption expansion valve 15b, the high temperature side heat medium pump 21, the high temperature side flow control valve 24, and the outside air fan 30. , The blower 52 and the like are included.
- an inside air temperature sensor 62a As shown in FIG. 2, on the input side of the air conditioning controller 60, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, an air conditioning air temperature sensor 62f, an outlet side temperature A sensor group for air conditioning control such as the sensor 62g is connected.
- the air conditioning control device 60 receives detection signals of these air conditioning control sensors.
- the inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr.
- the outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam.
- the solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior.
- the high pressure sensor 62 d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 15 a or the heat absorption expansion valve 15 b.
- the evaporator temperature sensor 62 e is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16.
- the air conditioning air temperature sensor 62f is an air conditioning air temperature detection unit that detects the temperature of the air that is blown into the vehicle compartment.
- the outlet-side temperature sensor 62 g is an outlet-side temperature detection unit that detects the outlet-side temperature Te of the refrigerant on the outlet side of the outdoor evaporator 18.
- an operation panel 61 disposed in the vicinity of the instrument panel at the front of the vehicle interior is connected. Accordingly, operation signals from various operation switches provided on the operation panel 61 are input to the air conditioning control device 60.
- an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1
- a cooling switch for requesting cooling of the vehicle interior
- a blower 52 There are an air volume setting switch for manually setting the air volume, a temperature setting switch for setting the target temperature Tset in the vehicle interior, and the like.
- control unit for controlling various control target devices connected to the output side is integrally configured, but the configuration for controlling the operation of each control target device (hardware and software ) Constitute a control unit that controls the operation of each control target device.
- the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a.
- a circuit switching control unit 60b controls the operation of the cooling expansion valve 15a and the heat absorption expansion valve 15b as a circuit switching unit.
- the structure for determining the danger of the frost formation in the outdoor evaporator 18, etc. among the air-conditioning control apparatuses 60 is the frosting determination part 60c.
- the frost formation determining unit 60c is implemented by a control program for determination that is executed at predetermined intervals as a subroutine of the air conditioning control program. Specifically, when the outlet side temperature Te detected by the outlet side temperature sensor 62g is lower than a value obtained by subtracting a predetermined reference temperature ⁇ from the outside air temperature Tam detected by the outside air temperature sensor, The frost determination unit 60 c determines that there is a risk of frost formation in the outdoor evaporator 18.
- the operation mode can be appropriately switched from the plurality of operation modes.
- the switching of these operation modes is performed by executing the air conditioning control program stored in advance in the air conditioning control device 60.
- the target blowout temperature TAO of the air to be blown into the vehicle compartment is calculated. calculate. Then, the operation mode is switched based on the target blowout temperature TAO and the detection signal.
- the operation in the cooling mode and the operation in the heating mode will be described below.
- the cooling mode is an operation mode in which the blowing air, which is a heat exchange target fluid, is cooled and blown into the vehicle compartment, and is an example of the cooling mode in the present disclosure.
- the air conditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ branching portion 14a ⁇ cooling expansion valve 15a ⁇ indoor evaporator 16 ⁇ evaporation pressure control valve 17 ⁇ merge
- a vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the part 14 b ⁇ the compressor 11 is configured.
- the refrigerant in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to the refrigerant circuit for cooling the blowing air by heat exchange with the blowing air.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side.
- the air conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO.
- the target evaporation temperature TEO is determined based on the target blowing temperature TAO with reference to the control map for the cooling mode stored in advance in the air conditioning control device 60.
- the target evaporation temperature TEO is raised along with the rise of the target blowout temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to be a value in a range (specifically, 1 ° C. or more) in which frost formation of the indoor evaporator 16 can be suppressed.
- the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode determined in advance. Further, the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out from the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
- the air conditioning control device 60 determines the control voltage (blowing capacity) of the blower 52 with reference to the control map stored in advance in the air conditioning control device 60 based on the target blowing temperature TAO. Specifically, in this control map, the air flow of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO, and as the intermediate temperature region is approached. Reduce air flow.
- the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed.
- the air-conditioning control device 60 appropriately controls the operation of the other various control target devices.
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
- the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
- the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
- the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
- the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the merging portion 14 b and compressed again.
- the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
- the heating mode is an operation mode in which the outdoor evaporator 18 absorbs heat from the outside air, which is the heat source fluid, and heats the blowing air, which is the heat exchange target fluid, to blow the air into the vehicle compartment. It is an example of a heating mode.
- the air conditioning control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ the modulator 13 ⁇ the branch portion 14a ⁇ the heat absorption expansion valve 15b ⁇ the outdoor evaporator 18 ⁇ the merging portion 14b ⁇ the compressor 11
- a vapor compression type refrigeration cycle in which the refrigerant circulates is configured.
- the refrigerant in the heating mode, the refrigerant is caused to flow into the outdoor evaporator 18, and switching to a refrigerant circuit that heats the blowing air is performed using heat absorbed by heat exchange with the outside air.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side.
- the air-conditioning control device 60 controls the operation of the compressor 11 such that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 62d becomes the target high-pressure PCO.
- the target high pressure PCO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode stored in advance in the air conditioning control device 60.
- the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
- the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode.
- the air conditioning controller 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22.
- the air-conditioning control apparatus 60 determines the control voltage (blower capability) of the air blower 52 similarly to air conditioning mode. Further, the air conditioning control device 60 controls the operation of the air mix door 54 so as to fully open the air passage on the heater core 22 side and close the cold air bypass passage 55. The air conditioning control device 60 appropriately controls the operation of various other control target devices.
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
- blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
- the high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the outdoor evaporator 18 is in a gas-liquid two-phase state.
- the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the outdoor evaporator 18.
- the refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates.
- the refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 via the merging portion 14b and compressed again.
- heating of the vehicle interior can be performed by heating the blown air, which is the fluid to be heat-exchanged, with the heater core 22 and blowing it out into the vehicle interior.
- (C) Dehumidifying and heating mode In the dehumidifying and heating mode, the air which is the heat exchange target fluid cooled by the indoor evaporator 16 is heated by heat absorbed from the outside air which is the heat source fluid by the outdoor evaporator 18 It is an operation mode which blows air indoors, and is an example of a heating mode in this indication.
- the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree.
- the refrigerant flows from the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ branch portion 14a, and one side of the branch portion 14a ⁇ cooling expansion valve 15a ⁇ indoor evaporation It flows to the vessel 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18.
- the refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side with reference to the control map for the dehumidifying heating mode and the like stored in advance in the air conditioning control device 60. .
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium that has flowed into the heater core 22 exchanges heat with the blowing air cooled by the indoor evaporator 16 and radiates heat since the air mixing door 54 fully opens the air passage on the heater core 22 side.
- the blowing air which is the heat exchange target fluid
- the temperature of the blowing air approaches the target blowing temperature TAO.
- the high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
- the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
- the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
- the refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the merging portion 14 b and compressed again.
- the high pressure refrigerant branched at the branch portion 14a flows into the heat absorption expansion valve 15b and is decompressed.
- the throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the outdoor evaporator 18 is in a gas-liquid two-phase state.
- the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the outdoor evaporator 18.
- the refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates.
- the refrigerant that has flowed out of the outdoor evaporator 18 merges with the refrigerant that has passed through the indoor evaporator 16 and the evaporation pressure adjusting valve 17 at the merging portion 14b, and is drawn into the compressor 11 and compressed again.
- the heater core 22 is disposed on the downstream side of the air flow of the indoor evaporator 16 inside the casing 51. Therefore, in the dehumidifying and heating mode, the air cooled by the indoor evaporator 16 is evaporated outside the room. The heat absorbed by the vessel 18 can be used to heat the heater core 22.
- the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
- the cycle configuration tends to be complicated.
- the refrigeration cycle apparatus 10 according to the first embodiment there is no switching between the refrigerant circuit that causes the high pressure refrigerant to flow into the same heat exchanger and the refrigerant circuit that causes the low pressure refrigerant to flow.
- the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
- the refrigerant evaporation temperature in the outdoor evaporator 18 may be lower than the outside air temperature. For this reason, in the heating mode or the like, frost may occur on the outdoor evaporator 18. When frost formation occurs, the heat exchange performance of the outdoor evaporator 18 is reduced, and thus the heating performance of the vehicle air conditioner 1 is reduced.
- the configuration shown in FIG. 3 is adopted, and part of the heat radiated on the cycle high pressure side It utilizes and the suppression and the defrost of frost in the outdoor evaporator 18 are implement
- the heat exchange portion of the outdoor evaporator 18 is a heat exchange portion of the high temperature side radiator 23 in the high temperature side heat medium circuit 20 by the plurality of heat transfer fins 31 having thermal conductivity. Connected to.
- the heat transfer fins 31 are formed by sharing a part of the outdoor evaporator 18 or a part of the high temperature side radiator 23 (for example, heat exchange fins), and are formed using a heat transferable metal. ing.
- the heat transfer fins 31 correspond to the heat transfer members in the present disclosure.
- the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected by a plurality of heat transfer fins 31 and configured to be able to transmit the heat radiated by the high temperature side radiator 23 to the outdoor evaporator 18 ing.
- the heat transfer member in the present disclosure is not limited to the heat transfer fins 31 configured by sharing heat exchange fins.
- various configurations can be adopted as long as heat can be transferred from the high temperature side radiator 23 to the outdoor evaporator 18, and the components of the outdoor evaporator 18 and the high temperature side radiator 23 It is also possible to use separate members having thermal conductivity instead of being common.
- the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 which is the low temperature side.
- the heating mode, the dehumidifying heating mode, etc. are executed, the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted.
- the flow rate of the high temperature side heat medium is increased to the high temperature side radiator 23 side rather than the heater core 22 side.
- more heat is transferred from the high temperature side radiator 23 to the outdoor evaporator 18 through the heat transfer fins 31, so that the outdoor evaporator 18 can be defrosted quickly.
- the flow rate of the high temperature side heat medium is controlled to be smaller toward the high temperature side radiator 23 than the heater core 22 side. Therefore, the frost formation of the outdoor evaporator 18 can be suppressed, maintaining the heating capability of the blowing air by the heater core 22 as much as possible.
- the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b, and the outdoor evaporator 18 side can be switched.
- the refrigerant reduced in pressure by the cooling expansion valve 15a is subjected to heat exchange in the indoor evaporator 16, and the heat exchange target fluid is used. Some blast air can be cooled.
- the refrigerant reduced in pressure by the heat absorption expansion valve 15b is subjected to heat exchange between the outdoor air as the heat source fluid and the refrigerant in the outdoor evaporator 18. By doing this, it is possible to heat the blown air using the outside air as a heat source.
- the refrigerant depressurized by the heat absorption expansion valve 15b is heated by the outdoor evaporator 18 to heat the outside air as the heat source fluid and the refrigerant.
- the blowing air cooled by the indoor evaporator 16 can be heated using the outside air as a heat source.
- the refrigeration cycle apparatus 10 even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration.
- the refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
- the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the high temperature side radiator 23 of the high temperature side heat medium circuit 20 constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 includes the high temperature side water-refrigerant heat exchanger 12, and the heater core 22 is disposed in the high temperature side heat medium circuit 20 for circulating the high temperature side heat medium. Therefore, in the heating mode or the like, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 can be caused to flow into the heater core 22 to heat the blowing air.
- the high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. Accordingly, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be dissipated to the outside air, and cooling of the vehicle interior can be appropriately performed in the cooling mode.
- the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected, and the heat which the high temperature side heat medium in the high temperature side heat medium circuit 20 has is transmitted to the outdoor evaporator 18 it can.
- the heat exchange portion of the outdoor evaporator 18 and the heat exchange portion of the high temperature side radiator 23 are connected by a plurality of heat transfer fins 31.
- the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 through the plurality of heat transfer fins 31, so that the progress of frost formation in the outdoor evaporator 18 can be suppressed, or the outdoor Defrosting of the evaporator 18 can be performed.
- the refrigeration cycle apparatus 10 is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
- the vehicle air conditioner 1 includes the refrigeration cycle apparatus 10, the high temperature side heat medium circuit 20, and the indoor air conditioning unit 50 as in the first embodiment. Is configured.
- the configurations of the high temperature side heat medium circuit 20 and the indoor air conditioning unit 50 in the second embodiment are the same as in the first embodiment. Therefore, the description about these is omitted.
- the high temperature side heat medium circuit 20 including the high temperature side water-refrigerant heat exchanger 12 functions as the heating unit of the present disclosure.
- the arrangement of the cooling expansion valve 15a, the heat absorption expansion valve 15b, the indoor evaporator 16, and the outdoor evaporator 18 is different from that of the first embodiment described above. That is, also in the second embodiment, the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11, and the refrigerant outlet of the high temperature side water-refrigerant heat exchanger 12 The modulator 13 is connected to the side.
- the modulator 13 is connected to a cooling expansion valve 15 a.
- the cooling expansion valve 15 a is an electric expansion valve, and is a cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the high temperature side water-refrigerant heat exchanger 12.
- the cooling expansion valve 15a has a fully open function and a fully closed function, and functions as a pressure reducing section that reduces the pressure of the refrigerant and as a circuit switching section that switches the refrigerant circuit. And have.
- the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a.
- the indoor evaporator 16 is disposed inside the casing 51 of the indoor air conditioning unit 50, and is a cooling evaporator that exchanges heat between the low pressure refrigerant and the blowing air to evaporate the low pressure refrigerant and cool the blowing air. That is, the indoor evaporator 16 corresponds to the heat sink for cooling in the present disclosure.
- an endothermic expansion valve 15 b is connected to the refrigerant outlet of the indoor evaporator 16.
- the heat absorption expansion valve 15 b is an electric expansion valve, and is a heating pressure reduction unit that reduces the pressure of the refrigerant flowing out of the indoor evaporator 16.
- the heat absorption expansion valve 15b has a fully open function and a fully closed function, and functions as a pressure reducing section that reduces the pressure of the refrigerant and as a circuit switching section that switches the refrigerant circuit. And have.
- a three-way valve 16 b is disposed between the outlet of the cooling expansion valve 15 a and the refrigerant inlet side of the indoor evaporator 16.
- a bypass passage 16a is connected to one outlet of the three-way valve 16b.
- the other end side of the bypass flow passage 16 a is connected between the refrigerant outlet side of the indoor evaporator 16 and the inlet of the heat absorption expansion valve 15 b.
- the three-way valve 16 b functions as a circuit switching unit in the present disclosure.
- the refrigerant inlet side of the outdoor evaporator 18 is connected to the outlet of the heat absorption expansion valve 15b.
- the outdoor evaporator 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air blown from the outside air fan 30 in the dehumidifying and heating mode etc., evaporates the low pressure refrigerant and absorbs heat to the refrigerant. It is an endothermic evaporator that exerts That is, the outdoor evaporator 18 functions as a heat sink for heating in the present disclosure, and the outside air functions as a heat source fluid.
- the suction port side of the compressor 11 is connected to the refrigerant outlet side of the outdoor evaporator 18. That is, in the refrigeration cycle apparatus 10 according to the second embodiment, the indoor evaporator 16 and the outdoor evaporator 18 are connected in series.
- the control system of the vehicle air conditioner 1 according to the second embodiment is basically the same as that of the first embodiment, and thus the description thereof will be omitted.
- the vehicle air conditioner 1 according to the second embodiment can appropriately switch the operation mode from a plurality of operation modes. Similar to the first embodiment, these operation modes are switched by executing an air conditioning control program stored in advance in the air conditioning control device 60. Among the plurality of operation modes, the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described below.
- the cooling mode is an operation mode for cooling the air, which is the fluid to be heat-exchanged, and blowing it into the vehicle compartment, and is an example of the cooling mode in the present disclosure.
- the air conditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state.
- the three-way valve 16b is controlled to close the bypass flow passage 16a.
- the refrigerant flowing out of the cooling expansion valve 15 a flows into the indoor evaporator 16.
- the compressor 11 in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇ indoor evaporator 16 ⁇ heat absorption expansion valve 15b ⁇ outdoor
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 ⁇ the compressor 11 is configured.
- the refrigerant in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to a refrigerant circuit intended to cool the blowing air by heat exchange with the blowing air.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
- the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined cooling mode.
- the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out from the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
- the air conditioning control device 60 determines the control voltage (blowing capacity) of the blower 52 with reference to the control map stored in advance in the air conditioning control device 60 based on the target blowing temperature TAO. Further, the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices.
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled.
- the high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
- the low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16.
- the refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
- the refrigerant flowing out of the indoor evaporator 16 flows into the outdoor evaporator 18 without being reduced in pressure by the heat absorption expansion valve 15 b, and is sucked into the compressor 11 again with almost no heat exchange in the outdoor evaporator 18. It is compressed.
- cooling of the vehicle interior can be performed by blowing the blown air cooled by the indoor evaporator 16 into the vehicle interior.
- (B) Heating mode In the heating mode in the second embodiment, the air which is the heat exchange fluid is heated by the outdoor evaporator 18 using the heat absorbed from the outside air which is the heat source fluid and blown into the vehicle interior Operation mode, which is an example of the heating mode in the present disclosure.
- the air conditioning control device 60 In the heating mode, the air conditioning control device 60 fully opens the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree. At this time, the three-way valve 16b is controlled to fully open the bypass flow passage 16a. As a result, the refrigerant that has passed through the cooling expansion valve 15a flows into the heat absorption expansion valve 15b via the bypass flow path 16a without flowing into the indoor evaporator 16.
- the compressor 11 in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ three-way valve 16 b ⁇ bypass flow path 16 a ⁇ heat absorption expansion valve 15 b ⁇ outdoor evaporator 18 ⁇ compressor
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured. That is, in the heating mode, the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blown air by using the heat absorbed by the outdoor evaporator 18.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
- the throttle opening degree of the heat absorption expansion valve 15b is determined based on the target blowout temperature TAO or the like with reference to the control map regarding the heating mode.
- the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode.
- the air conditioning controller 60 controls the operation of the high temperature side flow control valve 24 so that the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 side.
- the control signal output to the servo motor of the air mix door 54 is completely opened by the air mix door 54 when the air mix door 54 fully opens the air passage on the heater core 22 side. It is determined to pass through the air passage on the heater core 22 side.
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
- blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
- the high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the pressure is reduced until it becomes a low pressure refrigerant.
- the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the outdoor evaporator 18, absorbs heat from the outside air which is a heat source fluid blown from the outside air fan 30, and evaporates.
- the refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 as it is and compressed again.
- heating the blown air to the vehicle interior by heating the blown air by the heater core 22 can heat the vehicle interior.
- (C) Dehumidifying / heating mode In the dehumidifying / heating mode in the second embodiment, heat generated by absorbing air, which is a heat exchange target fluid cooled by the indoor evaporator 16, from outside air, which is a heat source fluid, by the outdoor evaporator 18. It is an operation mode which heats using the above, and ventilates a vehicle interior, and is an example of a heating mode in this indication.
- the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to close the bypass flow passage 16a. Thus, the refrigerant that has passed through the cooling expansion valve 15a flows into the indoor evaporator 16 without flowing into the bypass flow passage 16a.
- the compressor 11 in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇ indoor evaporator 16 ⁇ heat absorption expansion valve 15b ⁇
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 ⁇ the compressor 11 is configured.
- the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit aiming to heat using the heat absorbed by the outdoor evaporator 18.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group.
- the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b is determined based on the target blowing temperature TAO or the like with reference to the control map related to the dehumidifying and heating mode.
- the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined dehumidifying and heating mode.
- the air conditioning control device 60 controls the operation of the high temperature side flow control valve 24 so that the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows at least into the heater core 22 side.
- the air conditioning control device 60 controls the operation of the high temperature side flow rate adjustment valve 24 so that the high temperature side heat medium flows in to both the heater core 22 side and the high temperature side radiator 23 side as necessary. Do.
- the balance between the flow rate on the heater core 22 side and the flow rate on the high temperature side radiator 23 is also appropriately changed according to the conditions such as the target blowout temperature TAO in the dehumidifying and heating mode.
- the control signal output to the servo motor of the air mix door 54 is completely opened by the air mix door 54 when the air mix door 54 fully opens the air passage on the heater core 22 side. It is determined to pass through the air passage on the heater core 22 side.
- the flow of the refrigerant is the same as that of the above-described cooling mode, but the refrigerant pressure reduction amounts in the cooling expansion valve 15a and the heat absorption expansion valve 15b are different. Further, the operation mode of the vehicle air conditioner 1 also differs in the presence or absence of heating of the blowing air in the heater core 22.
- the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12.
- the high temperature side heat medium pump 21 since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
- the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24.
- the high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
- blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO.
- the high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- part of the high temperature side heat medium flows into the high temperature side radiator 23 by the operation of the high temperature side flow control valve 24.
- the high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat.
- the high temperature side heat medium is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
- the low pressure refrigerant decompressed by the cooling expansion valve 15a passes through the three-way valve 16b, flows into the indoor evaporator 16, absorbs heat from the air blown from the blower 52, and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
- the low pressure refrigerant flowing out of the indoor evaporator 16 flows into the heat absorption expansion valve 15b and is further depressurized.
- the low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the outdoor evaporator 18, absorbs heat from the outside air which is a heat source fluid blown from the outside air fan 30, and evaporates.
- the refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 as it is and compressed again.
- dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 with the heater core 22 and blowing it out into the passenger compartment.
- the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
- the refrigerant circuit for causing the high pressure refrigerant to flow into the same heat exchanger and the refrigerant circuit for causing the low pressure refrigerant to flow are not switched.
- the refrigerant circuit can be switched with a simple configuration without causing complication of the configuration.
- the outdoor evaporator 18 forms frost as in the first embodiment. There is a risk of
- the configuration shown in FIG. 5 is adopted, and part of the heat radiated on the cycle high pressure side It utilizes and the suppression and the defrost of frost in the outdoor evaporator 18 are implement
- the outdoor evaporator 18 and the high temperature side radiator 23 are aligned with respect to the blowing direction W of the outside air by the outside air fan 30, and the outside air blown by the outside air fan 30 is the outdoor evaporator 18. And the high temperature side radiator 23.
- the outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W of the outside air by the outside air fan 30.
- the high temperature side heat medium is caused to flow not only to the heater core 22 but also to the high temperature side radiator 23 by controlling the operation of the high temperature side flow control valve 24. Therefore, the heat of the high temperature side heat medium is radiated to the outside air passing through the high temperature side radiator 23 in the blowing direction W.
- the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected via the outside air flowing in the blowing direction W, and the heat radiated by the high temperature side radiator 23 is outdoor It is configured to be communicable with the evaporator 18.
- the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 which is the low temperature side.
- the refrigeration cycle apparatus 10 when the heating mode, the dehumidifying heating mode, etc. are executed, the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted.
- the high temperature side radiator is adapted to the progress of frost formation on the outdoor evaporator 18.
- the heat on the 23 side can be transmitted.
- the operation of the high temperature side flow control valve 24 is controlled so that the high temperature side heat medium flows more to the high temperature side radiator 23 than the heater core 22 side.
- the high temperature side radiator 23 can be defrosted quickly.
- the operation of the high temperature side flow control valve 24 is controlled so that the high temperature side heat medium flows more to the heater core 22 side than the high temperature side radiator 23 side.
- frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity in the dehumidifying and heating mode.
- the heat absorbed from the outside air at 18 can be used to switch to a refrigerant circuit that mainly heats the blown air.
- the refrigerant decompressed by the cooling expansion valve 15a is subjected to heat exchange in the indoor evaporator 16, It is possible to cool the blowing air which is the fluid to be heat-exchanged.
- the refrigerant reduced in pressure by the heat absorption expansion valve 15b is subjected to heat exchange between the outdoor air as the heat source fluid and the refrigerant in the outdoor evaporator 18. By doing this, it is possible to heat the blown air using the outside air as a heat source.
- the refrigerant depressurized by the heat absorption expansion valve 15b is heated by the outdoor evaporator 18 to heat the outside air as the heat source fluid and the refrigerant.
- the blowing air cooled by the indoor evaporator 16 can be heated using the outside air as a heat source.
- the refrigeration cycle apparatus 10 in the configuration in which the indoor evaporator 16 and the outdoor evaporator 18 are connected in series, even when switching to any refrigerant circuit, high pressure to the indoor evaporator 16 and the outdoor evaporator 18 Since there is no need to introduce the refrigerant, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode and the heating mode without causing the complication of the cycle configuration.
- the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber.
- the high-pressure refrigerant does not flow into the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 according to the second embodiment includes the high temperature side water-refrigerant heat exchanger 12, and the heater core 22 is disposed in the high temperature side heat medium circuit 20 for circulating the high temperature side heat medium. . Furthermore, a high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. Therefore, the refrigeration cycle apparatus 10 according to the second embodiment exhibits the same effects as the first embodiment in this respect.
- the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected, and the heat which the high temperature side heat medium in the high temperature side heat medium circuit 20 has is transmitted to the outdoor evaporator 18 it can.
- the outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W of the outside air by the outside air fan 30. Thereby, the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 through the outside air blown in the air blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed.
- the outdoor evaporator 18 can be defrosted.
- the refrigeration cycle apparatus 10 according to the third embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
- the high temperature side water-refrigerant heat exchanger 12 As shown in FIG. 6, in the vehicle air conditioner 1 according to the third embodiment, the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium circuit 20 and the like in the first embodiment are eliminated and a heating unit is provided.
- the indoor condenser 12a and the outdoor heat exchanger 12b are employed.
- the indoor condenser 12a and the outdoor heat exchanger 12b function as the heating unit in the present disclosure.
- the configuration according to the third embodiment is basically the same as the first embodiment except for this point.
- An indoor condenser 12 a is connected to the discharge port side of the compressor 11 according to the third embodiment.
- the indoor condenser 12 a is a heat exchanger that heats the blown air by heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air.
- the indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 and at the same position as the heater core 22 in the first embodiment.
- the indoor condenser 12a corresponds to the indoor condenser in the present disclosure.
- An outdoor heat exchanger 12 b is connected to the refrigerant outlet side of the indoor condenser 12 a.
- the outdoor heat exchanger 12 b is a heat exchanger that causes the refrigerant flowing out of the indoor condenser 12 a and the outside air blown from the outside air fan 30 to exchange heat, thereby radiating the heat of the refrigerant to the outside air. Therefore, the outdoor heat exchanger 12 b corresponds to the outdoor radiator in the present disclosure.
- the outdoor heat exchanger 12b is disposed on the front side in the vehicle bonnet.
- a branch portion 14 a is connected to the refrigerant outlet side of the outdoor heat exchanger 12 b via the modulator 13.
- the other configuration is the same as that of the first embodiment.
- the shutter mechanism which is not shown in figure is arrange
- the said shutter mechanism is comprised so that the external air flow path which distribute
- the operation mode is switched by executing the air conditioning control program.
- the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
- the cooling mode according to the third embodiment is an example of the cooling mode in the present disclosure.
- the air conditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
- the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the branch portion 14a ⁇ the cooling expansion valve 15a ⁇ the indoor evaporator 16 ⁇ the evaporation pressure regulating valve 17 ⁇
- a vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the merging portion 14 b ⁇ the compressor 11 is configured.
- the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air flow path of the outdoor heat exchanger 12b.
- the other control target devices are controlled in the same manner as the cooling mode of the first embodiment.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a.
- the air mix door 54 fully opens the cold air bypass passage 55 to close the air passage on the indoor condenser 12 a side. For this reason, the refrigerant which has flowed into the indoor condenser 12a flows out from the indoor condenser 12a and flows into the outdoor heat exchanger 12b with little heat being released to the blown air.
- the refrigerant that has flowed into the outdoor heat exchanger 12b releases heat to the outside air and condenses because the shutter mechanism opens the outdoor air passage of the outdoor heat exchanger 12b. And the refrigerant which flowed out of outdoor heat exchanger 12b flows into expansion valve 15a for cooling via branching part 14a, and is pressure-reduced.
- the subsequent operation is the same as that of the cooling mode of the first embodiment.
- the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
- the heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment.
- the air conditioning control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
- the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the branch portion 14a ⁇ the heat absorption expansion valve 15b ⁇ the outdoor evaporator 18 ⁇ the junction 14b ⁇ the compressor
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured.
- the air conditioning control device 60 controls the operation of the shutter mechanism so that the outside air flow path of the outdoor heat exchanger 12b has an opening smaller (for example, almost closed) than in the fully open state.
- the air conditioning control device 60 controls similarly to the heating mode of 1st Embodiment.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a.
- the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant that has flowed into the indoor condenser 12a releases heat to the blown air and condenses. As a result, the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO.
- the refrigerant flowing out of the indoor condenser 12a flows into the outdoor heat exchanger 12b.
- the refrigerant flowing into the outdoor heat exchanger 12b is released according to the opening degree because the shutter mechanism makes the outside air path of the outdoor heat exchanger 12b smaller (for example, almost closed) than the fully open state.
- the heat is discharged from the outdoor heat exchanger 12b. Basically, in the outdoor heat exchanger 12b, the heat is hardly radiated to the outside air, and is released at the time of frost formation suppression or defrosting which will be described later.
- the refrigerant that has flowed out of the outdoor heat exchanger 12b flows into the heat absorption expansion valve 15b via the branch portion 14a and is decompressed.
- the subsequent operation is the same as the heating mode of the first embodiment.
- the heating mode it is possible to heat the vehicle interior by blowing the blown air heated by the indoor condenser 12a into the vehicle interior.
- the dehumidifying and heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment.
- the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined throttle opening.
- the refrigerant flows from the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the branch part 14a, and one side of the branch part 14a It flows to the indoor evaporator 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18.
- the refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the first embodiment.
- the operation mode of heating the blown air by the indoor condenser 12a is the same as the heating mode in the third embodiment.
- the operation aspect which concerns on another structure is the same as that of the dehumidification heating mode which concerns on 1st Embodiment mentioned above. Therefore, the repeated explanation of these points is omitted.
- the dehumidifying and heating of the vehicle interior is performed by heating the blown air cooled by the indoor evaporator 16 by the indoor condenser 12a and blowing it out into the vehicle interior.
- the dehumidifying and heating of the vehicle interior is performed by heating the blown air cooled by the indoor evaporator 16 by the indoor condenser 12a and blowing it out into the vehicle interior.
- the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
- the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
- the outdoor evaporator 18 may be frosted in the heating mode or the dehumidifying heating mode.
- the configuration shown in FIG. 7 is adopted, and the outdoor evaporator is utilized by utilizing a part of the heat radiated on the cycle high pressure side. The control of frost formation and defrosting at 18 is realized.
- the outdoor heat exchanger 12 b and the outdoor evaporator 18 are arranged side by side with respect to the blowing direction W of the outside air by the outside air fan 30. That is, the outside air blown in the blowing direction W by the outside air fan 30 is disposed to pass through the outdoor heat exchanger 12 b and the outdoor evaporator 18.
- the outdoor evaporator 18 which concerns on 3rd Embodiment is arrange
- the heat of the high-pressure refrigerant is radiated to the outside air in the outdoor heat exchanger 12b by controlling the operation of the shutter mechanism.
- the outside air flows in the blowing direction W by the outside air fan 30 and passes through the outdoor evaporator 18.
- heat exchange is performed between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air.
- the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected via the outside air flowing in the blowing direction W, and the heat dissipated by the outdoor heat exchanger 12b Can be transmitted to the outdoor evaporator 18.
- the heat radiated by the outdoor heat exchanger 12 b can be transmitted to the outdoor evaporator 18 on the low temperature side, and the heat is absorbed in the outdoor evaporator 18. It is possible to suppress the progress of frost or to defrost the outdoor evaporator 18.
- the progress of frost formation on the outdoor evaporator 18 determined similar to the frost determination unit 60c by adjusting the amount of heat release to the outside air by controlling the opening degree of the outside air passage by the shutter mechanism in the outdoor heat exchanger 12b.
- the heat on the outdoor heat exchanger 12 b side can be transmitted according to the situation.
- the shutter mechanism is controlled to increase the opening degree of the outdoor air passage.
- the amount of heat released from the outdoor heat exchanger 12b with respect to the outside air flowing in the blowing direction W can be increased, and a large amount of heat can be transmitted from the outdoor heat exchanger 12b to the outdoor evaporator 18 via the outside air. For this reason, defrosting of the outdoor evaporator 18 can be performed rapidly.
- the shutter mechanism controls the opening degree of the outside air passage to a small opening degree without closing the opening degree.
- frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity in the heating mode.
- the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b as in the first embodiment. And the refrigerant circuit on the outdoor evaporator 18 side can be switched.
- the refrigeration cycle apparatus 10 even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration.
- the refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
- the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the outdoor heat exchanger 12 b constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 includes an indoor condenser 12a. Therefore, in the heating mode or the like, the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blowing air, which is the fluid for heat exchange, can be directly heat-exchanged to heat the blowing air.
- the refrigerating cycle device 10 of the third embodiment includes the outdoor heat exchanger 12 b. Accordingly, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be dissipated to the outside air, and cooling of the vehicle interior can be appropriately performed in the cooling mode.
- the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected, and the heat which the high pressure refrigerant
- the outdoor evaporator 18 is disposed downstream of the outdoor heat exchanger 12 b with respect to the blowing direction W of the outside air by the outside air fan 30. Thereby, the heat dissipated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 through the outside air blown in the blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed. It is also possible to defrost the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 according to the fourth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle, as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
- the vehicle air conditioner 1 eliminates the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium circuit 20 and the like in the second embodiment as a heating unit.
- the indoor condenser 12a and the outdoor heat exchanger 12b are adopted.
- the indoor condenser 12a and the outdoor heat exchanger 12b function as the heating unit in the present disclosure.
- the configuration according to the fourth embodiment is basically the same as the second embodiment except this point.
- the indoor condenser 12a is connected to the discharge port side of the compressor 11 according to the fourth embodiment.
- the indoor condenser 12 a is a heat exchanger that heats the blown air by heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air.
- the indoor condenser 12a is disposed similarly to the indoor condenser 12a in the third embodiment, and corresponds to the indoor condenser in the present disclosure.
- An outdoor heat exchanger 12 b is connected to the refrigerant outlet side of the indoor condenser 12 a.
- the outdoor heat exchanger 12 b is a heat exchanger that causes the refrigerant flowing out of the indoor condenser 12 a and the outside air blown from the outside air fan 30 to exchange heat, thereby radiating the heat of the refrigerant to the outside air. Therefore, the outdoor heat exchanger 12 b corresponds to the outdoor radiator in the present disclosure.
- a shutter mechanism (not shown) is disposed upstream of the outdoor heat exchanger 12b from the outside air flow. As in the third embodiment, the shutter mechanism is configured to open and close the outside air flow path for circulating the outside air by the outdoor heat exchanger 12 b.
- a cooling expansion valve 15 a is connected to the refrigerant outlet side of the outdoor heat exchanger 12 b via the modulator 13.
- the other configuration is the same as that of the second embodiment.
- the operation mode is switched by executing the air conditioning control program.
- the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
- the cooling mode according to the fourth embodiment is an example of the cooling mode in the present disclosure.
- the air conditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state. Also, the three-way valve 16b is controlled to close the bypass flow passage 16a.
- the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the cooling expansion valve 15a ⁇ the three-way valve 16b ⁇ the indoor evaporator 16 ⁇ the heat absorption expansion valve 15b ⁇
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 ⁇ the compressor 11 is configured.
- the refrigerant is supplied to the indoor evaporator 16, and the refrigerant circuit is switched to a refrigerant circuit aiming to cool the blowing air by heat exchange with the blowing air.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the indoor condenser 12 a side is closed.
- the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air passage of the outdoor heat exchanger 12b.
- the air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a.
- the air mix door 54 blocks the air passage on the indoor condenser 12 a side. For this reason, the refrigerant which has flowed into the indoor condenser 12a flows out from the indoor condenser 12a and flows into the outdoor heat exchanger 12b with little heat being released to the blown air.
- the refrigerant that has flowed into the outdoor heat exchanger 12b releases heat to the outside air and condenses because the shutter mechanism opens the outdoor air passage of the outdoor heat exchanger 12b. Then, the refrigerant flowing out of the outdoor heat exchanger 12 b flows into the cooling expansion valve 15 a via the modulator 13 and is decompressed.
- the subsequent operation is similar to that of the cooling mode of the second embodiment.
- the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
- the heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment.
- the air conditioning control device 60 fully opens the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
- the three-way valve 16b is controlled to fully open the bypass flow passage 16a.
- the compressor 11 in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the three-way valve 16b ⁇ the bypass flow path 16a ⁇ the heat absorption expansion valve 15b ⁇ the outdoor evaporator 18 ⁇ compression
- the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blown air by using the heat absorbed by the outdoor evaporator 18.
- the air conditioning control device 60 refers to the control map related to the heating mode regarding the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. Control.
- the air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a.
- the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant flowing into the indoor condenser 12 a dissipates heat to the blown air, and heats the blown air which has passed through the indoor evaporator 16.
- the refrigerant flowing out of the indoor condenser 12a and flowing into the outdoor heat exchanger 12b is dissipated by the heat released from the outside air because the shutter mechanism opens the outdoor air flow path of the outdoor heat exchanger 12b at a predetermined opening degree.
- the refrigerant that has flowed out of the outdoor heat exchanger 12b flows into the heat absorption expansion valve 15b via the modulator 13, the cooling expansion valve 15a, the three-way valve 16b, and the bypass flow path 16a and is decompressed.
- the subsequent operation is the same as in the heating mode of the second embodiment.
- the heat absorbed from the outside air in the outdoor evaporator 18 can be used to heat the blown air having passed through the indoor evaporator 16 and blow it out into the vehicle compartment, thereby heating the vehicle interior.
- the dehumidifying and heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment.
- the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined throttle opening.
- the three-way valve 16b is controlled to close the bypass flow passage 16a.
- the compressor 11 in the dehumidifying heating mode, the compressor 11 ⁇ the indoor condenser 12a ⁇ the outdoor heat exchanger 12b ⁇ the modulator 13 ⁇ the cooling expansion valve 15a ⁇ the three-way valve 16b ⁇ the indoor evaporator 16 ⁇ the heat absorption expansion valve 15b
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 and the compressor 11 is configured. That is, in the dehumidifying and heating mode, the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit aiming to heat using the heat absorbed by the outdoor evaporator 18.
- the air conditioning control device 60 refers to the control map related to the dehumidifying and heating mode based on the target blowout temperature TAO and the detection signal of the sensor group to operate the various control target devices connected to the output side. Control.
- the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air flow path of the outdoor heat exchanger 12b at an opening smaller than that in the cooling mode.
- the opening degree of the outdoor air flow path by the specific shutter mechanism is determined with reference to the control map according to the progress degree of frost formation in the outdoor evaporator 18 and the like.
- the air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a.
- the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant flowing into the indoor condenser 12 a dissipates heat to the blown air, and heats the blown air cooled by the indoor evaporator 16.
- the refrigerant flowing out of the indoor condenser 12a and flowing into the outdoor heat exchanger 12b is dissipated by the heat released from the outside air because the shutter mechanism opens the outdoor air flow path of the outdoor heat exchanger 12b at a predetermined opening degree. Then, the refrigerant flowing out of the outdoor heat exchanger 12 b flows into the cooling expansion valve 15 a via the modulator 13 and is decompressed. The subsequent operation is the same as in the dehumidifying and heating mode of the second embodiment.
- the air absorbed by the indoor evaporator 16 can be heated and blown out into the vehicle compartment using the heat absorbed from the outside air by the outdoor evaporator 18, and the vehicle interior can be dehumidified. It can do heating.
- the refrigeration cycle apparatus 10 switches the refrigerant circuit even if the indoor evaporator 16 and the outdoor evaporator 18 are connected in series.
- the cooling mode, the heating mode, and the dehumidifying heating mode can be switched among the plurality of operation modes, and comfortable air conditioning of the vehicle interior can be realized.
- the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
- the outdoor evaporator 18 may be frosted.
- the configuration shown in FIG. 9 is adopted, and an outdoor evaporator is utilized by utilizing a part of the heat radiated on the cycle high pressure side. The control of frost formation and defrosting at 18 is realized.
- the heat exchange portion of the outdoor evaporator 18 is connected to the heat exchange portion of the outdoor heat exchanger 12 b by a plurality of heat transfer fins 31 having thermal conductivity.
- Each heat transfer fin 31 is configured by sharing a part of the outdoor heat exchanger 12 b or a part of the outdoor evaporator 18 (for example, a heat exchange fin), and corresponds to the heat transfer member in the present disclosure. .
- the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected by a plurality of heat transfer fins 31, and the heat radiated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 It is configured.
- the heat radiated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 on the low temperature side.
- the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted. can do.
- the amount of heat released from the outdoor heat exchanger 12b can be adjusted, and the amount of heat transferred to the outdoor evaporator 18 can be adjusted.
- the opening degree of the outdoor air passage may be narrowed by the shutter mechanism to limit the amount of heat transferred to the outdoor evaporator 18.
- frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity of the blowing air by the indoor condenser 12a as much as possible.
- the refrigeration cycle apparatus 10 has the circuit switching control unit even when the indoor evaporator 16 and the outdoor evaporator 18 are connected in series as in the second embodiment.
- a refrigerant circuit mainly composed of a refrigerant circuit mainly performing heat exchange with the blown air in the indoor evaporator 16 by 60b, and a refrigerant circuit mainly composed of heating the blown air using heat absorbed from the outside air by the outdoor evaporator 18 And can be switched.
- the refrigeration cycle apparatus 10 even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration.
- the refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
- the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the outdoor heat exchanger 12 b constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 since the refrigeration cycle apparatus 10 according to the fourth embodiment includes the indoor condenser 12 a, the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air that is the fluid to be heat exchanged. Directly exchange heat to heat the blast air.
- the refrigeration cycle apparatus 10 includes the outdoor heat exchanger 12b, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be released to the outside air, and the vehicle interior can be in the cooling mode. Cooling can be performed properly.
- the outdoor heat exchanger 12 b and the outdoor evaporator 18 are thermally connected by the plurality of heat transfer fins 31, and the heat possessed by the high-pressure refrigerant in the outdoor heat exchanger 12 b is transmitted to the outdoor evaporator 18. Can be transmitted to
- the heat dissipated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 through the outside air blown in the blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed. It is also possible to defrost the outdoor evaporator 18.
- the refrigeration cycle apparatus 10 according to the fifth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
- the refrigeration cycle apparatus 10 is configured by adding an internal heat exchanger 19 to the first embodiment.
- the internal heat exchanger 19 is a heat exchanger that exchanges heat between the refrigerant flowing in the high pressure side refrigerant passage and the refrigerant flowing in the low pressure side refrigerant passage.
- the internal heat exchanger 19 corresponds to the internal heat exchanger in the present disclosure.
- the refrigerant flowing through the high pressure side refrigerant passage is the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
- the refrigerant flowing through the low pressure side refrigerant passage is a low pressure refrigerant which flows out of the outdoor evaporator 18 and which flows out of the refrigerant outlet of the merging portion 14 b and is a low pressure refrigerant drawn from the suction port of the compressor 11.
- the operation mode is switched by executing the air conditioning control program.
- the operation of each operation mode will be described below.
- Cooling Mode The cooling mode according to the fifth embodiment corresponds to the cooling mode in the present disclosure.
- the air conditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b as in the cooling mode of the first embodiment.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ high pressure side refrigerant passage of the internal heat exchanger 19 ⁇ branch portion 14a ⁇ cooling expansion valve 15a ⁇ room
- a vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 16 ⁇ the evaporation pressure adjusting valve 17 ⁇ the merging portion 14b ⁇ the low pressure side refrigerant passage of the internal heat exchanger 19 ⁇ the compressor 11 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the cooling mode of the first embodiment. Accordingly, in the cooling mode, cooling of the vehicle interior can be performed by blowing out the blowing air cooled by the indoor evaporator 16 into the vehicle interior substantially as in the first embodiment.
- the heating mode according to the fifth embodiment corresponds to the heating mode in the present disclosure.
- the air conditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b, as in the heating mode of the first embodiment.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ high pressure side refrigerant passage of the internal heat exchanger 19 ⁇ branching portion 14a ⁇ heat absorption expansion valve 15b ⁇ outside
- a vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 ⁇ the merging portion 14b ⁇ the low pressure side refrigerant passage of the internal heat exchanger 19 ⁇ the compressor 11 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the heating mode of the first embodiment.
- the air absorbed by the outdoor evaporator 18 can be heated by the heater core 22 using the heat absorbed from the outside air, thereby heating the vehicle interior. Can.
- the dehumidifying and heating mode according to the fifth embodiment corresponds to an example of the heating mode in the present disclosure.
- the air conditioning control device 60 controls the opening degree of the cooling expansion valve 15a and the heat absorbing expansion valve 15b as in the dehumidifying and heating mode of the first embodiment.
- the refrigerant flows from the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ branch portion 14a, and one side of the branch portion 14a ⁇ cooling expansion valve 15a ⁇ indoor evaporation It flows to the vessel 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18.
- the refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the first embodiment.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the first embodiment.
- the blown air cooled by the indoor evaporator 16 is heated by the heater core 22 using the heat absorbed from the outside air by the outdoor evaporator 18. It is possible to carry out dehumidifying and heating of the passenger compartment.
- the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high pressure side refrigerant passage of the internal heat exchanger 19.
- the high pressure refrigerant flowing into the high pressure side refrigerant passage of the internal heat exchanger 19 exchanges heat with the low pressure refrigerant flowing in the low pressure side refrigerant passage of the internal heat exchanger 19 to lower the enthalpy.
- the high pressure refrigerant flowing out of the high pressure side refrigerant passage of the internal heat exchanger 19 flows into the heat absorption expansion valve 15b via the branch portion 14a, is decompressed, and flows into the outdoor evaporator 18.
- the refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates.
- the refrigerant that has flowed out of the outdoor evaporator 18 flows into the low pressure side refrigerant passage of the internal heat exchanger 19 via the merging portion 14b.
- the low pressure refrigerant flowing into the low pressure side refrigerant passage of the internal heat exchanger 19 exchanges heat with the high pressure refrigerant flowing through the high pressure side refrigerant passage of the internal heat exchanger 19 to raise the enthalpy.
- the low pressure refrigerant flowing out of the low pressure side refrigerant passage of the internal heat exchanger 19 is sucked into the compressor 11 and compressed again.
- the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced by the internal heat exchanger 19.
- the cooling capacity of the refrigerant in the heat exchanger which functions as an evaporator can be increased, and the coefficient of performance (COP) of the refrigeration cycle apparatus 10 can be improved.
- the outdoor evaporator 18 may be frosted also in the fifth embodiment. Therefore, a configuration is adopted in which the heat radiated by the high temperature side radiator 23 is transmitted to the outdoor evaporator 18.
- a configuration shown in FIG. 3 or the configuration shown in FIG. 5 may be employed.
- the outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W by the outside air fan 30, and at the same time the outdoor evaporator 18 and the high temperature side radiator 23 are It may be configured to be thermally connected by a plurality of heat transfer fins 31.
- the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b as in the first embodiment. And the refrigerant circuit on the outdoor evaporator 18 side can be switched.
- the refrigeration cycle apparatus 10 even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration.
- the refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
- the refrigeration cycle apparatus 10 since the refrigeration cycle apparatus 10 according to the fifth embodiment includes the internal heat exchanger 19, the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced. Therefore, the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
- COP coefficient of performance
- the refrigeration cycle apparatus 10 according to the sixth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
- the refrigeration cycle apparatus 10 is configured by adding an internal heat exchanger 19 to the second embodiment.
- the internal heat exchanger 19 is a heat exchanger that exchanges heat between the refrigerant flowing in the high pressure side refrigerant passage and the refrigerant flowing in the low pressure side refrigerant passage. And the said internal heat exchanger 19 is corresponded to the internal heat exchanger in this indication.
- the refrigerant flowing through the high pressure side refrigerant passage is the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12.
- the refrigerant flowing through the low pressure side refrigerant passage is a low pressure refrigerant flowing out of the outdoor evaporator 18 and is a low pressure refrigerant sucked from the suction port of the compressor 11.
- the operation of the vehicle air conditioner 1 according to the sixth embodiment will be described. Also in the vehicle air conditioner 1 according to the sixth embodiment, the operation mode is switched as in the second embodiment. The operation of each operation mode will be described below.
- the cooling mode according to the sixth embodiment corresponds to the cooling mode in the present disclosure.
- the air conditioning control device 60 controls the opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b and the operation of the three-way valve 16b, as in the cooling mode of the second embodiment.
- the compressor 11 in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 ⁇ high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ high pressure side refrigerant passage of the internal heat exchanger 19 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇ indoor
- a vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 16 ⁇ the heat absorption expansion valve 15b ⁇ the outdoor evaporator 18 ⁇ the low pressure side refrigerant passage of the internal heat exchanger 19 ⁇ the compressor 11 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the cooling mode of the second embodiment. Accordingly, in the cooling mode, cooling of the vehicle interior can be performed by blowing out the blowing air cooled by the indoor evaporator 16 into the vehicle interior substantially as in the second embodiment.
- the heating mode according to the sixth embodiment corresponds to the heating mode in the present disclosure.
- the air conditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b and the operation of the three-way valve 16b, as in the heating mode of the second embodiment.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ three-way valve 16 b ⁇ bypass flow path 16 a ⁇ heat absorption expansion valve 15 b ⁇ outdoor evaporator 18 ⁇ compressor
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the heating mode of the second embodiment. Therefore, in the heating mode, the vehicle interior is heated by blowing out the blowing air heated using the heat absorbed by the outdoor evaporator 18 into the vehicle compartment substantially as in the second embodiment. it can.
- the dehumidifying and heating mode according to the sixth embodiment corresponds to an example of the heating mode in the present disclosure.
- the air conditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorbing expansion valve 15b and the operation of the three-way valve 16b as in the dehumidifying and heating mode of the second embodiment.
- the compressor 11 high temperature side water-refrigerant heat exchanger 12 ⁇ modulator 13 ⁇ high pressure side refrigerant passage of the internal heat exchanger 19 ⁇ cooling expansion valve 15a ⁇ three-way valve 16b ⁇
- a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the indoor evaporator 16 ⁇ the heat absorption expansion valve 15b ⁇ the outdoor evaporator 18 ⁇ the low pressure side refrigerant passage of the internal heat exchanger 19 ⁇ the compressor 11 is configured.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the second embodiment.
- the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the second embodiment.
- the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
- COP coefficient of performance
- the outdoor evaporator 18 may be frosted in the heating mode or the dehumidifying / heating mode. Therefore, a configuration is adopted in which the heat radiated by the high temperature side radiator 23 is transmitted to the outdoor evaporator 18.
- a configuration is adopted in which the heat radiated by the high temperature side radiator 23 is transmitted to the outdoor evaporator 18.
- any of the configuration shown in FIG. 3, the configuration shown in FIG. 5, or the configuration combining FIG. 3 and FIG. 5 described above may be adopted.
- the control unit 60b mainly heats the blown air using the refrigerant circuit mainly making heat exchange with the blown air in the indoor evaporator 16 and the heat absorbed from the outside air by the outdoor evaporator 18
- the refrigerant circuit can be switched.
- the refrigeration cycle apparatus 10 even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration.
- the refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode and the dehumidifying and heating mode without causing the complication of the cycle configuration.
- the refrigeration cycle apparatus 10 since the refrigeration cycle apparatus 10 according to the sixth embodiment includes the internal heat exchanger 19, the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced. Therefore, the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
- COP coefficient of performance
- the outdoor evaporator 18 and the modulator 13 are separately provided, but the present invention is not limited to this configuration.
- the modulator 13 may be integrally disposed on the side of the heat exchange unit in the outdoor evaporator 18.
- the heating unit in the present disclosure is configured with the refrigerant heat exchanger 12 and the high temperature side heat medium circuit 20 etc. It is not limited. That is, as in the third and fourth embodiments, even when the heating unit in the present disclosure is configured by the indoor condenser 12a and the outdoor heat exchanger 12b, the internal heat exchanger 19 can be disposed is there.
- the configuration for transmitting the heat radiated by the high temperature side radiator 23 in the first embodiment, a configuration using a plurality of heat transfer fins 31 shown in FIG. 3 is adopted, and the second embodiment In this case, the configuration using the outside air blown by the outside air fan 30 shown in FIG. 5 is employed.
- the combination of the configuration for transmitting the heat radiated by the high temperature side radiator 23 is not limited to this combination. That is, the configuration shown in FIG. 5 may be adopted for the cycle configuration according to the first embodiment, and the configuration shown in FIG. 3 may be adopted for the cycle configuration according to the second embodiment. .
- the combination of the configuration for transmitting the heat radiated by the outdoor heat exchanger 12b and the cycle configuration can be appropriately changed.
- a configuration using the outside air blown by the outside air fan 30 shown in FIG. 7 is adopted, and in the fourth embodiment, the plurality of heat transfer fins 31 shown in FIG. It is considered to be the configuration used.
- the configuration shown in FIG. 9 may be adopted to the cycle configuration according to the third embodiment, or even if the configuration shown in FIG. 7 is adopted to the cycle configuration according to the fourth embodiment. good.
- the outdoor evaporator 18 when heat is transmitted through the outside air to suppress frost formation or defrosting of the outdoor evaporator 18, the outdoor evaporator 18 relates to the air flow of the outside air, It may be located downstream of the outdoor heat exchanger 12 b or the high temperature side radiator 23.
- the reverse of the blowing direction may be achieved by reversing the rotation of the impeller in the outside air fan 30 (for example, an axial fan) or may be realized by a plurality of fans.
- transduced by the refrigerating-cycle apparatus 10 And 18 have been described, but the present invention is not limited to this aspect.
- a chiller for cooling the heat medium for cooling, and a rear evaporator used for air conditioning of the rear seat of the electric vehicle are connected in parallel to the indoor evaporator 16 and the outdoor evaporator 18 described above It is also possible.
- bypass flow passage 16a and the three-way valve 16b are used to suppress heat exchange (that is, cooling of the blowing air) in the indoor evaporator 16 in the heating mode.
- the indoor evaporator 16 is bypassed to flow the refrigerant, but the invention is not limited to this aspect.
- the flow path of the blown air may be switched so that the blown air bypasses the indoor evaporator 16.
- a shutter device that can be opened and closed can be disposed between the blower 52 and the indoor evaporator 16, and the casing 51 can form a bypass flow passage that bypasses the indoor evaporator 16.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
A refrigeration cycle device (10) configured so as to have a compressor (11), a high-temperature-side water-refrigerant heat exchanger (12), a branch unit (14a), an expansion valve (15a) for cooling, an expansion valve (15b) for heat absorption, an indoor evaporator (16), and an outdoor evaporator (18). The expansion valve (15a) for cooling and the indoor evaporator (16) are connected to one refrigerant outlet of the branch unit (14a), and the expansion valve (15b) for heat absorption and the outdoor evaporator (18) are connected to the other refrigerant outlet of the branch unit. In a cooling mode the device is switched to a refrigerant circuit in which refrigerant that has been decompressed in the expansion valve (15a) for cooling is made to exchange heat with blown air in the indoor evaporator (16), and in a heating mode the device is switched to a refrigerant circuit in which refrigerant that has been decompressed in the expansion valve (15b) for heat absorption is made to exchange heat in the outdoor evaporator (18), thereby absorbing heat from outside air and heating the blown air.
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年9月28日に出願された日本特許出願2017-187648号を基にしている。
This application is based on Japanese Patent Application No. 2017-187648 filed on Sep. 28, 2017, the disclosure of which is incorporated by reference into the present application.
本開示は、冷凍サイクル装置に関する。
The present disclosure relates to a refrigeration cycle apparatus.
従来、空調装置に適用される蒸気圧縮式の冷凍サイクル装置に関する技術として、特許文献1に記載されたのが知られている。
DESCRIPTION OF RELATED ART Conventionally, it is known that it described in patent document 1 as a technique regarding the vapor | steam compression type refrigerating cycle apparatus applied to an air conditioner.
特許文献1の冷凍サイクルは、装置空調対象空間である車室内へ送風される送風空気を冷却する冷房モード、送風空気を加熱する暖房モード、冷却して除湿された送風空気を再加熱する除湿暖房モード等の複数の運転モードに応じて、冷媒回路等を切り替え可能に構成されている。
The refrigeration cycle of Patent Document 1 has a cooling mode for cooling the air blown into the vehicle compartment, which is an air conditioning target space, a heating mode for heating the blown air, and a dehumidifying heating for reheating the cooled and dehumidified blown air. The refrigerant circuit and the like can be switched according to a plurality of operation modes such as the mode.
そして、特許文献1の冷凍サイクル装置は、室内凝縮器、室外熱交換器、室内蒸発器といった複数の熱交換器を備えており、運転モードに応じて各熱交換器の機能を切り替えるように構成されている。
The refrigeration cycle apparatus of Patent Document 1 includes a plurality of heat exchangers such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator, and is configured to switch the function of each heat exchanger according to the operation mode. It is done.
具体的には、冷房モード時には、室外熱交換器を放熱器として機能させるとともに、室内蒸発器を吸熱器として機能させる冷媒回路に切り替える。暖房モード時には、室内凝縮器を放熱器として機能させると共に、室外熱交換器を吸熱器として機能させる冷媒回路に切り替える。除湿暖房モード時には、室内凝縮器を放熱器として機能させるとともに、室内蒸発器及び室外熱交換器の双方を吸熱器として機能させる冷媒回路に切り替える。
Specifically, in the cooling mode, the outdoor heat exchanger functions as a radiator, and the indoor evaporator is switched to a refrigerant circuit functioning as a heat absorber. In the heating mode, the indoor condenser functions as a radiator and the outdoor heat exchanger is switched to a refrigerant circuit functioning as a heat absorber. In the dehumidifying and heating mode, the indoor condenser functions as a radiator, and both the indoor evaporator and the outdoor heat exchanger are switched to a refrigerant circuit functioning as a heat absorber.
本願の発明者らの検討によると、特許文献1のように、複数の熱交換器を備え、運転モードに応じて、同一の熱交換器(特許文献1では、室外熱交換器)を放熱器と吸熱器の何れかに切り替える冷凍サイクル装置では、冷媒回路に圧力調整弁や切替弁が必要となる為、回路構成が複雑になってしまう。又、各運転モードで適切なサイクルバランスをとる必要があるため切り替えに伴って複雑な制御を行う必要も生じてしまう。
According to the study of the inventors of the present application, as in Patent Document 1, a plurality of heat exchangers are provided, and according to the operation mode, the same heat exchanger (in Patent Document 1, outdoor heat exchanger) In the refrigeration cycle apparatus for switching to either of the heat sinks and the heat sinks, the refrigerant circuit needs a pressure adjusting valve and a switching valve, which complicates the circuit configuration. In addition, since it is necessary to take an appropriate cycle balance in each operation mode, it is also necessary to carry out complicated control when switching.
本開示は、これらの点に鑑みてなされており、複数の吸熱器を備え、運転モードを切替可能に構成された冷凍サイクル装置において、回路構成及び運転モードの切替制御を簡素化することを目的とする。
The present disclosure is made in view of these points, and it is an object of the present invention to simplify switching control of circuit configuration and operation mode in a refrigeration cycle apparatus including a plurality of heat absorbers and configured to be able to switch the operation mode. I assume.
本開示の第1特徴例による冷凍サイクル装置は、
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部と、
加熱部から流出した高圧冷媒の流れを分岐する分岐部と、
分岐部における一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部と、
冷却用減圧部にて減圧された冷媒を熱交換対象流体と熱交換させて蒸発させる冷却用吸熱器と、
分岐部における他方の冷媒流出口から流出した冷媒を減圧させる加熱用減圧部と、
加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器と、
冷却用吸熱器へ冷媒を流入させる冷媒回路と、加熱用吸熱器へ冷媒を流入させる冷媒回路とを切り替える回路切替部と、を有し、
回路切替部は、熱交換対象流体を冷却する冷却モードでは、冷却用吸熱器にて冷媒を熱交換させる冷媒回路に切り替え、熱交換対象流体を加熱する加熱モードでは、加熱用吸熱器にて冷媒を熱交換させる冷媒回路に切り替える。 A refrigeration cycle apparatus according to a first feature example of the present disclosure is
A compressor that compresses and discharges the refrigerant;
A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source;
A branch unit that branches the flow of the high pressure refrigerant flowing out of the heating unit;
A cooling decompression unit that decompresses the refrigerant that has flowed out from one of the refrigerant outlets in the branching unit;
A heat sink for cooling which causes the refrigerant decompressed by the cooling decompression unit to heat exchange with the fluid to be subjected to heat exchange and evaporates;
A heating pressure reducing portion that reduces the pressure of the refrigerant flowing out from the other refrigerant outlet in the branch portion;
A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it;
It has a circuit switching part which switches a refrigerant circuit which makes a refrigerant flow into a heat sink for cooling, and a refrigerant circuit which makes a refrigerant flow into a heat sink for heating,
The circuit switching unit switches the refrigerant circuit to heat exchange the refrigerant with the heat absorber for cooling in the cooling mode for cooling the heat exchange fluid, and heats the refrigerant for the heat absorber in the heating mode for heating the heat exchange fluid. Switch to the refrigerant circuit that exchanges heat.
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部と、
加熱部から流出した高圧冷媒の流れを分岐する分岐部と、
分岐部における一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部と、
冷却用減圧部にて減圧された冷媒を熱交換対象流体と熱交換させて蒸発させる冷却用吸熱器と、
分岐部における他方の冷媒流出口から流出した冷媒を減圧させる加熱用減圧部と、
加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器と、
冷却用吸熱器へ冷媒を流入させる冷媒回路と、加熱用吸熱器へ冷媒を流入させる冷媒回路とを切り替える回路切替部と、を有し、
回路切替部は、熱交換対象流体を冷却する冷却モードでは、冷却用吸熱器にて冷媒を熱交換させる冷媒回路に切り替え、熱交換対象流体を加熱する加熱モードでは、加熱用吸熱器にて冷媒を熱交換させる冷媒回路に切り替える。 A refrigeration cycle apparatus according to a first feature example of the present disclosure is
A compressor that compresses and discharges the refrigerant;
A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source;
A branch unit that branches the flow of the high pressure refrigerant flowing out of the heating unit;
A cooling decompression unit that decompresses the refrigerant that has flowed out from one of the refrigerant outlets in the branching unit;
A heat sink for cooling which causes the refrigerant decompressed by the cooling decompression unit to heat exchange with the fluid to be subjected to heat exchange and evaporates;
A heating pressure reducing portion that reduces the pressure of the refrigerant flowing out from the other refrigerant outlet in the branch portion;
A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it;
It has a circuit switching part which switches a refrigerant circuit which makes a refrigerant flow into a heat sink for cooling, and a refrigerant circuit which makes a refrigerant flow into a heat sink for heating,
The circuit switching unit switches the refrigerant circuit to heat exchange the refrigerant with the heat absorber for cooling in the cooling mode for cooling the heat exchange fluid, and heats the refrigerant for the heat absorber in the heating mode for heating the heat exchange fluid. Switch to the refrigerant circuit that exchanges heat.
当該冷凍サイクル装置によれば、回路切替部によって、分岐部に対して接続された冷却用減圧部及び冷却用吸熱器側の冷媒回路と、加熱用減圧部及び加熱用吸熱器側の冷媒回路とを切り替えることができる。
According to the refrigeration cycle apparatus, the circuit switching unit includes the refrigerant circuit on the cooling pressure reduction unit and the cooling heat sink side connected to the branch unit, the heating pressure reduction unit, and the heating heat sink side refrigerant circuit Can be switched.
具体的には、冷却モードでは、冷却用吸熱器にて冷媒を熱交換させ、熱交換対象流体を冷却する冷媒回路に切り替えることができる。又、加熱モードでは、加熱用吸熱器にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として熱交換対象流体を加熱する冷媒回路に切り替えることができる。
Specifically, in the cooling mode, the refrigerant can be heat-exchanged by the heat sink for cooling, and switching can be made to a refrigerant circuit that cools the fluid to be heat-exchanged. Further, in the heating mode, it is possible to switch to a refrigerant circuit that heats the fluid to be heat-exchanged by using the outside air as a heat source by exchanging heat between the outside air and the refrigerant, which are heat source fluids, by the heat absorber for heating.
当該冷凍サイクル装置によれば、何れの冷媒回路に切り替えた場合であっても、冷却用吸熱器及び加熱用吸熱器へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。
According to the refrigeration cycle apparatus, it is not necessary to flow the high-pressure refrigerant into the cooling heat absorber and the heating heat absorber even when switching to any of the refrigerant circuits, so the cycle configuration does not become complicated. The refrigerant circuit can be switched with a simple configuration.
当該冷凍サイクル装置は、サイクル構成の複雑化を招くことなく、熱交換対象流体を冷却する冷却モードと、外気を熱源として熱交換対象流体を加熱する加熱モードを含む複数の運転モードを実現することができる。
The refrigeration cycle apparatus realizes a plurality of operation modes including a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration. Can.
本開示の第2特徴例による冷凍サイクル装置は、
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部と、
加熱部から流出した冷媒を減圧させる冷却用減圧部と、
冷却用減圧部にて減圧された冷媒と熱交換対象流体とを熱交換させて蒸発させる冷却用吸熱器と、
冷却用吸熱器から流入した冷媒を減圧させる加熱用減圧部と、
加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器と、
冷却用吸熱器にて冷媒を熱交換させる冷媒回路と、加熱用吸熱器にて冷媒を熱交換させる冷媒回路とを切り替える回路切替部と、を有する。 A refrigeration cycle apparatus according to a second feature example of the present disclosure is
A compressor that compresses and discharges the refrigerant;
A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source;
A cooling decompression unit that decompresses the refrigerant flowing out of the heating unit;
A heat sink for cooling which causes the refrigerant reduced in pressure in the cooling pressure reduction section and the fluid for heat exchange to exchange heat and evaporate;
A heating pressure reducing section that reduces the pressure of the refrigerant flowing from the cooling heat absorber;
A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it;
It has a circuit switching part which switches a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for cooling, and a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for heating.
冷媒を圧縮して吐出する圧縮機と、
圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部と、
加熱部から流出した冷媒を減圧させる冷却用減圧部と、
冷却用減圧部にて減圧された冷媒と熱交換対象流体とを熱交換させて蒸発させる冷却用吸熱器と、
冷却用吸熱器から流入した冷媒を減圧させる加熱用減圧部と、
加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器と、
冷却用吸熱器にて冷媒を熱交換させる冷媒回路と、加熱用吸熱器にて冷媒を熱交換させる冷媒回路とを切り替える回路切替部と、を有する。 A refrigeration cycle apparatus according to a second feature example of the present disclosure is
A compressor that compresses and discharges the refrigerant;
A heating unit that heats a fluid to be heat-exchanged, using the heat of the refrigerant discharged from the compressor as a heat source;
A cooling decompression unit that decompresses the refrigerant flowing out of the heating unit;
A heat sink for cooling which causes the refrigerant reduced in pressure in the cooling pressure reduction section and the fluid for heat exchange to exchange heat and evaporate;
A heating pressure reducing section that reduces the pressure of the refrigerant flowing from the cooling heat absorber;
A heat absorber for heating which causes the refrigerant decompressed by the heating decompression unit to exchange heat with the outside air as a heat source fluid and evaporate it;
It has a circuit switching part which switches a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for cooling, and a refrigerant circuit which carries out heat exchange of a refrigerant with a heat sink for heating.
回路切替部は、熱交換対象流体を冷却する冷却モードでは、冷却用吸熱器にて冷媒を熱交換させる冷媒回路に切り替え、熱交換対象流体を加熱する加熱モードでは、加熱用吸熱器にて冷媒を熱交換させる冷媒回路に切り替える。
The circuit switching unit switches the refrigerant circuit to heat exchange the refrigerant with the heat absorber for cooling in the cooling mode for cooling the heat exchange fluid, and heats the refrigerant for the heat absorber in the heating mode for heating the heat exchange fluid. Switch to the refrigerant circuit that exchanges heat.
当該冷凍サイクル装置によれば、回路切替部によって、冷却用吸熱器にて冷媒を熱交換させる冷媒回路と、加熱用吸熱器にて冷媒を熱交換させる冷媒回路とを切り替えることができる。
According to the refrigeration cycle apparatus, the circuit switching unit can switch between the refrigerant circuit that causes the refrigerant to exchange heat with the heat absorber for cooling and the refrigerant circuit that causes the refrigerant to exchange heat with the heat absorber for heating.
具体的には、冷却モードでは、冷却用吸熱器にて冷媒を熱交換させ、熱交換対象流体を冷却する冷媒回路に切り替えることができる。又、加熱モードでは、加熱用吸熱器にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として熱交換対象流体を加熱する冷媒回路に切り替えることができる。
Specifically, in the cooling mode, the refrigerant can be heat-exchanged by the heat sink for cooling, and switching can be made to a refrigerant circuit that cools the fluid to be heat-exchanged. Further, in the heating mode, it is possible to switch to a refrigerant circuit that heats the fluid to be heat-exchanged by using the outside air as a heat source by exchanging heat between the outside air and the refrigerant, which are heat source fluids, by the heat absorber for heating.
当該冷凍サイクル装置によれば、何れの冷媒回路に切り替えた場合であっても、冷却用吸熱器及び加熱用吸熱器へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。
According to the refrigeration cycle apparatus, it is not necessary to flow the high-pressure refrigerant into the cooling heat absorber and the heating heat absorber even when switching to any of the refrigerant circuits, so the cycle configuration does not become complicated. The refrigerant circuit can be switched with a simple configuration.
当該冷凍サイクル装置は、サイクル構成の複雑化を招くことなく、熱交換対象流体を冷却する冷却モードと、外気を熱源として熱交換対象流体を加熱する加熱モードを含む複数の運転モードを実現することができる。
The refrigeration cycle apparatus realizes a plurality of operation modes including a cooling mode for cooling the heat exchange fluid and a heating mode for heating the heat exchange fluid with the outside air as a heat source without complicating the cycle configuration. Can.
以下、本開示の実施形態について図に基づいて説明する。以下の実施形態において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following embodiments, parts which are the same as or equivalent to each other are given the same reference numerals in the drawings.
(第1実施形態)
先ず、本開示の第1実施形態について、図1~図3を参照しつつ説明する。第1実施形態に係る冷凍サイクル装置10は、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載される車両用空調装置1に適用されている。 First Embodiment
First, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. Therefrigeration cycle apparatus 10 according to the first embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains driving power for traveling a vehicle from a traveling electric motor.
先ず、本開示の第1実施形態について、図1~図3を参照しつつ説明する。第1実施形態に係る冷凍サイクル装置10は、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載される車両用空調装置1に適用されている。 First Embodiment
First, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. The
冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。この送風空気は、本開示における熱交換対象流体に相当する。
The refrigeration cycle apparatus 10 has a function of adjusting the temperature of the blowing air blown into the vehicle compartment, which is a space to be air conditioned, in the vehicle air conditioner 1. This blowing air corresponds to the heat exchange target fluid in the present disclosure.
そして、当該車両用空調装置1は、運転モードに応じて冷媒回路を切り替えることで、複数の運転モードを実現することができる。複数の運転モードには、冷房モード、暖房モード、除湿暖房モード等が含まれている。
And the said vehicle air conditioner 1 can implement | achieve several driving modes by switching a refrigerant circuit according to a driving mode. The plurality of operation modes include a cooling mode, a heating mode, a dehumidifying heating mode, and the like.
冷房モードは、送風空気を冷却して車室内の冷房を行う運転モードであり、本開示における冷却モードの一例である。暖房モードは、送風空気を加熱して車室内の暖房を行う運転モードであり、本開示における加熱モードの一例である。除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内の除湿暖房を行う運転モードであり、本開示における加熱モードの一例である。
The cooling mode is an operation mode for cooling the air by cooling the air, and is an example of the cooling mode in the present disclosure. The heating mode is an operation mode in which the blowing air is heated to heat the vehicle interior, and is an example of the heating mode in the present disclosure. The dehumidifying and heating mode is an operation mode in which dehumidified heating is performed by reheating the cooled and dehumidified blowing air, and is an example of the heating mode in the present disclosure.
尚、当該冷凍サイクル装置10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油としては、液相冷媒に相溶性を有するPAGオイル(ポリアルキレングリコールオイル)が採用されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。
In the refrigeration cycle apparatus 10, an HFC refrigerant (specifically, R134a) is employed as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. . Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. As refrigeration oil, PAG oil (polyalkylene glycol oil) compatible with liquid phase refrigerant is adopted. A portion of the refrigeration oil circulates in the cycle with the refrigerant.
次に、第1実施形態に係る車両用空調装置1の具体的構成について、図1を参照しつつ説明する。初めに、車両用空調装置1における冷凍サイクル装置10を構成する各構成機器について説明する。
Next, a specific configuration of the vehicle air conditioner 1 according to the first embodiment will be described with reference to FIG. First, each component which comprises the refrigerating-cycle apparatus 10 in the vehicle air conditioner 1 is demonstrated.
圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出するものであり、本開示における圧縮機に相当する。圧縮機11は、車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する空調制御装置60から出力される制御信号によって、回転数(即ち、冷媒吐出能力)が制御される。
The compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10, and corresponds to the compressor in the present disclosure. The compressor 11 is disposed in a vehicle bonnet. The compressor 11 is an electric compressor which rotationally drives, by an electric motor, a fixed displacement type compression mechanism whose discharge displacement is fixed. The rotation speed (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from an air conditioning control device 60 described later.
圧縮機11の吐出口には、高温側水-冷媒熱交換器12の冷媒通路の入口側が接続されている。高温側水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒と高温側熱媒体回路20を循環する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する熱交換器である。高温側熱媒体としては、エチレングリコールを含む溶液、不凍液等を採用することができる。
The outlet side of the compressor 11 is connected to the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The high temperature side water-refrigerant heat exchanger 12 performs heat exchange between the high pressure refrigerant discharged from the compressor 11 and the high temperature side heat medium circulating in the high temperature side heat medium circuit 20 to heat the high temperature side heat medium. It is As the high temperature side heat medium, a solution containing ethylene glycol, an antifreeze liquid, etc. can be adopted.
ここで、高温側熱媒体回路20は、高温側熱媒体を循環させる高温側の水回路である。高温側熱媒体回路20には、高温側水-冷媒熱交換器12の水通路、高温側熱媒体ポンプ21、ヒータコア22、高温側ラジエータ23、高温側流量調整弁24等が配置されている。
Here, the high temperature side heat medium circuit 20 is a high temperature side water circuit that circulates the high temperature side heat medium. In the high temperature side heat medium circuit 20, the water passage of the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium pump 21, the heater core 22, the high temperature side radiator 23, the high temperature side flow rate adjustment valve 24 and the like are arranged.
高温側熱媒体ポンプ21は、高温側熱媒体回路20において、高温側熱媒体を高温側水-冷媒熱交換器12の水通路の入口側へ圧送する高温側水ポンプである。高温側熱媒体ポンプ21は、空調制御装置60から出力される制御電圧によって、回転数(即ち、水圧送能力)が制御される電動ポンプである。
The high temperature side heat medium pump 21 is a high temperature side water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the high temperature side water-refrigerant heat exchanger 12 in the high temperature side heat medium circuit 20. The high temperature side heat medium pump 21 is an electric pump of which the number of revolutions (that is, the water pressure feeding capacity) is controlled by a control voltage output from the air conditioning controller 60.
ヒータコア22は、後述する室内空調ユニット50のケーシング51内に配置されている。ヒータコア22は、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体と後述する室内蒸発器16を通過した送風空気とを熱交換させて、送風空気を加熱する熱交換器である。当該ヒータコア22は、本開示におけるヒータコアに相当する。
The heater core 22 is disposed in a casing 51 of an indoor air conditioning unit 50 described later. The heater core 22 is a heat exchanger that heats the blown air by heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the blown air that has passed through the indoor evaporator 16 described later. is there. The heater core 22 corresponds to the heater core in the present disclosure.
高温側ラジエータ23は、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体と外気ファン30から送風された外気とを熱交換させて、高温側熱媒体の有する熱を外気に放熱させる熱交換器である。高温側ラジエータ23は、本開示における高温側ラジエータに相当する。
The high temperature side radiator 23 performs heat exchange between the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 and the outside air blown from the outside air fan 30, and the heat of the high temperature side heat medium is the outside air It is a heat exchanger that radiates heat. The high temperature side radiator 23 corresponds to the high temperature side radiator in the present disclosure.
当該高温側ラジエータ23は、車両ボンネット内の前方側に配置されている。この為、車両走行時には、高温側ラジエータ23に走行風を当てることもできる。図1に示すように、高温側熱媒体回路20において、ヒータコア22及び高温側ラジエータ23は、高温側熱媒体の流れに対して並列的に接続されている。
The high temperature side radiator 23 is disposed on the front side in the vehicle bonnet. Therefore, when the vehicle is traveling, the high-temperature side radiator 23 can also be exposed to the traveling wind. As shown in FIG. 1, in the high temperature side heat medium circuit 20, the heater core 22 and the high temperature side radiator 23 are connected in parallel to the flow of the high temperature side heat medium.
高温側流量調整弁24は、電気式の三方流量調整弁によって構成されており、高温側水-冷媒熱交換器12における出口側の水通路にて、ヒータコア22の熱媒体入口側と高温側ラジエータ23の熱媒体入口側との接続部に配置されている。
The high temperature side flow control valve 24 is constituted by an electric three-way flow control valve, and in the water passage on the outlet side of the high temperature side water-refrigerant heat exchanger 12, the heat medium inlet side of the heater core 22 and the high temperature side radiator It is arranged at the connection with the heat medium inlet side of the reference numeral 23.
より具体的には、高温側水-冷媒熱交換器12の水通路の出口には、高温側流量調整弁24の入口側が接続されている。高温側流量調整弁24の一方の出口には、ヒータコア22の熱媒体入口側が接続されている。高温側流量調整弁24の他方の出口には、高温側ラジエータ23の熱媒体入口側が接続されている。
More specifically, the inlet side of the high temperature side flow control valve 24 is connected to the outlet of the water passage of the high temperature side water-refrigerant heat exchanger 12. The heat medium inlet side of the heater core 22 is connected to one outlet of the high temperature side flow control valve 24. The heat medium inlet side of the high temperature side radiator 23 is connected to the other outlet of the high temperature side flow control valve 24.
従って、高温側流量調整弁24は、高温側水-冷媒熱交換器12から流出した高温側熱媒体のうち、ヒータコア22へ流入させる高温側熱媒体の流量と高温側ラジエータ23へ流入させる高温側熱媒体の流量との高温側流量比を連続的に調整することができる。高温側流量調整弁24は、空調制御装置60から出力される制御信号によって、その作動が制御される。
Therefore, among the high temperature side heat medium flowing out from the high temperature side water-refrigerant heat exchanger 12, the high temperature side flow rate adjustment valve 24 flows the high temperature side heat medium flowing into the heater core 22 and the high temperature side flows into the high temperature side radiator 23. The high temperature side flow ratio with the flow rate of the heat medium can be adjusted continuously. The operation of the high temperature side flow control valve 24 is controlled by a control signal output from the air conditioning controller 60.
従って、高温側熱媒体回路20では、高温側流量調整弁24が高温側流量比を調整すると、ヒータコア22へ流入する高温側熱媒体の流量が変化して、ヒータコア22における高温側熱媒体の送風空気への放熱量が変化する。即ち、高温側流量調整弁24によって高温側流量比を調整することで、ヒータコア22における送風空気の加熱量を調整することができる。
Therefore, in the high temperature side heat medium circuit 20, when the high temperature side flow rate adjustment valve 24 adjusts the high temperature side flow rate ratio, the flow rate of the high temperature side heat medium flowing into the heater core 22 changes, and the air flow of the high temperature side heat medium in the heater core 22 The amount of heat released to the air changes. That is, by adjusting the high temperature side flow rate ratio by the high temperature side flow rate adjustment valve 24, it is possible to adjust the heating amount of the blowing air in the heater core 22.
つまり、第1実施形態では、高温側熱媒体回路20に配置された高温側熱媒体ポンプ21、高温側水-冷媒熱交換器12、ヒータコア22、高温側ラジエータ23、高温側流量調整弁24等によって、圧縮機11から吐出された冷媒を熱源として送風空気を加熱する為、これらの構成が本開示における加熱部を構成している。
That is, in the first embodiment, the high temperature side heat medium pump 21 disposed in the high temperature side heat medium circuit 20, the high temperature side water-refrigerant heat exchanger 12, the heater core 22, the high temperature side radiator 23, the high temperature side flow rate adjustment valve 24 etc. Because the blown air is heated by using the refrigerant discharged from the compressor 11 as a heat source, these configurations constitute the heating unit in the present disclosure.
図1に示すように、高温側水-冷媒熱交換器12の冷媒通路の出口には、モジュレータ13が接続されている。当該モジュレータ13は、高温側水-冷媒熱交換器12から流出した冷媒の気液を分離すると供に、余剰の液相冷媒を貯える冷媒貯留部である。そして、当該モジュレータ13には、分岐部14aの冷媒流入口側が接続されている。
As shown in FIG. 1, a modulator 13 is connected to the outlet of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The modulator 13 is a refrigerant storage unit that separates the gas and liquid of the refrigerant flowing out of the high temperature side water-refrigerant heat exchanger 12 and stores the surplus liquid phase refrigerant. The modulator 13 is connected to the refrigerant inlet side of the branch portion 14a.
分岐部14aは、高温側水-冷媒熱交換器12及びモジュレータ13の冷媒通路から流出した高圧冷媒の流れを分岐するものである。分岐部14aは、互いに連通する3つの冷媒流入出口を有する三方継手構造となるように形成されており、3つの流入出口の内の1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。
The branch portion 14 a branches the flow of the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 and the modulator 13. The branch portion 14a is formed to be a three-way joint structure having three refrigerant inlets and outlets communicating with each other, one of the three inlets and outlets being a refrigerant inlet and the remaining two being a refrigerant outlet. The
分岐部14aの一方の冷媒流出口には、冷却用膨張弁15aを介して、室内蒸発器16の冷媒入口側が接続されている。そして、分岐部14aの他方の冷媒流出口には、吸熱用膨張弁15bを介して、室外蒸発器18の冷媒入口側が接続されている。従って、分岐部14aは、本開示における分岐部に相当する。
The refrigerant | coolant inlet side of the indoor evaporator 16 is connected to one refrigerant | coolant outflow port of the branch part 14a via the expansion valve 15a for cooling. And the refrigerant | coolant inlet side of the outdoor evaporator 18 is connected to the other refrigerant | coolant outflow port of the branch part 14a via the expansion valve 15b for heat absorption. Thus, the branch 14a corresponds to the branch in the present disclosure.
冷却用膨張弁15aは、少なくとも冷房モード時及び除湿暖房モード時に、分岐部14aの一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部である。当該冷却用膨張弁15aは、本開示における冷却用減圧部に相当する。又、冷却用膨張弁15aは、室内蒸発器16へ流入する冷媒の流量を調整する冷却用流量調整部としても機能する。
The cooling expansion valve 15a is a cooling decompression unit that decompresses the refrigerant that has flowed out from one refrigerant outlet of the branching unit 14a at least in the cooling mode and the dehumidifying and heating mode. The cooling expansion valve 15a corresponds to the cooling pressure reducing portion in the present disclosure. The cooling expansion valve 15 a also functions as a cooling flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the indoor evaporator 16.
冷却用膨張弁15aは、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。即ち、冷却用膨張弁15aは、いわゆる電気式膨張弁によって構成されている。当該冷却用膨張弁15aの弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。
The cooling expansion valve 15a is an electric variable throttle mechanism, and has a valve body and an electric actuator. That is, the cooling expansion valve 15a is configured by a so-called electric expansion valve. The valve body of the cooling expansion valve 15a is configured to be able to change the passage opening degree of the refrigerant passage (in other words, the throttle opening degree). The electric actuator has a stepping motor that changes the throttle opening of the valve body.
当該冷却用膨張弁15aは、空調制御装置60から出力される制御信号によって、その作動が制御される。そして、当該冷却用膨張弁15aは、絞り開度を全開した際に冷媒通路を全開する全開機能と、絞り開度を全閉した際に冷媒通路を閉塞する全閉機能を有する可変絞り機構で構成されている。
The operation of the cooling expansion valve 15 a is controlled by a control signal output from the air conditioning control device 60. The cooling expansion valve 15a is a variable throttling mechanism having a fully open function of fully opening the refrigerant passage when the throttling degree is fully opened and a fully closing function of closing the refrigerant passage when the throttling degree is fully closed. It is configured.
つまり、冷却用膨張弁15aは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。又、当該冷却用膨張弁15aは、冷媒通路を閉塞することで、室内蒸発器16に対する冷媒の流入を遮断することができる。即ち、冷却用膨張弁15aは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。
That is, the cooling expansion valve 15a can prevent the pressure reducing action of the refrigerant from being exhibited by fully opening the refrigerant passage. Further, the cooling expansion valve 15 a can block the flow of the refrigerant into the indoor evaporator 16 by closing the refrigerant passage. That is, the cooling expansion valve 15a has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
冷却用膨張弁15aの出口には、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、室内空調ユニット50のケーシング51内に配置されている。室内蒸発器16は、少なくとも冷房モード時及び除湿暖房モード時に、冷却用膨張弁15aにて減圧された低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させ、送風空気を冷却する冷却用蒸発器である。即ち、室内蒸発器16は、本開示における冷却用吸熱器に相当する。
The refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a. The indoor evaporator 16 is disposed in the casing 51 of the indoor air conditioning unit 50. The indoor evaporator 16 performs heat exchange between the low pressure refrigerant decompressed by the cooling expansion valve 15a and the blown air at least in the cooling mode and the dehumidifying heating mode to evaporate the low pressure refrigerant and cool the blown air. It is an evaporator. That is, the indoor evaporator 16 corresponds to the heat sink for cooling in the present disclosure.
そして、室内蒸発器16の冷媒出口には、蒸発圧力調整弁17の入口側が接続されている。蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発圧力を予め定めた基準圧力以上に維持する蒸発圧力調整部である。蒸発圧力調整弁17は、室内蒸発器16の出口側の冷媒圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構によって構成されている。
The inlet side of the evaporation pressure adjusting valve 17 is connected to the refrigerant outlet of the indoor evaporator 16. The evaporation pressure adjustment valve 17 is an evaporation pressure adjustment unit that maintains the refrigerant evaporation pressure in the indoor evaporator 16 at or above a predetermined reference pressure. The evaporation pressure control valve 17 is configured by a mechanical variable throttle mechanism that increases the valve opening degree as the refrigerant pressure on the outlet side of the indoor evaporator 16 increases.
尚、当該蒸発圧力調整弁17は、室内蒸発器16における冷媒蒸発温度を、室内蒸発器16の着霜を抑制可能な基準温度(本実施形態では、1℃)以上に維持するように構成されている。
The evaporation pressure control valve 17 is configured to maintain the refrigerant evaporation temperature in the indoor evaporator 16 at a reference temperature (1 ° C. in the present embodiment) that can suppress the formation of frost on the indoor evaporator 16. ing.
そして、蒸発圧力調整弁17の出口には、合流部14bの一方の冷媒流入口側が接続されている。合流部14bは、分岐部14aと同様の三方継手構造のもので、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。図1に示すように、当該合流部14bは、蒸発圧力調整弁17から流出した冷媒の流れと室外蒸発器18から流出した冷媒の流れとを合流させるものである。
The outlet of the evaporating pressure adjusting valve 17 is connected to one refrigerant inlet side of the merging portion 14b. The merging portion 14b has a three-way joint structure similar to that of the branching portion 14a, in which two of the three inlets and outlets are used as a refrigerant inlet and the remaining one is used as a refrigerant outlet. As shown in FIG. 1, the merging portion 14 b merges the flow of the refrigerant flowing out of the evaporation pressure adjusting valve 17 and the flow of the refrigerant flowing out of the outdoor evaporator 18.
ここで、分岐部14aにおける他方の冷媒流出口には、吸熱用膨張弁15bが接続されている。当該吸熱用膨張弁15bは、少なくとも暖房モード時及び除湿暖房モードに、分岐部14aにおける他方の冷媒流出口から流出した液相冷媒を減圧膨張させる吸熱用減圧部である。当該吸熱用膨張弁15bは、本開示における加熱用減圧部として機能する。
Here, the heat absorption expansion valve 15 b is connected to the other refrigerant flow outlet in the branch portion 14 a. The heat absorption expansion valve 15 b is a heat absorption decompression section that decompresses and expands the liquid phase refrigerant that has flowed out from the other refrigerant outlet in the branch section 14 a at least in the heating mode and the dehumidifying heating mode. The heat absorption expansion valve 15 b functions as a heating pressure reduction unit in the present disclosure.
そして、吸熱用膨張弁15bは、室外蒸発器18へ流入する冷媒の流量を調整する吸熱用流量調整部として機能する。当該吸熱用膨張弁15bの基本的構成は、冷却用膨張弁15aと同様である。つまり、吸熱用膨張弁15bは、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。そして、吸熱用膨張弁15bは、冷却用膨張弁15aと同様に、全開機能と全閉機能を有している。
The heat absorption expansion valve 15 b functions as a heat absorption flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the outdoor evaporator 18. The basic configuration of the heat absorption expansion valve 15b is the same as that of the cooling expansion valve 15a. That is, the heat absorption expansion valve 15b is an electric variable throttle mechanism, and has a valve body and an electric actuator. Then, the heat absorption expansion valve 15b has a full open function and a full close function, as with the cooling expansion valve 15a.
つまり、吸熱用膨張弁15bは、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができ、冷媒通路を閉塞することで室外蒸発器18に対する冷媒の流入を遮断することができる。即ち、吸熱用膨張弁15bは、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。
That is, the heat absorption expansion valve 15b can prevent the depressurizing action of the refrigerant from being exhibited by fully opening the refrigerant passage, and blocking the flow of the refrigerant to the outdoor evaporator 18 by closing the refrigerant passage. Can. That is, the heat absorption expansion valve 15b has both a function as a pressure reducing unit that reduces the pressure of the refrigerant and a function as a circuit switching unit that switches the refrigerant circuit.
吸熱用膨張弁15bの出口には、室外蒸発器18の冷媒入口側が接続されている。室外蒸発器18は、少なくとも暖房モード及び除湿暖房モードにおいて、吸熱用膨張弁15bにて減圧された低圧冷媒と外気ファン30から送風された外気とを熱交換させ、低圧冷媒を蒸発させて冷媒に吸熱作用を発揮させる吸熱用蒸発器である。室外蒸発器18は本開示における加熱用吸熱器として機能し、外気は熱源流体として機能する。
The refrigerant inlet side of the outdoor evaporator 18 is connected to the outlet of the heat absorption expansion valve 15b. The outdoor evaporator 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air blown from the outside air fan 30 in at least the heating mode and the dehumidifying heating mode, and evaporates the low pressure refrigerant to make the refrigerant It is an endothermic evaporator that exerts an endothermic effect. The outdoor evaporator 18 functions as a heating heat sink in the present disclosure, and the outside air functions as a heat source fluid.
当該室外蒸発器18は、車両ボンネット内の前方側に配置されている。室外蒸発器18の冷媒出口には、合流部14bの他方の冷媒流入口側が接続されている。そして、合流部14bの冷媒流出口には、圧縮機11の吸入口側が接続されている。
The outdoor evaporator 18 is disposed on the front side in the vehicle bonnet. The other refrigerant inlet side of the merging portion 14 b is connected to the refrigerant outlet of the outdoor evaporator 18. And the suction port side of the compressor 11 is connected to the refrigerant | coolant outflow port of the confluence | merging part 14b.
続いて、車両用空調装置1を構成する室内空調ユニット50について説明する。室内空調ユニット50は、車両用空調装置1において、冷凍サイクル装置10によって温度調整された送風空気を車室内の適切な箇所へ吹き出すための空気通路を形成している。室内空調ユニット50は、車室内最前部の計器盤(即ち、インストルメントパネル)の内側に配置されている。
Then, the indoor air conditioning unit 50 which comprises the vehicle air conditioner 1 is demonstrated. The indoor air conditioning unit 50 forms an air passage for blowing out the blowing air whose temperature has been adjusted by the refrigeration cycle apparatus 10 to an appropriate place in the vehicle compartment in the vehicle air conditioner 1. The indoor air conditioning unit 50 is disposed inside the instrument panel (i.e., instrument panel) at the foremost part of the passenger compartment.
室内空調ユニット50は、その外殻を形成するケーシング51の内部に形成される空気通路に、送風機52、室内蒸発器16、ヒータコア22等を収容して構成されている。ケーシング51は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。
The indoor air conditioning unit 50 is configured by housing a blower 52, an indoor evaporator 16, a heater core 22 and the like in an air passage formed inside a casing 51 forming the outer shell thereof. The casing 51 forms an air passage for blowing air blown into the vehicle compartment, and is molded of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
図1に示すように、ケーシング51の送風空気流れ最上流側には、内外気切替装置53が配置されている。内外気切替装置53は、ケーシング51内へ内気(車室内空気)と外気(車室外空気)とを切替導入するものである。
As shown in FIG. 1, an internal / external air switching device 53 is disposed on the most upstream side of the flow of the blown air of the casing 51. The inside / outside air switching device 53 switches and introduces inside air (air in the vehicle interior) and outside air (air outside the vehicle) into the casing 51.
内外気切替装置53は、ケーシング51内へ内気を導入させる内気導入口及び外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させることができる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。
The inside / outside air switching device 53 continuously adjusts the opening area of the inside air introduction port for introducing inside air into the casing 51 and the outside air introduction port for introducing outside air by means of the inside / outside air switching door. The introduction rate with the introduction air volume can be changed. The inside and outside air switching door is driven by an electric actuator for the inside and outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
内外気切替装置53の送風空気流れ下流側には、送風機52が配置されている。送風機52は、遠心多翼ファンを電動モータにて駆動する電動送風機によって構成されており、内外気切替装置53を介して吸入した空気を車室内へ向けて送風する機能を果たす。送風機52によって送風される送風空気は、本開示における熱交換対象流体に相当する。当該送風機52は、空調制御装置60から出力される制御電圧によって、回転数(即ち、送風能力)が制御される。
A blower 52 is disposed downstream of the inside / outside air switching device 53 in the flow of the blown air. The blower 52 is constituted by an electric blower which drives a centrifugal multi-blade fan by an electric motor, and functions to blow air taken in via the inside / outside air switching device 53 toward the vehicle interior for blowing. The blowing air blown by the blower 52 corresponds to the heat exchange target fluid in the present disclosure. The rotation speed (that is, the blowing capacity) of the blower 52 is controlled by the control voltage output from the air conditioning control device 60.
送風機52の送風空気流れ下流側には、室内蒸発器16及びヒータコア22が、送風空気の流れに対して、この順に配置されている。つまり、室内蒸発器16は、ヒータコア22よりも送風空気流れ上流側に配置されている。
The indoor evaporator 16 and the heater core 22 are arranged in this order with respect to the flow of the blown air on the downstream side of the blown air flow of the blower 52. That is, the indoor evaporator 16 is disposed upstream of the heater core 22 in the flow of the blown air.
又、ケーシング51内には、室内蒸発器16を通過した送風空気を、ヒータコア22を迂回させて下流側へ流す冷風バイパス通路55が形成されている。
Further, in the casing 51, a cold air bypass passage 55 is formed, in which the blown air having passed through the indoor evaporator 16 is allowed to bypass the heater core 22 and flow downstream.
室内蒸発器16の送風空気流れ下流側であって、かつ、ヒータコア22の送風空気流れ上流側には、エアミックスドア54が配置されている。エアミックスドア54は、室内蒸発器16を通過後の送風空気のうち、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整するものである。
An air mix door 54 is disposed on the downstream side of the air flow of the indoor evaporator 16 and on the upstream side of the air flow of the heater core 22. The air mix door 54 adjusts the air volume ratio of the air volume passing through the heater core 22 and the air volume passing through the cold air bypass passage 55 in the blown air after passing through the indoor evaporator 16.
エアミックスドア54は、エアミックスドア駆動用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置60から出力される制御信号により、その作動が制御される。
The air mix door 54 is driven by an electric actuator for driving the air mix door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
ヒータコア22の送風空気流れ下流側には、ヒータコア22にて加熱された送風空気と冷風バイパス通路55を通過してヒータコア22にて加熱されていない送風空気とを混合させる混合空間56が設けられている。更に、ケーシング51の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を、車室内へ吹き出す開口穴が配置されている。
On the downstream side of the air flow of the heater core 22, there is provided a mixing space 56 for mixing the air heated by the heater core 22 and the air not passing through the cold air bypass passage 55 and not heated by the heater core 22. There is. Further, at the most downstream portion of the air flow of the casing 51, an opening for blowing out the air (air-conditioned air) mixed in the mixing space into the vehicle compartment is disposed.
この開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
As this opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment. The foot opening hole is an opening hole for blowing the conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
これらのフェイス開口穴、フット開口穴、及びデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
These face opening holes, foot opening holes, and defroster opening holes are respectively provided in the passenger compartment via a duct that forms an air passage, face outlet, foot outlet, and defroster outlet (all not shown) )It is connected to the.
従って、エアミックスドア54が、ヒータコア22を通過させる風量と冷風バイパス通路55を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。
Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio of the air volume passing the heater core 22 and the air volume passing the cold air bypass passage 55 by the air mix door 54. As a result, the temperature of the air (air-conditioned air) blown out from the outlets into the vehicle compartment is also adjusted.
そして、フェイス開口穴、フット開口穴、及びデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
The face door for adjusting the opening area of the face opening hole, the foot door for adjusting the opening area of the foot opening hole, and the defroster opening on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively. A defroster door (not shown) is arranged to adjust the opening area of the hole.
これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成する。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。
These face door, foot door, and defroster door constitute an air outlet mode switching device that switches the air outlet from which the conditioned air is blown out. The face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are operated to rotate in conjunction with each other. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 60.
次に、第1実施形態に係る車両用空調装置1の制御系について、図2を参照しつつ説明する。空調制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。
Next, a control system of the vehicle air conditioner 1 according to the first embodiment will be described with reference to FIG. The air conditioning control device 60 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like, and peripheral circuits thereof.
そして、当該空調制御装置60は、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。第1実施形態における制御対象機器には、圧縮機11と、冷却用膨張弁15aと、吸熱用膨張弁15bと、高温側熱媒体ポンプ21と、高温側流量調整弁24と、外気ファン30と、送風機52等が含まれている。
And the said air-conditioning control apparatus 60 performs various calculations and processing based on the air-conditioning control program memorize | stored in the ROM, and controls the action | operation of the various control object apparatus connected to the output side. The control target devices in the first embodiment include the compressor 11, the cooling expansion valve 15a, the heat absorption expansion valve 15b, the high temperature side heat medium pump 21, the high temperature side flow control valve 24, and the outside air fan 30. , The blower 52 and the like are included.
図2に示すように、空調制御装置60の入力側には、内気温センサ62a、外気温センサ62b、日射センサ62c、高圧センサ62d、蒸発器温度センサ62e、空調風温度センサ62f、出口側温度センサ62g等の空調制御用のセンサ群が接続されている。空調制御装置60には、これらの空調制御用のセンサ群の検出信号が入力される。
As shown in FIG. 2, on the input side of the air conditioning controller 60, an inside air temperature sensor 62a, an outside air temperature sensor 62b, a solar radiation sensor 62c, a high pressure sensor 62d, an evaporator temperature sensor 62e, an air conditioning air temperature sensor 62f, an outlet side temperature A sensor group for air conditioning control such as the sensor 62g is connected. The air conditioning control device 60 receives detection signals of these air conditioning control sensors.
内気温センサ62aは、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62bは、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ62cは、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ62dは、圧縮機11の吐出口側から冷却用膨張弁15a或いは吸熱用膨張弁15bの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。
The inside air temperature sensor 62a is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr. The outside air temperature sensor 62b is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam. The solar radiation sensor 62c is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior. The high pressure sensor 62 d is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the cooling expansion valve 15 a or the heat absorption expansion valve 15 b.
蒸発器温度センサ62eは、室内蒸発器16における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ62fは、車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。そして、出口側温度センサ62gは、室外蒸発器18の出口側の冷媒の出口側温度Teを検出する出口側温度検出部である。
The evaporator temperature sensor 62 e is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 16. The air conditioning air temperature sensor 62f is an air conditioning air temperature detection unit that detects the temperature of the air that is blown into the vehicle compartment. The outlet-side temperature sensor 62 g is an outlet-side temperature detection unit that detects the outlet-side temperature Te of the refrigerant on the outlet side of the outdoor evaporator 18.
更に、空調制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル61が接続されている。従って、空調制御装置60には、この操作パネル61に設けられた各種操作スイッチからの操作信号が入力される。
Further, on the input side of the air conditioning control device 60, an operation panel 61 disposed in the vicinity of the instrument panel at the front of the vehicle interior is connected. Accordingly, operation signals from various operation switches provided on the operation panel 61 are input to the air conditioning control device 60.
操作パネル61に設けられた各種操作スイッチとしては、具体的に、車両用空調装置1の自動制御運転を設定或いは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機52の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ等がある。
As various operation switches provided on the operation panel 61, specifically, an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1, a cooling switch for requesting cooling of the vehicle interior, and a blower 52 There are an air volume setting switch for manually setting the air volume, a temperature setting switch for setting the target temperature Tset in the vehicle interior, and the like.
尚、当該空調制御装置60では、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されているが、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
In the air conditioning control device 60, the control unit for controlling various control target devices connected to the output side is integrally configured, but the configuration for controlling the operation of each control target device (hardware and software ) Constitute a control unit that controls the operation of each control target device.
例えば、空調制御装置60のうち、圧縮機11の作動を制御する構成は、吐出能力制御部60aである。空調制御装置60のうち、回路切替部として、冷却用膨張弁15a及び吸熱用膨張弁15bの作動を制御する構成は、回路切替制御部60bである。そして、空調制御装置60の内、室外蒸発器18における着霜の危険性等を判定する為の構成は着霜判定部60cである。
For example, in the air conditioning control device 60, the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a. In the air conditioning control device 60, a circuit switching control unit 60b controls the operation of the cooling expansion valve 15a and the heat absorption expansion valve 15b as a circuit switching unit. And the structure for determining the danger of the frost formation in the outdoor evaporator 18, etc. among the air-conditioning control apparatuses 60 is the frosting determination part 60c.
尚、着霜判定部60cは、空調制御プログラムのサブルーチンとして所定の周期毎に実行される判定用の制御プログラムによって実現される。具体的には、出口側温度センサ62gによって検出された出口側温度Teが、外気温センサによって検出された外気温Tamから予め定めた基準温度αを減算した値よりも低くなっている際に、着霜判定部60cは、室外蒸発器18における着霜の危険性があると判定する。
The frost formation determining unit 60c is implemented by a control program for determination that is executed at predetermined intervals as a subroutine of the air conditioning control program. Specifically, when the outlet side temperature Te detected by the outlet side temperature sensor 62g is lower than a value obtained by subtracting a predetermined reference temperature α from the outside air temperature Tam detected by the outside air temperature sensor, The frost determination unit 60 c determines that there is a risk of frost formation in the outdoor evaporator 18.
次に、第1実施形態における車両用空調装置1の作動について説明する。上述したように、第1実施形態に係る車両用空調装置1では、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、空調制御装置60に予め記憶された空調制御プログラムが実行されることによって行われる。
Next, the operation of the vehicle air conditioner 1 in the first embodiment will be described. As described above, in the vehicle air conditioner 1 according to the first embodiment, the operation mode can be appropriately switched from the plurality of operation modes. The switching of these operation modes is performed by executing the air conditioning control program stored in advance in the air conditioning control device 60.
より具体的には、空調制御プログラムでは、空調制御用のセンサ群によって検出された検出信号および操作パネル61から出力される操作信号に基づいて、車室内へ送風させる送風空気の目標吹出温度TAOを算出する。そして、目標吹出温度TAOおよび検出信号に基づいて、運転モードを切り替える。以下に、複数の運転モードの内、冷房モードにおける作動と、暖房モードにおける作動を説明する。
More specifically, in the air conditioning control program, based on the detection signal detected by the air conditioning control sensor group and the operation signal output from the operation panel 61, the target blowout temperature TAO of the air to be blown into the vehicle compartment is calculated. calculate. Then, the operation mode is switched based on the target blowout temperature TAO and the detection signal. Among the plurality of operation modes, the operation in the cooling mode and the operation in the heating mode will be described below.
(a)冷房モード
冷房モードは、熱交換対象流体である送風空気を冷却して車室内に送風する運転モードであり、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全閉状態とする。 (A) Cooling Mode The cooling mode is an operation mode in which the blowing air, which is a heat exchange target fluid, is cooled and blown into the vehicle compartment, and is an example of the cooling mode in the present disclosure. In the cooling mode, the airconditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
冷房モードは、熱交換対象流体である送風空気を冷却して車室内に送風する運転モードであり、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全閉状態とする。 (A) Cooling Mode The cooling mode is an operation mode in which the blowing air, which is a heat exchange target fluid, is cooled and blown into the vehicle compartment, and is an example of the cooling mode in the present disclosure. In the cooling mode, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→分岐部14a→冷却用膨張弁15a→室内蒸発器16→蒸発圧力調整弁17→合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → branching portion 14a → cooling expansion valve 15a → indoor evaporator 16 → evaporation pressure control valve 17 → merge A vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the part 14 b → the compressor 11 is configured.
つまり、冷房モードでは、室内蒸発器16へ冷媒を流入させ、送風空気との熱交換により送風空気を冷却する冷媒回路に切り替えられる。
That is, in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to the refrigerant circuit for cooling the blowing air by heat exchange with the blowing air.
そして、このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side.
例えば、空調制御装置60は、蒸発器温度センサ62eによって検出された冷媒蒸発温度Tefinが目標蒸発温度TEOとなるように圧縮機11の作動を制御する。目標蒸発温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された冷房モード用の制御マップを参照して決定される。
For example, the air conditioning control device 60 controls the operation of the compressor 11 such that the refrigerant evaporation temperature Tefin detected by the evaporator temperature sensor 62e becomes the target evaporation temperature TEO. The target evaporation temperature TEO is determined based on the target blowing temperature TAO with reference to the control map for the cooling mode stored in advance in the air conditioning control device 60.
具体的には、この制御マップでは、空調風温度センサ62fによって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標蒸発温度TEOを上昇させる。さらに、目標蒸発温度TEOは、室内蒸発器16の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。
Specifically, in this control map, the target evaporation temperature TEO is raised along with the rise of the target blowout temperature TAO so that the blown air temperature TAV detected by the air conditioning air temperature sensor 62f approaches the target blowout temperature TAO. Furthermore, the target evaporation temperature TEO is determined to be a value in a range (specifically, 1 ° C. or more) in which frost formation of the indoor evaporator 16 can be suppressed.
又、空調制御装置60は、予め定めた冷房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。又、空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ラジエータ23へ流入するように、高温側流量調整弁24の作動を制御する。
Further, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the cooling mode determined in advance. Further, the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out from the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
そして、当該空調制御装置60は、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して送風機52の制御電圧(送風能力)を決定する。具体的には、この制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)及び極高温域(最大暖房域)で送風機52の送風量を最大とし、中間温度域に近づくに伴って送風量を減少させる。
Then, the air conditioning control device 60 determines the control voltage (blowing capacity) of the blower 52 with reference to the control map stored in advance in the air conditioning control device 60 based on the target blowing temperature TAO. Specifically, in this control map, the air flow of the blower 52 is maximized in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO, and as the intermediate temperature region is approached. Reduce air flow.
又、空調制御装置60は、冷風バイパス通路55を全開としてヒータコア22側の通風路を閉塞するように、エアミックスドア54の作動を制御する。尚、当該空調制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。
Further, the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices.
従って、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路にて冷却された高圧冷媒は、分岐部14aを介して、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。
The high pressure refrigerant cooled in the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a via the branch portion 14a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17及び合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。
The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the merging portion 14 b and compressed again.
従って、冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Therefore, in the cooling mode, the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
(b)暖房モード
暖房モードは、室外蒸発器18にて熱源流体である外気から吸熱して、熱交換対象流体である送風空気を加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60が、冷却用膨張弁15aを全閉状態とし、吸熱用膨張弁15bを所定の絞り開度で開く。 (B) Heating mode The heating mode is an operation mode in which theoutdoor evaporator 18 absorbs heat from the outside air, which is the heat source fluid, and heats the blowing air, which is the heat exchange target fluid, to blow the air into the vehicle compartment. It is an example of a heating mode. In the heating mode, the air conditioning control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
暖房モードは、室外蒸発器18にて熱源流体である外気から吸熱して、熱交換対象流体である送風空気を加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60が、冷却用膨張弁15aを全閉状態とし、吸熱用膨張弁15bを所定の絞り開度で開く。 (B) Heating mode The heating mode is an operation mode in which the
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→分岐部14a→吸熱用膨張弁15b→室外蒸発器18→合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → the modulator 13 → the branch portion 14a → the heat absorption expansion valve 15b → the outdoor evaporator 18 → the merging portion 14b → the compressor 11 In this order, a vapor compression type refrigeration cycle in which the refrigerant circulates is configured.
つまり、暖房モードでは、室外蒸発器18へ冷媒を流入させ、外気との熱交換により吸熱した熱を利用して、送風空気を加熱する冷媒回路に切り替えられる。
That is, in the heating mode, the refrigerant is caused to flow into the outdoor evaporator 18, and switching to a refrigerant circuit that heats the blowing air is performed using heat absorbed by heat exchange with the outside air.
そして、このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器の作動を制御する。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side.
例えば、空調制御装置60は、高圧センサ62dによって検出された高圧冷媒圧力Pdが目標高圧PCOとなるように圧縮機11の作動を制御する。目標高圧PCOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された暖房モード用の制御マップを参照して決定される。
For example, the air-conditioning control device 60 controls the operation of the compressor 11 such that the high-pressure refrigerant pressure Pd detected by the high-pressure sensor 62d becomes the target high-pressure PCO. The target high pressure PCO is determined based on the target blowout temperature TAO with reference to the control map for the heating mode stored in advance in the air conditioning control device 60.
具体的には、この制御マップでは、送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇に伴って目標高圧PCOを上昇させる。
Specifically, in this control map, the target high pressure PCO is raised with the rise of the target blowing temperature TAO so that the blowing air temperature TAV approaches the target blowing temperature TAO.
又、空調制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。当該空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量がヒータコア22へ流入するように、高温側流量調整弁24の作動を制御する。
Further, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode. The air conditioning controller 60 controls the operation of the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22.
そして、空調制御装置60は、冷房モードと同様に、送風機52の制御電圧(送風能力)を決定する。又、空調制御装置60は、ヒータコア22側の通風路を全開として冷風バイパス通路55を閉塞するように、エアミックスドア54の作動を制御する。尚、空調制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。
And the air-conditioning control apparatus 60 determines the control voltage (blower capability) of the air blower 52 similarly to air conditioning mode. Further, the air conditioning control device 60 controls the operation of the air mix door 54 so as to fully open the air passage on the heater core 22 side and close the cold air bypass passage 55. The air conditioning control device 60 appropriately controls the operation of various other control target devices.
従って、暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
Accordingly, in the heating mode refrigeration cycle apparatus 10, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、分岐部14aを介して、吸熱用膨張弁15bへ流入して減圧される。吸熱用膨張弁15bの絞り開度は、室外蒸発器18の出口側の冷媒が気液二相状態となるように調整される。
The high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the heat absorption expansion valve 15b via the branch portion 14a and is reduced in pressure. The throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the outdoor evaporator 18 is in a gas-liquid two-phase state.
吸熱用膨張弁15bにて減圧された低圧冷媒は、室外蒸発器18へ流入する。室外蒸発器18へ流入した冷媒は、外気ファン30から送風された熱源流体である外気から吸熱して蒸発する。室外蒸発器18から流出した冷媒は、合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。
The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the outdoor evaporator 18. The refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates. The refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 via the merging portion 14b and compressed again.
従って、暖房モードでは、熱交換対象流体である送風空気を、ヒータコア22で加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。
Therefore, in the heating mode, heating of the vehicle interior can be performed by heating the blown air, which is the fluid to be heat-exchanged, with the heater core 22 and blowing it out into the vehicle interior.
(c)除湿暖房モード
除湿暖房モードは、室内蒸発器16にて冷却された熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱で加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60が、冷却用膨張弁15a及び吸熱用膨張弁15bを、それぞれ所定の絞り開度で開く。 (C) Dehumidifying and heating mode In the dehumidifying and heating mode, the air which is the heat exchange target fluid cooled by theindoor evaporator 16 is heated by heat absorbed from the outside air which is the heat source fluid by the outdoor evaporator 18 It is an operation mode which blows air indoors, and is an example of a heating mode in this indication. In the dehumidifying and heating mode, the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree.
除湿暖房モードは、室内蒸発器16にて冷却された熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱で加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60が、冷却用膨張弁15a及び吸熱用膨張弁15bを、それぞれ所定の絞り開度で開く。 (C) Dehumidifying and heating mode In the dehumidifying and heating mode, the air which is the heat exchange target fluid cooled by the
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→分岐部14aまで流れ、分岐部14aの一方側→冷却用膨張弁15a→室内蒸発器16へ流れると共に、分岐部14aの他方側→吸熱用膨張弁15b→室外蒸発器18へ流れる。そして、室内蒸発器16から流出した冷媒及び室外蒸発器18から流出した冷媒は合流部14bにて合流した後、圧縮機11の順で流れて循環する。即ち、除湿暖房モードでは、室内蒸発器16及び室外蒸発器18に冷媒が並列に流れる蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the refrigerant flows from the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → branch portion 14a, and one side of the branch portion 14a → cooling expansion valve 15a → indoor evaporation It flows to the vessel 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18. The refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
そして、このサイクル構成で、空調制御装置60は、出力側に接続された各種制御対象機器の作動を、予め空調制御装置60に記憶された除湿暖房モード用の制御マップ等を参照して制御する。
Then, with this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side with reference to the control map for the dehumidifying heating mode and the like stored in advance in the air conditioning control device 60. .
除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
In the refrigeration cycle apparatus 10 in the dehumidifying and heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16にて冷却された送風空気と熱交換して放熱する。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium that has flowed into the heater core 22 exchanges heat with the blowing air cooled by the indoor evaporator 16 and radiates heat since the air mixing door 54 fully opens the air passage on the heater core 22 side.
これにより、熱交換対象流体である送風空気が冷却された状態から再加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
As a result, the blowing air, which is the heat exchange target fluid, is reheated from the cooled state, and the temperature of the blowing air approaches the target blowing temperature TAO. The high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、分岐部14aを介して、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。
The high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a via the branch portion 14a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。室内蒸発器16から流出した冷媒は、蒸発圧力調整弁17及び合流部14bを介して、圧縮機11へ吸入されて再び圧縮される。
The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled. The refrigerant flowing out of the indoor evaporator 16 is sucked into the compressor 11 via the evaporation pressure adjusting valve 17 and the merging portion 14 b and compressed again.
分岐部14aにて分岐した高圧冷媒は、吸熱用膨張弁15bへ流入して減圧される。吸熱用膨張弁15bの絞り開度は、室外蒸発器18の出口側の冷媒が気液二相状態となるように調整される。
The high pressure refrigerant branched at the branch portion 14a flows into the heat absorption expansion valve 15b and is decompressed. The throttle opening degree of the heat absorption expansion valve 15b is adjusted so that the refrigerant on the outlet side of the outdoor evaporator 18 is in a gas-liquid two-phase state.
吸熱用膨張弁15bにて減圧された低圧冷媒は、室外蒸発器18へ流入する。室外蒸発器18へ流入した冷媒は、外気ファン30から送風された熱源流体である外気から吸熱して蒸発する。室外蒸発器18から流出した冷媒は、合流部14bにて、室内蒸発器16及び蒸発圧力調整弁17を通過した冷媒と合流して、圧縮機11へ吸入されて再び圧縮される。
The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15 b flows into the outdoor evaporator 18. The refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates. The refrigerant that has flowed out of the outdoor evaporator 18 merges with the refrigerant that has passed through the indoor evaporator 16 and the evaporation pressure adjusting valve 17 at the merging portion 14b, and is drawn into the compressor 11 and compressed again.
上述したように、ケーシング51内部において、室内蒸発器16の送風空気流れ下流側にヒータコア22が配置されている為、除湿暖房モードでは、室内蒸発器16にて冷却された送風空気を、室外蒸発器18で吸熱した熱を利用してヒータコア22にて加熱することができる。
As described above, the heater core 22 is disposed on the downstream side of the air flow of the indoor evaporator 16 inside the casing 51. Therefore, in the dehumidifying and heating mode, the air cooled by the indoor evaporator 16 is evaporated outside the room. The heat absorbed by the vessel 18 can be used to heat the heater core 22.
以上説明したように、第1実施形態に係る車両用空調装置1によれば、冷凍サイクル装置10が冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを切り替えることができ、車室内の快適な空調を実現することができる。
As described above, according to the vehicle air conditioner 1 according to the first embodiment, the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
ここで、運転モードに応じて、冷媒回路を切り替える冷凍サイクル装置10では、サイクル構成の複雑化を招きやすい。これに対して、第1実施形態に係る冷凍サイクル装置10では、同一の熱交換器へ高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替えることがない。
Here, in the refrigeration cycle apparatus 10 that switches the refrigerant circuit according to the operation mode, the cycle configuration tends to be complicated. On the other hand, in the refrigeration cycle apparatus 10 according to the first embodiment, there is no switching between the refrigerant circuit that causes the high pressure refrigerant to flow into the same heat exchanger and the refrigerant circuit that causes the low pressure refrigerant to flow.
つまり、いずれの冷媒回路に切り替えても室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。
That is, since it is not necessary to flow the high-pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18 regardless of switching to any refrigerant circuit, the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
ところで、暖房モードや除湿暖房モードでは、室外蒸発器18における冷媒蒸発温度を外気温よりも低下させる場合がある。この為、暖房モード等では、室外蒸発器18に着霜が生じてしまう虞がある。着霜が生じてしまうと、室外蒸発器18における熱交換性能が低下する為、車両用空調装置1の暖房性能を低下させてしまう。
By the way, in the heating mode or the dehumidifying heating mode, the refrigerant evaporation temperature in the outdoor evaporator 18 may be lower than the outside air temperature. For this reason, in the heating mode or the like, frost may occur on the outdoor evaporator 18. When frost formation occurs, the heat exchange performance of the outdoor evaporator 18 is reduced, and thus the heating performance of the vehicle air conditioner 1 is reduced.
このような室外蒸発器18の着霜に対応する構成としては、当該室外蒸発器18に対して高圧冷媒を導入し、導入された高圧冷媒の熱によって除霜を行うことが知られている。しかしながら、室外蒸発器18に高圧冷媒を導入する為には、冷凍サイクル装置10に切替弁等を追加する必要が生じ、サイクル構成を複雑化させてしまう。
As a structure corresponding to the frost formation of such an outdoor evaporator 18, it is known to introduce | transduce a high voltage | pressure refrigerant | coolant with respect to the said outdoor evaporator 18, and to defrost with the heat of the introduced high pressure refrigerant | coolant. However, in order to introduce the high pressure refrigerant into the outdoor evaporator 18, it is necessary to add a switching valve or the like to the refrigeration cycle apparatus 10, which complicates the cycle configuration.
又、単純に暖房モード等での運転を停止する構成では、室外蒸発器18における着霜の進行を抑え、外気によって霜を融解させることができる。この場合、暖房モード等での運転を停止することになる為、車室内の快適性が損なわれてしまう。又、外気温との温度差によって除霜が進行することになる為、除霜を完了するまでに長期間を要する場合が想定される。
Moreover, in the structure which stops the driving | operation in heating mode etc. simply, advancing of the frost formation in the outdoor evaporator 18 can be suppressed, and frost can be fuse | melted by external air. In this case, since the operation in the heating mode or the like is stopped, the comfort of the vehicle interior is impaired. Moreover, since defrosting will advance by temperature difference with external temperature, the case where a long time is required until defrosting is completed is assumed.
そこで、第1実施形態に係る冷凍サイクル装置10では、室外蒸発器18の着霜による不具合を解消する為に、図3に示す構成を採用し、サイクル高圧側で放熱される熱の一部を利用して、室外蒸発器18における着霜の抑制及び除霜を実現している。
Therefore, in the refrigeration cycle apparatus 10 according to the first embodiment, in order to eliminate the problem caused by the frost formation on the outdoor evaporator 18, the configuration shown in FIG. 3 is adopted, and part of the heat radiated on the cycle high pressure side It utilizes and the suppression and the defrost of frost in the outdoor evaporator 18 are implement | achieved.
具体的には、図3に示すように、室外蒸発器18の熱交換部は、熱伝導性を有する複数の伝熱フィン31によって、高温側熱媒体回路20における高温側ラジエータ23の熱交換部に対して接続されている。
Specifically, as shown in FIG. 3, the heat exchange portion of the outdoor evaporator 18 is a heat exchange portion of the high temperature side radiator 23 in the high temperature side heat medium circuit 20 by the plurality of heat transfer fins 31 having thermal conductivity. Connected to.
当該伝熱フィン31は、室外蒸発器18又は高温側ラジエータ23の一部の構成部品(例えば、熱交換フィン)を共通化することによって構成されており、伝熱可能な金属を用いて形成されている。当該伝熱フィン31は本開示における伝熱部材に相当する。
The heat transfer fins 31 are formed by sharing a part of the outdoor evaporator 18 or a part of the high temperature side radiator 23 (for example, heat exchange fins), and are formed using a heat transferable metal. ing. The heat transfer fins 31 correspond to the heat transfer members in the present disclosure.
即ち、室外蒸発器18と高温側ラジエータ23は、複数の伝熱フィン31によって熱的に接続されており、高温側ラジエータ23で放熱される熱を室外蒸発器18に対して伝達可能に構成されている。
That is, the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected by a plurality of heat transfer fins 31 and configured to be able to transmit the heat radiated by the high temperature side radiator 23 to the outdoor evaporator 18 ing.
尚、本開示における伝熱部材は、熱交換フィンを共通化して構成される伝熱フィン31に限定されるものではない。当該伝熱部材としては、高温側ラジエータ23から室外蒸発器18に対して熱を伝達することができれば、種々の構成を採用することができ、室外蒸発器18及び高温側ラジエータ23の構成部品を共通化したものでなく、熱伝導性を有する別体の部材とすることも可能である。
Note that the heat transfer member in the present disclosure is not limited to the heat transfer fins 31 configured by sharing heat exchange fins. As the heat transfer member, various configurations can be adopted as long as heat can be transferred from the high temperature side radiator 23 to the outdoor evaporator 18, and the components of the outdoor evaporator 18 and the high temperature side radiator 23 It is also possible to use separate members having thermal conductivity instead of being common.
このように構成することで、当該冷凍サイクル装置10においては、高温側ラジエータ23で放熱される熱を低温側である室外蒸発器18に伝達することができる。この結果、当該冷凍サイクル装置10によれば、暖房モードや除湿暖房モード等を実行している場合に、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
With this configuration, in the refrigeration cycle apparatus 10, the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 which is the low temperature side. As a result, according to the refrigeration cycle apparatus 10, when the heating mode, the dehumidifying heating mode, etc. are executed, the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted. Can be
尚、高温側流量調整弁24の作動を制御することで、高温側熱媒体回路20の高温側熱媒体の流量に関して、ヒータコア22側と高温側ラジエータ23側のバランスを変更する制御を行っても良い。
Even if control is performed to change the balance between the heater core 22 side and the high temperature side radiator 23 side regarding the flow rate of the high temperature side heat medium of the high temperature side heat medium circuit 20 by controlling the operation of the high temperature side flow rate adjustment valve 24 good.
例えば、室外蒸発器18の除霜が必要な場合には、ヒータコア22側よりも高温側ラジエータ23側へ高温側熱媒体の流量を増加させる。これにより、より多くの熱が伝熱フィン31を介して、高温側ラジエータ23から室外蒸発器18へ伝達されるため、室外蒸発器18の除霜を迅速に行うことができる。
For example, when defrosting of the outdoor evaporator 18 is required, the flow rate of the high temperature side heat medium is increased to the high temperature side radiator 23 side rather than the heater core 22 side. As a result, more heat is transferred from the high temperature side radiator 23 to the outdoor evaporator 18 through the heat transfer fins 31, so that the outdoor evaporator 18 can be defrosted quickly.
又、室外蒸発器18の着霜を抑制する場合には、ヒータコア22側よりも高温側ラジエータ23側へ高温側熱媒体の流量を少なく制御する。これにより、ヒータコア22による送風空気の加熱能力をできるだけ維持しながら、室外蒸発器18の着霜を抑制することができる。
Moreover, when suppressing frost formation of the outdoor evaporator 18, the flow rate of the high temperature side heat medium is controlled to be smaller toward the high temperature side radiator 23 than the heater core 22 side. Thereby, the frost formation of the outdoor evaporator 18 can be suppressed, maintaining the heating capability of the blowing air by the heater core 22 as much as possible.
そして、図3に示す構成の場合、室外蒸発器18の除霜等を行う為に、室外蒸発器18に高圧冷媒を導入する必要もなく、暖房モード等での運転を停止する必要もない。即ち、当該冷凍サイクル装置10によれば、簡素なサイクル構成にて、空調対象空間である車室内の快適性を維持しつつ、室外蒸発器18の着霜による不具合の発生を抑制・解消することができる。
Further, in the case of the configuration shown in FIG. 3, there is no need to introduce a high pressure refrigerant into the outdoor evaporator 18 and there is no need to stop the operation in the heating mode etc. in order to defrost the outdoor evaporator 18 or the like. That is, according to the refrigeration cycle apparatus 10, with the simple cycle configuration, while maintaining the comfortability of the vehicle cabin which is the space to be air conditioned, to suppress / cancel the occurrence of the trouble due to the frost formation of the outdoor evaporator 18. Can.
以上説明したように、第1実施形態に係る冷凍サイクル装置10によれば、回路切替制御部60bによって、分岐部14aに接続された室内蒸発器16側の冷媒回路と、室外蒸発器18側の冷媒回路とを切り替えることができる。
As described above, according to the refrigeration cycle apparatus 10 according to the first embodiment, the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b, and the outdoor evaporator 18 side The refrigerant circuit can be switched.
具体的には、当該冷凍サイクル装置10によれば、冷却モードの一例である冷房モードでは、冷却用膨張弁15aで減圧された冷媒を室内蒸発器16にて熱交換させ、熱交換対象流体である送風空気を冷却することができる。
Specifically, according to the refrigeration cycle apparatus 10, in the cooling mode which is an example of the cooling mode, the refrigerant reduced in pressure by the cooling expansion valve 15a is subjected to heat exchange in the indoor evaporator 16, and the heat exchange target fluid is used. Some blast air can be cooled.
そして、当該冷凍サイクル装置10によれば、加熱モードの一例である暖房モードでは、吸熱用膨張弁15bで減圧された冷媒を室外蒸発器18にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として送風空気を加熱することができる。
Then, according to the refrigeration cycle apparatus 10, in the heating mode which is an example of the heating mode, the refrigerant reduced in pressure by the heat absorption expansion valve 15b is subjected to heat exchange between the outdoor air as the heat source fluid and the refrigerant in the outdoor evaporator 18. By doing this, it is possible to heat the blown air using the outside air as a heat source.
又、当該冷凍サイクル装置10によれば、加熱モードの一例である除湿暖房モードでは、吸熱用膨張弁15bで減圧された冷媒を室外蒸発器18にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として、室内蒸発器16にて冷却された送風空気を加熱することができる。
Further, according to the refrigeration cycle apparatus 10, in the dehumidifying and heating mode, which is an example of the heating mode, the refrigerant depressurized by the heat absorption expansion valve 15b is heated by the outdoor evaporator 18 to heat the outside air as the heat source fluid and the refrigerant. By exchanging the air, the blowing air cooled by the indoor evaporator 16 can be heated using the outside air as a heat source.
当該冷凍サイクル装置10によれば、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。即ち、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モード、暖房モード及び除湿暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration. The refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
この冷房モードでは、室内蒸発器16にて吸熱された熱は、加熱部を構成する高温側熱媒体回路20の高温側ラジエータ23にて外気に放熱される。即ち、室外蒸発器18は放熱器として機能することはなく、吸熱器として機能している。換言すると、当該冷凍サイクル装置10の冷房モードでは、室外蒸発器18へ高圧冷媒を流入させることはない。
In this cooling mode, the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the high temperature side radiator 23 of the high temperature side heat medium circuit 20 constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
そして、第1実施形態に係る冷凍サイクル装置10は、高温側水-冷媒熱交換器12を有し、高温側熱媒体を循環させる高温側熱媒体回路20に、ヒータコア22を配置している。従って、暖房モード時等に、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体をヒータコア22へ流入させて、送風空気を加熱することができる。
The refrigeration cycle apparatus 10 according to the first embodiment includes the high temperature side water-refrigerant heat exchanger 12, and the heater core 22 is disposed in the high temperature side heat medium circuit 20 for circulating the high temperature side heat medium. Therefore, in the heating mode or the like, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 can be caused to flow into the heater core 22 to heat the blowing air.
又、第1実施形態に係る冷凍サイクル装置10においては、高温側熱媒体回路20に高温側ラジエータ23が配置されている。従って、室内蒸発器16や室外蒸発器18にて吸熱した熱を外気に放熱させることが可能となり、冷房モード時において車室内の冷房を適切に行うことができる。
In the refrigeration cycle apparatus 10 according to the first embodiment, the high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. Accordingly, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be dissipated to the outside air, and cooling of the vehicle interior can be appropriately performed in the cooling mode.
そして、第1実施形態では、室外蒸発器18と高温側ラジエータ23が熱的に接続されており、高温側熱媒体回路20における高温側熱媒体の有する熱を室外蒸発器18に伝達することができる。
And in 1st Embodiment, the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected, and the heat which the high temperature side heat medium in the high temperature side heat medium circuit 20 has is transmitted to the outdoor evaporator 18 it can.
具体的には、図3に示すように、室外蒸発器18の熱交換部と高温側ラジエータ23の熱交換部は、複数の伝熱フィン31によって接続されている。これにより、複数の伝熱フィン31を介して、高温側ラジエータ23で放熱される熱を室外蒸発器18へ伝達することができるので、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
Specifically, as shown in FIG. 3, the heat exchange portion of the outdoor evaporator 18 and the heat exchange portion of the high temperature side radiator 23 are connected by a plurality of heat transfer fins 31. Thereby, the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 through the plurality of heat transfer fins 31, so that the progress of frost formation in the outdoor evaporator 18 can be suppressed, or the outdoor Defrosting of the evaporator 18 can be performed.
(第2実施形態)
続いて、上述した第1実施形態とは異なる第2実施形態について、図4を参照しつつ説明する。尚、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。 Second Embodiment
Subsequently, a second embodiment different from the above-described first embodiment will be described with reference to FIG. In FIG. 4, the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
続いて、上述した第1実施形態とは異なる第2実施形態について、図4を参照しつつ説明する。尚、図4では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。 Second Embodiment
Subsequently, a second embodiment different from the above-described first embodiment will be described with reference to FIG. In FIG. 4, the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
第2実施形態に係る冷凍サイクル装置10は、第1実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。
Similar to the first embodiment, the refrigeration cycle apparatus 10 according to the second embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
図4に示すように、第2実施形態に係る車両用空調装置1は、第1実施形態と同様に、冷凍サイクル装置10と、高温側熱媒体回路20と、室内空調ユニット50とを有して構成されている。
As shown in FIG. 4, the vehicle air conditioner 1 according to the second embodiment includes the refrigeration cycle apparatus 10, the high temperature side heat medium circuit 20, and the indoor air conditioning unit 50 as in the first embodiment. Is configured.
第2実施形態における高温側熱媒体回路20と室内空調ユニット50の構成は、第1実施形態と同様である。従って、これらに関する説明は省略する。第2実施形態では、高温側水-冷媒熱交換器12を含む高温側熱媒体回路20が本開示の加熱部として機能する。
The configurations of the high temperature side heat medium circuit 20 and the indoor air conditioning unit 50 in the second embodiment are the same as in the first embodiment. Therefore, the description about these is omitted. In the second embodiment, the high temperature side heat medium circuit 20 including the high temperature side water-refrigerant heat exchanger 12 functions as the heating unit of the present disclosure.
第2実施形態に係る冷凍サイクル装置10においては、冷却用膨張弁15a、吸熱用膨張弁15b、室内蒸発器16、室外蒸発器18の配置が上述した第1実施形態と異なっている。即ち、第2実施形態においても、圧縮機11の吐出口には、高温側水-冷媒熱交換器12の冷媒通路の入口側が接続されており、高温側水-冷媒熱交換器12の冷媒出口側には、モジュレータ13が接続されている。
In the refrigeration cycle apparatus 10 according to the second embodiment, the arrangement of the cooling expansion valve 15a, the heat absorption expansion valve 15b, the indoor evaporator 16, and the outdoor evaporator 18 is different from that of the first embodiment described above. That is, also in the second embodiment, the inlet side of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11, and the refrigerant outlet of the high temperature side water-refrigerant heat exchanger 12 The modulator 13 is connected to the side.
図4に示すように、モジュレータ13には、冷却用膨張弁15aが接続されている。冷却用膨張弁15aは、第1実施形態と同様に、電気式膨張弁によって構成されており、高温側水-冷媒熱交換器12から流出した冷媒を減圧させる冷却用減圧部である。
As shown in FIG. 4, the modulator 13 is connected to a cooling expansion valve 15 a. Similar to the first embodiment, the cooling expansion valve 15 a is an electric expansion valve, and is a cooling pressure reducing unit that reduces the pressure of the refrigerant flowing out of the high temperature side water-refrigerant heat exchanger 12.
当該冷却用膨張弁15aは、第1実施形態と同様に、全開機能と全閉機能とを有しており、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。
Similar to the first embodiment, the cooling expansion valve 15a has a fully open function and a fully closed function, and functions as a pressure reducing section that reduces the pressure of the refrigerant and as a circuit switching section that switches the refrigerant circuit. And have.
第2実施形態においても、冷却用膨張弁15aの出口には、室内蒸発器16の冷媒入口側が接続されている。室内蒸発器16は、室内空調ユニット50のケーシング51内に配置されており、低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させ、送風空気を冷却する冷却用蒸発器である。即ち、室内蒸発器16は、本開示における冷却用吸熱器に相当する。
Also in the second embodiment, the refrigerant inlet side of the indoor evaporator 16 is connected to the outlet of the cooling expansion valve 15a. The indoor evaporator 16 is disposed inside the casing 51 of the indoor air conditioning unit 50, and is a cooling evaporator that exchanges heat between the low pressure refrigerant and the blowing air to evaporate the low pressure refrigerant and cool the blowing air. That is, the indoor evaporator 16 corresponds to the heat sink for cooling in the present disclosure.
図4に示すように、室内蒸発器16の冷媒出口には、吸熱用膨張弁15bが接続されている。当該吸熱用膨張弁15bは、第1実施形態と同様に、電気式膨張弁によって構成されており、室内蒸発器16から流出した冷媒を減圧させる加熱用減圧部である。
As shown in FIG. 4, an endothermic expansion valve 15 b is connected to the refrigerant outlet of the indoor evaporator 16. As in the first embodiment, the heat absorption expansion valve 15 b is an electric expansion valve, and is a heating pressure reduction unit that reduces the pressure of the refrigerant flowing out of the indoor evaporator 16.
当該吸熱用膨張弁15bは、第1実施形態と同様に、全開機能と全閉機能とを有しており、冷媒を減圧させる減圧部としての機能と、冷媒回路を切り替える回路切替部としての機能とを兼ね備えている。
Similar to the first embodiment, the heat absorption expansion valve 15b has a fully open function and a fully closed function, and functions as a pressure reducing section that reduces the pressure of the refrigerant and as a circuit switching section that switches the refrigerant circuit. And have.
ここで、冷却用膨張弁15aの出口から室内蒸発器16の冷媒入口側の間には、三方弁16bが配置されている。三方弁16bにおける一つの流出口には、バイパス流路16aが接続されている。当該バイパス流路16aの他端側は、室内蒸発器16の冷媒出口側から吸熱用膨張弁15bの入口までの間に接続されている。
Here, a three-way valve 16 b is disposed between the outlet of the cooling expansion valve 15 a and the refrigerant inlet side of the indoor evaporator 16. A bypass passage 16a is connected to one outlet of the three-way valve 16b. The other end side of the bypass flow passage 16 a is connected between the refrigerant outlet side of the indoor evaporator 16 and the inlet of the heat absorption expansion valve 15 b.
従って、三方弁16bの作動を制御することによって、冷媒が室内蒸発器16を通過する流路と、冷媒が室内蒸発器16を迂回する流路とを切り替えることができる。当該三方弁16bは、本開示における回路切替部として機能する。
Therefore, by controlling the operation of the three-way valve 16 b, it is possible to switch between the flow path through which the refrigerant passes through the indoor evaporator 16 and the flow path through which the refrigerant bypasses the indoor evaporator 16. The three-way valve 16 b functions as a circuit switching unit in the present disclosure.
そして、吸熱用膨張弁15bの出口には、室外蒸発器18の冷媒入口側が接続されている。室外蒸発器18は、除湿暖房モード時等において、吸熱用膨張弁15bにて減圧された低圧冷媒と外気ファン30から送風された外気とを熱交換させ、低圧冷媒を蒸発させて冷媒に吸熱作用を発揮させる吸熱用蒸発器である。即ち、室外蒸発器18は本開示における加熱用吸熱器として機能し、外気は熱源流体として機能する。
The refrigerant inlet side of the outdoor evaporator 18 is connected to the outlet of the heat absorption expansion valve 15b. The outdoor evaporator 18 exchanges heat between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air blown from the outside air fan 30 in the dehumidifying and heating mode etc., evaporates the low pressure refrigerant and absorbs heat to the refrigerant. It is an endothermic evaporator that exerts That is, the outdoor evaporator 18 functions as a heat sink for heating in the present disclosure, and the outside air functions as a heat source fluid.
そして、室外蒸発器18の冷媒出口側には、圧縮機11の吸入口側が接続されている。つまり、第2実施形態に係る冷凍サイクル装置10では、室内蒸発器16と室外蒸発器18が直列的に接続されている。尚、第2実施形態に係る車両用空調装置1の制御系についても、基本的に第1実施形態と同様である為、その説明を省略する。
The suction port side of the compressor 11 is connected to the refrigerant outlet side of the outdoor evaporator 18. That is, in the refrigeration cycle apparatus 10 according to the second embodiment, the indoor evaporator 16 and the outdoor evaporator 18 are connected in series. The control system of the vehicle air conditioner 1 according to the second embodiment is basically the same as that of the first embodiment, and thus the description thereof will be omitted.
次に、第2実施形態における車両用空調装置1の作動について説明する。第2実施形態に係る車両用空調装置1は、複数の運転モードから適宜運転モードを切り替えることができる。これらの運転モードの切り替えは、第1実施形態と同様に、空調制御装置60に予め記憶された空調制御プログラムが実行されることによって行われる。以下に、複数の運転モードの内、冷房モードにおける作動、暖房モードにおける作動、除湿暖房モードにおける作動について説明する。
Next, the operation of the vehicle air conditioner 1 in the second embodiment will be described. The vehicle air conditioner 1 according to the second embodiment can appropriately switch the operation mode from a plurality of operation modes. Similar to the first embodiment, these operation modes are switched by executing an air conditioning control program stored in advance in the air conditioning control device 60. Among the plurality of operation modes, the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described below.
(a)冷房モード
第2実施形態において、冷房モードは、熱交換対象流体である送風空気を冷却して車室内に送風する運転モードであり、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全開状態とする。又、三方弁16bは、バイパス流路16aを閉塞するように制御される。これにより、冷却用膨張弁15aから流出した冷媒は室内蒸発器16に流入する。 (A) Cooling Mode In the second embodiment, the cooling mode is an operation mode for cooling the air, which is the fluid to be heat-exchanged, and blowing it into the vehicle compartment, and is an example of the cooling mode in the present disclosure. In the cooling mode, the airconditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state. Also, the three-way valve 16b is controlled to close the bypass flow passage 16a. Thus, the refrigerant flowing out of the cooling expansion valve 15 a flows into the indoor evaporator 16.
第2実施形態において、冷房モードは、熱交換対象流体である送風空気を冷却して車室内に送風する運転モードであり、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全開状態とする。又、三方弁16bは、バイパス流路16aを閉塞するように制御される。これにより、冷却用膨張弁15aから流出した冷媒は室内蒸発器16に流入する。 (A) Cooling Mode In the second embodiment, the cooling mode is an operation mode for cooling the air, which is the fluid to be heat-exchanged, and blowing it into the vehicle compartment, and is an example of the cooling mode in the present disclosure. In the cooling mode, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → cooling expansion valve 15a → three-way valve 16b → indoor evaporator 16 → heat absorption expansion valve 15b → outdoor A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 → the compressor 11 is configured.
つまり、冷房モードでは、室内蒸発器16へ冷媒を流入させ、送風空気との熱交換により送風空気を冷却することを目的とした冷媒回路に切り替えられる。
That is, in the cooling mode, the refrigerant is made to flow into the indoor evaporator 16, and the refrigerant circuit is switched to a refrigerant circuit intended to cool the blowing air by heat exchange with the blowing air.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、空調制御装置60は、予め定めた冷房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined cooling mode.
又、空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体の全流量が高温側ラジエータ23へ流入するように、高温側流量調整弁24の作動を制御する。
Further, the air conditioning control device 60 operates the high temperature side flow control valve 24 so that the total flow rate of the high temperature side heat medium flowing out from the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 Control.
そして、当該空調制御装置60は、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して送風機52の制御電圧(送風能力)を決定する。又、空調制御装置60は、冷風バイパス通路55を全開としてヒータコア22側の通風路を閉塞するように、エアミックスドア54の作動を制御する。尚、当該空調制御装置60は、その他の各種制御対象機器についても、適宜その作動を制御する。
Then, the air conditioning control device 60 determines the control voltage (blowing capacity) of the blower 52 with reference to the control map stored in advance in the air conditioning control device 60 based on the target blowing temperature TAO. Further, the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the heater core 22 side is closed. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices.
従って、第2実施形態においても、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
Therefore, also in the second embodiment, in the refrigeration cycle apparatus 10 in the cooling mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、高温側ラジエータ23へ流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。これにより、高温側熱媒体が冷却される。高温側ラジエータ23にて冷却された高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the high temperature side radiator 23 through the high temperature side flow rate adjustment valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. Thereby, the high temperature side heat medium is cooled. The high temperature side heat medium cooled by the high temperature side radiator 23 is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路にて冷却された高圧冷媒は、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aの絞り開度は、室内蒸発器16の出口側の冷媒の過熱度が概ね3℃となるように調整される。
The high pressure refrigerant cooled in the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a and is decompressed. The throttle opening degree of the cooling expansion valve 15a is adjusted so that the degree of superheat of the refrigerant on the outlet side of the indoor evaporator 16 is approximately 3 ° C.
冷却用膨張弁15aにて減圧された低圧冷媒は、室内蒸発器16へ流入する。室内蒸発器16へ流入した冷媒は、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。
The low pressure refrigerant reduced in pressure by the cooling expansion valve 15 a flows into the indoor evaporator 16. The refrigerant flowing into the indoor evaporator 16 absorbs heat from the air blown from the fan 52 and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
室内蒸発器16から流出した冷媒は、吸熱用膨張弁15bで減圧されることなく、室外蒸発器18へ流入し、室外蒸発器18においてほとんど熱交換することなく、圧縮機11へ吸入されて再び圧縮される。
The refrigerant flowing out of the indoor evaporator 16 flows into the outdoor evaporator 18 without being reduced in pressure by the heat absorption expansion valve 15 b, and is sucked into the compressor 11 again with almost no heat exchange in the outdoor evaporator 18. It is compressed.
従って、第2実施形態における冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Therefore, in the cooling mode in the second embodiment, cooling of the vehicle interior can be performed by blowing the blown air cooled by the indoor evaporator 16 into the vehicle interior.
(b)暖房モード
第2実施形態における暖房モードは、熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱を利用して加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。 (B) Heating mode In the heating mode in the second embodiment, the air which is the heat exchange fluid is heated by theoutdoor evaporator 18 using the heat absorbed from the outside air which is the heat source fluid and blown into the vehicle interior Operation mode, which is an example of the heating mode in the present disclosure.
第2実施形態における暖房モードは、熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱を利用して加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。 (B) Heating mode In the heating mode in the second embodiment, the air which is the heat exchange fluid is heated by the
暖房モードにおいて、当該空調制御装置60は、冷却用膨張弁15aを全開とし、吸熱用膨張弁15bを所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを全開にするように制御される。これにより、冷却用膨張弁15aを通過した冷媒は、室内蒸発器16に流入することなく、バイパス流路16aを介して、吸熱用膨張弁15bに流入する。
In the heating mode, the air conditioning control device 60 fully opens the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree. At this time, the three-way valve 16b is controlled to fully open the bypass flow passage 16a. As a result, the refrigerant that has passed through the cooling expansion valve 15a flows into the heat absorption expansion valve 15b via the bypass flow path 16a without flowing into the indoor evaporator 16.
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→三方弁16b→バイパス流路16a→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、暖房モードでは、室外蒸発器18で吸熱した熱を利用して送風空気を加熱することを目的とした冷媒回路に切り替えられる。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → three-way valve 16 b → bypass flow path 16 a → heat absorption expansion valve 15 b → outdoor evaporator 18 → compressor A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured. That is, in the heating mode, the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blown air by using the heat absorbed by the outdoor evaporator 18.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、吸熱用膨張弁15bの絞り開度は、目標吹出温度TAO等に基づいて、暖房モードに関する制御マップを参照して定められる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the throttle opening degree of the heat absorption expansion valve 15b is determined based on the target blowout temperature TAO or the like with reference to the control map regarding the heating mode.
又、空調制御装置60は、予め定めた暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体がヒータコア22側へ流入するように高温側流量調整弁24の作動を制御する。
Further, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined heating mode. The air conditioning controller 60 controls the operation of the high temperature side flow control valve 24 so that the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 side.
そして、空調制御装置60は、エアミックスドア54のサーボモータへ出力される制御信号を、エアミックスドア54がヒータコア22側の空気通路を全開し、室内蒸発器16を通過した空気の全流量がヒータコア22側の空気通路を通過するように決定する。
Then, in the air conditioning control device 60, the control signal output to the servo motor of the air mix door 54 is completely opened by the air mix door 54 when the air mix door 54 fully opens the air passage on the heater core 22 side. It is determined to pass through the air passage on the heater core 22 side.
暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
In the refrigeration cycle apparatus 10 in the heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷却用膨張弁15aへ流入する。この時、冷却用膨張弁15aが全開となっている為、高圧冷媒は減圧されることなく、三方弁16bに流入してバイパス流路16aを流通する。従って、暖房モードにおいて、高圧冷媒は、室内蒸発器16を迂回して吸熱用膨張弁15bに流入する。
The high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a. At this time, since the cooling expansion valve 15a is fully open, the high pressure refrigerant flows into the three-way valve 16b and flows through the bypass flow passage 16a without being decompressed. Therefore, in the heating mode, the high pressure refrigerant bypasses the indoor evaporator 16 and flows into the heat absorption expansion valve 15b.
そして、吸熱用膨張弁15bに流入した高圧冷媒は、所定の絞り開度に制御されている為、低圧冷媒となるまで減圧される。吸熱用膨張弁15bにて減圧された低圧冷媒は、室外蒸発器18へ流入し、外気ファン30から送風された熱源流体である外気から吸熱して蒸発する。室外蒸発器18から流出した冷媒は、そのまま圧縮機11へ吸入されて再び圧縮される。
Then, since the high pressure refrigerant flowing into the heat absorption expansion valve 15b is controlled to a predetermined throttle opening degree, the pressure is reduced until it becomes a low pressure refrigerant. The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the outdoor evaporator 18, absorbs heat from the outside air which is a heat source fluid blown from the outside air fan 30, and evaporates. The refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 as it is and compressed again.
従って、暖房モードでは、ヒータコア22で送風空気を加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。
Therefore, in the heating mode, heating the blown air to the vehicle interior by heating the blown air by the heater core 22 can heat the vehicle interior.
(c)除湿暖房モード
第2実施形態における除湿暖房モードは、室内蒸発器16にて冷却された熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱を利用して加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。 (C) Dehumidifying / heating mode In the dehumidifying / heating mode in the second embodiment, heat generated by absorbing air, which is a heat exchange target fluid cooled by theindoor evaporator 16, from outside air, which is a heat source fluid, by the outdoor evaporator 18. It is an operation mode which heats using the above, and ventilates a vehicle interior, and is an example of a heating mode in this indication.
第2実施形態における除湿暖房モードは、室内蒸発器16にて冷却された熱交換対象流体である送風空気を、室外蒸発器18にて熱源流体である外気から吸熱した熱を利用して加熱して車室内に送風する運転モードであり、本開示における加熱モードの一例である。 (C) Dehumidifying / heating mode In the dehumidifying / heating mode in the second embodiment, heat generated by absorbing air, which is a heat exchange target fluid cooled by the
除湿暖房モードにおいて、当該空調制御装置60は、冷却用膨張弁15a及び吸熱用膨張弁15bをそれぞれ所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを閉塞するように制御される。これにより、冷却用膨張弁15aを通過した冷媒は、バイパス流路16aに流入することなく、室内蒸発器16に流入する。
In the dehumidifying and heating mode, the air conditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined opening degree. At this time, the three-way valve 16b is controlled to close the bypass flow passage 16a. Thus, the refrigerant that has passed through the cooling expansion valve 15a flows into the indoor evaporator 16 without flowing into the bypass flow passage 16a.
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → cooling expansion valve 15a → three-way valve 16b → indoor evaporator 16 → heat absorption expansion valve 15b → A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 → the compressor 11 is configured.
つまり、除湿暖房モードでは、室内蒸発器16にて冷却された送風空気を、室外蒸発器18で吸熱した熱を利用して加熱することを目的とした冷媒回路に切り替えられる。
That is, in the dehumidifying and heating mode, the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit aiming to heat using the heat absorbed by the outdoor evaporator 18.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、冷却用膨張弁15a、吸熱用膨張弁15bの絞り開度は、目標吹出温度TAO等に基づいて、それぞれ除湿暖房モードに関する制御マップを参照して定められる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b is determined based on the target blowing temperature TAO or the like with reference to the control map related to the dehumidifying and heating mode.
又、空調制御装置60は、予め定めた除湿暖房モード時の水圧送能力を発揮するように、高温側熱媒体ポンプ21を作動させる。空調制御装置60は、高温側水-冷媒熱交換器12の水通路から流出した高温側熱媒体が、少なくともヒータコア22側へ流入するように高温側流量調整弁24の作動を制御する。
Further, the air conditioning control device 60 operates the high temperature side heat medium pump 21 so as to exert the water pressure transfer capability in the predetermined dehumidifying and heating mode. The air conditioning control device 60 controls the operation of the high temperature side flow control valve 24 so that the high temperature side heat medium flowing out of the water passage of the high temperature side water-refrigerant heat exchanger 12 flows at least into the heater core 22 side.
この時、空調制御装置60は、必要に応じて、ヒータコア22側と高温側ラジエータ23側の何れに対しても、高温側熱媒体を流入させるように、高温側流量調整弁24の作動を制御する。ヒータコア22側の流量と、高温側ラジエータ23側の流量のバランスについても、除湿暖房モードにおける目標吹出温度TAO等の条件に応じて適宜変更される。
At this time, the air conditioning control device 60 controls the operation of the high temperature side flow rate adjustment valve 24 so that the high temperature side heat medium flows in to both the heater core 22 side and the high temperature side radiator 23 side as necessary. Do. The balance between the flow rate on the heater core 22 side and the flow rate on the high temperature side radiator 23 is also appropriately changed according to the conditions such as the target blowout temperature TAO in the dehumidifying and heating mode.
そして、空調制御装置60は、エアミックスドア54のサーボモータへ出力される制御信号を、エアミックスドア54がヒータコア22側の空気通路を全開し、室内蒸発器16を通過した空気の全流量がヒータコア22側の空気通路を通過するように決定する。
Then, in the air conditioning control device 60, the control signal output to the servo motor of the air mix door 54 is completely opened by the air mix door 54 when the air mix door 54 fully opens the air passage on the heater core 22 side. It is determined to pass through the air passage on the heater core 22 side.
この除湿暖房モードでは、冷媒の流れとして、上述した冷房モードと同様の流れとなっているが、冷却用膨張弁15a及び吸熱用膨張弁15bにおける冷媒減圧量が異なっている。又、車両用空調装置1の作動態様としても、ヒータコア22における送風空気の加熱の有無という点で相違する。
In this dehumidifying and heating mode, the flow of the refrigerant is the same as that of the above-described cooling mode, but the refrigerant pressure reduction amounts in the cooling expansion valve 15a and the heat absorption expansion valve 15b are different. Further, the operation mode of the vehicle air conditioner 1 also differs in the presence or absence of heating of the blowing air in the heater core 22.
除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、高温側水-冷媒熱交換器12へ流入する。高温側水-冷媒熱交換器12では、高温側熱媒体ポンプ21が作動しているので、高圧冷媒と高温側熱媒体が熱交換して、高圧冷媒が冷却されて凝縮し、高温側熱媒体が加熱される。
In the refrigeration cycle apparatus 10 in the dehumidifying and heating mode, the high pressure refrigerant discharged from the compressor 11 flows into the high temperature side water-refrigerant heat exchanger 12. In the high temperature side water-refrigerant heat exchanger 12, since the high temperature side heat medium pump 21 operates, the high pressure refrigerant and the high temperature side heat medium exchange heat, the high pressure refrigerant is cooled and condensed, and the high temperature side heat medium Is heated.
高温側熱媒体回路20では、高温側水-冷媒熱交換器12にて加熱された高温側熱媒体が、高温側流量調整弁24を介して、ヒータコア22へ流入する。ヒータコア22へ流入した高温側熱媒体は、エアミックスドア54がヒータコア22側の通風路を全開としているので、室内蒸発器16を通過した送風空気と熱交換して放熱する。
In the high temperature side heat medium circuit 20, the high temperature side heat medium heated by the high temperature side water-refrigerant heat exchanger 12 flows into the heater core 22 via the high temperature side flow rate adjustment valve 24. The high temperature side heat medium having flowed into the heater core 22 exchanges heat with the air that has passed through the indoor evaporator 16 and radiates heat since the air mix door 54 fully opens the air passage on the heater core 22 side.
これにより、熱交換対象流体である送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。ヒータコア22から流出した高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
Thereby, the blowing air which is a heat exchange object fluid is heated, and the temperature of blowing air approaches the target blowing temperature TAO. The high temperature side heat medium flowing out of the heater core 22 is sucked into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
又、高温側流量調整弁24の作動によって、高温側熱媒体の一部は、高温側ラジエータ23に流入する。高温側ラジエータ23へ流入した高温側熱媒体は、外気と熱交換して放熱する。当該高温側熱媒体は、高温側熱媒体ポンプ21に吸入されて再び高温側水-冷媒熱交換器12の水通路へ圧送される。
Further, part of the high temperature side heat medium flows into the high temperature side radiator 23 by the operation of the high temperature side flow control valve 24. The high temperature side heat medium flowing into the high temperature side radiator 23 exchanges heat with the outside air and radiates heat. The high temperature side heat medium is drawn into the high temperature side heat medium pump 21 and is pressure-fed again to the water passage of the high temperature side water-refrigerant heat exchanger 12.
高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、冷却用膨張弁15aへ流入して減圧される。冷却用膨張弁15aにて減圧された低圧冷媒は、三方弁16bを通過して室内蒸発器16へ流入し、送風機52から送風された送風空気から吸熱して蒸発する。これにより、熱交換対象流体である送風空気が冷却される。
The high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the cooling expansion valve 15a and is decompressed. The low pressure refrigerant decompressed by the cooling expansion valve 15a passes through the three-way valve 16b, flows into the indoor evaporator 16, absorbs heat from the air blown from the blower 52, and evaporates. Thereby, the blowing air which is a heat exchange object fluid is cooled.
そして、室内蒸発器16から流出した低圧冷媒は、吸熱用膨張弁15bへ流入して更に減圧される。吸熱用膨張弁15bにて減圧された低圧冷媒は、室外蒸発器18へ流入し、外気ファン30から送風された熱源流体である外気から吸熱して蒸発する。室外蒸発器18から流出した冷媒は、そのまま圧縮機11へ吸入されて再び圧縮される。
Then, the low pressure refrigerant flowing out of the indoor evaporator 16 flows into the heat absorption expansion valve 15b and is further depressurized. The low pressure refrigerant reduced in pressure by the heat absorption expansion valve 15b flows into the outdoor evaporator 18, absorbs heat from the outside air which is a heat source fluid blown from the outside air fan 30, and evaporates. The refrigerant flowing out of the outdoor evaporator 18 is sucked into the compressor 11 as it is and compressed again.
従って、除湿暖房モードでは、室内蒸発器16で冷却された送風空気を、ヒータコア22で加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
Therefore, in the dehumidifying and heating mode, dehumidifying and heating the passenger compartment can be performed by heating the blown air cooled by the indoor evaporator 16 with the heater core 22 and blowing it out into the passenger compartment.
以上説明したように、第2実施形態に係る車両用空調装置1によれば、冷凍サイクル装置10が冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを切り替えることができ、車室内の快適な空調を実現することができる。
As described above, according to the vehicle air conditioner 1 according to the second embodiment, the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
第2実施形態に係る冷凍サイクル装置10では、第1実施形態と同様に、同一の熱交換器へ高圧冷媒を流入させる冷媒回路と低圧冷媒を流入させる冷媒回路とを切り替えることがない為、サイクル構成の複雑化を招くことなく、簡素な構成で冷媒回路を切り替えることができる。
In the refrigeration cycle apparatus 10 according to the second embodiment, as in the first embodiment, the refrigerant circuit for causing the high pressure refrigerant to flow into the same heat exchanger and the refrigerant circuit for causing the low pressure refrigerant to flow are not switched. The refrigerant circuit can be switched with a simple configuration without causing complication of the configuration.
第2実施形態に係る暖房モードや除湿暖房モードにおいても、室外蒸発器18における冷媒蒸発温度を外気温よりも低下させる必要が生じる為、第1実施形態と同様に、室外蒸発器18が着霜する虞がある。
Also in the heating mode and the dehumidifying heating mode according to the second embodiment, since the refrigerant evaporation temperature in the outdoor evaporator 18 needs to be lower than the outside temperature, the outdoor evaporator 18 forms frost as in the first embodiment. There is a risk of
そこで、第2実施形態に係る冷凍サイクル装置10では、室外蒸発器18の着霜による不具合を解消する為に、図5に示す構成を採用し、サイクル高圧側で放熱される熱の一部を利用して、室外蒸発器18における着霜の抑制及び除霜を実現している。
Therefore, in the refrigeration cycle apparatus 10 according to the second embodiment, in order to eliminate the problem caused by frost formation on the outdoor evaporator 18, the configuration shown in FIG. 5 is adopted, and part of the heat radiated on the cycle high pressure side It utilizes and the suppression and the defrost of frost in the outdoor evaporator 18 are implement | achieved.
具体的には、図5に示すように、外気ファン30による外気の送風方向Wに関して、室外蒸発器18及び高温側ラジエータ23が並んでおり、外気ファン30によって送風された外気が室外蒸発器18及び高温側ラジエータ23を通過するように配置されている。そして、室外蒸発器18は、外気ファン30による外気の送風方向Wに関して、高温側ラジエータ23の下流側に配置されている。
Specifically, as shown in FIG. 5, the outdoor evaporator 18 and the high temperature side radiator 23 are aligned with respect to the blowing direction W of the outside air by the outside air fan 30, and the outside air blown by the outside air fan 30 is the outdoor evaporator 18. And the high temperature side radiator 23. The outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W of the outside air by the outside air fan 30.
暖房モードや除湿暖房モードでは、高温側流量調整弁24の作動を制御することによって、高温側熱媒体を、ヒータコア22だけでなく、高温側ラジエータ23に対しても流入させている。従って、高温側熱媒体の有する熱は、高温側ラジエータ23を送風方向Wへ通過する外気に対して放熱される。
In the heating mode or the dehumidifying heating mode, the high temperature side heat medium is caused to flow not only to the heater core 22 but also to the high temperature side radiator 23 by controlling the operation of the high temperature side flow control valve 24. Therefore, the heat of the high temperature side heat medium is radiated to the outside air passing through the high temperature side radiator 23 in the blowing direction W.
そして、高温側ラジエータ23にて加熱された外気は、送風方向Wへ流れて、室外蒸発器18を通過する。この時、室外蒸発器18では、吸熱用膨張弁15bによって減圧された低圧冷媒と外気との熱交換が行われる。
Then, the outside air heated by the high temperature side radiator 23 flows in the blowing direction W and passes through the outdoor evaporator 18. At this time, in the outdoor evaporator 18, heat exchange is performed between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air.
これにより、第2実施形態においては、室外蒸発器18と高温側ラジエータ23は、送風方向Wへ流れる外気を介して、熱的に接続されており、高温側ラジエータ23で放熱される熱を室外蒸発器18に対して伝達可能に構成されている。
Thus, in the second embodiment, the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected via the outside air flowing in the blowing direction W, and the heat radiated by the high temperature side radiator 23 is outdoor It is configured to be communicable with the evaporator 18.
このように構成することで、第2実施形態に係る冷凍サイクル装置10においては、高温側ラジエータ23で放熱される熱を低温側である室外蒸発器18に伝達することができる。この結果、当該冷凍サイクル装置10によれば、暖房モードや除湿暖房モード等を実行している場合に、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
With this configuration, in the refrigeration cycle apparatus 10 according to the second embodiment, the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 which is the low temperature side. As a result, according to the refrigeration cycle apparatus 10, when the heating mode, the dehumidifying heating mode, etc. are executed, the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted. Can be
特に、高温側流量調整弁24により、ヒータコア22側と高温側ラジエータ23側における高温側熱媒体の流量比率を調整することで、室外蒸発器18の着霜進行状況に対応して、高温側ラジエータ23側の熱を伝達することができる。
In particular, by adjusting the flow rate ratio of the high temperature side heat medium on the heater core 22 side and the high temperature side radiator 23 side by the high temperature side flow rate adjustment valve 24, the high temperature side radiator is adapted to the progress of frost formation on the outdoor evaporator 18. The heat on the 23 side can be transmitted.
例えば、室外蒸発器18の除霜が必要な場合には、高温側ラジエータ23側に高温側熱媒体をヒータコア22側よりも多く流すように高温側流量調整弁24の作動を制御する。これにより、送風方向Wへ流れる外気を介して、室外蒸発器18に高温側ラジエータ23から多くの熱が伝達できる為、室外蒸発器18の除霜を迅速に行うことができる。
For example, when defrosting of the outdoor evaporator 18 is required, the operation of the high temperature side flow control valve 24 is controlled so that the high temperature side heat medium flows more to the high temperature side radiator 23 than the heater core 22 side. As a result, much heat can be transmitted from the high temperature side radiator 23 to the outdoor evaporator 18 through the outside air flowing in the blowing direction W, so that the outdoor evaporator 18 can be defrosted quickly.
一方、室外蒸発器18の着霜を抑制する場合には、ヒータコア22側に高温側熱媒体を高温側ラジエータ23側よりも多く流すように高温側流量調整弁24の作動を制御する。これにより、除湿暖房モードにおける暖房能力を維持しながら、室外蒸発器18の着霜を抑制することができる。
On the other hand, when suppressing the formation of frost on the outdoor evaporator 18, the operation of the high temperature side flow control valve 24 is controlled so that the high temperature side heat medium flows more to the heater core 22 side than the high temperature side radiator 23 side. Thereby, frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity in the dehumidifying and heating mode.
そして、図5に示す構成の場合、室外蒸発器18の除霜等を行う為に、室外蒸発器18に高圧冷媒を導入する必要もなく、暖房モードや除湿暖房モードの運転を停止する必要もない。即ち、当該冷凍サイクル装置10によれば、簡素なサイクル構成にて、空調対象空間である車室内の快適性を維持しつつ、室外蒸発器18の着霜による不具合の発生を抑制・解消することができる。
In the case of the configuration shown in FIG. 5, there is no need to introduce a high pressure refrigerant into the outdoor evaporator 18 in order to defrost the outdoor evaporator 18, etc., and it is also necessary to stop the operation of the heating mode or the dehumidifying heating mode. Absent. That is, according to the refrigeration cycle apparatus 10, with the simple cycle configuration, while maintaining the comfortability of the vehicle cabin which is the space to be air conditioned, to suppress / cancel the occurrence of the trouble due to the frost formation of the outdoor evaporator 18. Can.
以上説明したように、第2実施形態に係る冷凍サイクル装置10によれば、回路切替制御部60bによって、室内蒸発器16にて送風空気との熱交換を主とする冷媒回路と、室外蒸発器18にて外気から吸熱した熱を用いて、送風空気を加熱することを主とする冷媒回路とを切り替えることができる。
As described above, according to the refrigeration cycle apparatus 10 according to the second embodiment, the refrigerant circuit mainly making heat exchange with the blown air in the indoor evaporator 16 by the circuit switching control unit 60b, and the outdoor evaporator The heat absorbed from the outside air at 18 can be used to switch to a refrigerant circuit that mainly heats the blown air.
具体的には、第2実施形態に係る冷凍サイクル装置10によれば、冷却モードの一例である冷房モードでは、冷却用膨張弁15aで減圧された冷媒を室内蒸発器16にて熱交換させ、熱交換対象流体である送風空気を冷却することができる。
Specifically, according to the refrigeration cycle apparatus 10 according to the second embodiment, in the cooling mode which is an example of the cooling mode, the refrigerant decompressed by the cooling expansion valve 15a is subjected to heat exchange in the indoor evaporator 16, It is possible to cool the blowing air which is the fluid to be heat-exchanged.
そして、当該冷凍サイクル装置10によれば、加熱モードの一例である暖房モードでは、吸熱用膨張弁15bで減圧された冷媒を室外蒸発器18にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として送風空気を加熱することができる。
Then, according to the refrigeration cycle apparatus 10, in the heating mode which is an example of the heating mode, the refrigerant reduced in pressure by the heat absorption expansion valve 15b is subjected to heat exchange between the outdoor air as the heat source fluid and the refrigerant in the outdoor evaporator 18. By doing this, it is possible to heat the blown air using the outside air as a heat source.
又、当該冷凍サイクル装置10によれば、加熱モードの一例である除湿暖房モードでは、吸熱用膨張弁15bで減圧された冷媒を室外蒸発器18にて、熱源流体である外気と冷媒とを熱交換させることで、外気を熱源として、室内蒸発器16にて冷却された送風空気を加熱することができる。
Further, according to the refrigeration cycle apparatus 10, in the dehumidifying and heating mode, which is an example of the heating mode, the refrigerant depressurized by the heat absorption expansion valve 15b is heated by the outdoor evaporator 18 to heat the outside air as the heat source fluid and the refrigerant. By exchanging the air, the blowing air cooled by the indoor evaporator 16 can be heated using the outside air as a heat source.
当該冷凍サイクル装置10によれば、室内蒸発器16及び室外蒸発器18を直列に接続した構成において、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。つまり、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モードと暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, in the configuration in which the indoor evaporator 16 and the outdoor evaporator 18 are connected in series, even when switching to any refrigerant circuit, high pressure to the indoor evaporator 16 and the outdoor evaporator 18 Since there is no need to introduce the refrigerant, the refrigerant circuit can be switched with a simple configuration without causing the complication of the cycle configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode and the heating mode without causing the complication of the cycle configuration.
この冷房モードでは、室内蒸発器16にて吸熱された熱は、加熱部を構成する高温側熱媒体回路20における高温側ラジエータ23にて外気に放熱される。即ち、室外蒸発器18は放熱器として機能することはなく、吸熱器として機能している。換言すると、当該冷凍サイクル装置10の冷房モードでは、室外蒸発器18へ高圧冷媒を流入させることはない。
In the cooling mode, the heat absorbed by the indoor evaporator 16 is released to the outside air by the high temperature side radiator 23 in the high temperature side heat medium circuit 20 constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
又、第2実施形態に係る冷凍サイクル装置10は、高温側水-冷媒熱交換器12を有しており、高温側熱媒体を循環させる高温側熱媒体回路20にヒータコア22を配置している。更に、高温側熱媒体回路20には高温側ラジエータ23が配置されている。従って、第2実施形態に係る冷凍サイクル装置10は、この点において、第1実施形態と同様の効果を発揮する。
Further, the refrigeration cycle apparatus 10 according to the second embodiment includes the high temperature side water-refrigerant heat exchanger 12, and the heater core 22 is disposed in the high temperature side heat medium circuit 20 for circulating the high temperature side heat medium. . Furthermore, a high temperature side radiator 23 is disposed in the high temperature side heat medium circuit 20. Therefore, the refrigeration cycle apparatus 10 according to the second embodiment exhibits the same effects as the first embodiment in this respect.
そして、第2実施形態では、室外蒸発器18と高温側ラジエータ23が熱的に接続されており、高温側熱媒体回路20における高温側熱媒体の有する熱を室外蒸発器18に伝達することができる。
And in 2nd Embodiment, the outdoor evaporator 18 and the high temperature side radiator 23 are thermally connected, and the heat which the high temperature side heat medium in the high temperature side heat medium circuit 20 has is transmitted to the outdoor evaporator 18 it can.
具体的には、図5に示すように、外気ファン30による外気の送風方向Wに関して、室外蒸発器18を、高温側ラジエータ23の下流側に配置している。これにより、高温側ラジエータ23で放熱される熱を、送風方向Wへ送風される外気を介して、室外蒸発器18へ伝達することができるので、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
Specifically, as shown in FIG. 5, the outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W of the outside air by the outside air fan 30. Thereby, the heat radiated by the high temperature side radiator 23 can be transmitted to the outdoor evaporator 18 through the outside air blown in the air blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed. Alternatively, the outdoor evaporator 18 can be defrosted.
(第3実施形態)
次に、上述した各実施形態とは異なる第3実施形態について、図6を参照しつつ説明する。第3実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Third Embodiment
Next, a third embodiment different from the above-described embodiments will be described with reference to FIG. Therefrigeration cycle apparatus 10 according to the third embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
次に、上述した各実施形態とは異なる第3実施形態について、図6を参照しつつ説明する。第3実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Third Embodiment
Next, a third embodiment different from the above-described embodiments will be described with reference to FIG. The
図6に示すように、第3実施形態に係る車両用空調装置1では、第1実施形態における高温側水-冷媒熱交換器12、高温側熱媒体回路20等を廃止して、加熱部として室内凝縮器12a及び室外熱交換器12bを採用している。
As shown in FIG. 6, in the vehicle air conditioner 1 according to the third embodiment, the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium circuit 20 and the like in the first embodiment are eliminated and a heating unit is provided. The indoor condenser 12a and the outdoor heat exchanger 12b are employed.
従って、第3実施形態においては、室内凝縮器12a及び室外熱交換器12bが本開示における加熱部として機能する。第3実施形態に係る構成は、この点を除いて、基本的に第1実施形態と同様である。
Therefore, in the third embodiment, the indoor condenser 12a and the outdoor heat exchanger 12b function as the heating unit in the present disclosure. The configuration according to the third embodiment is basically the same as the first embodiment except for this point.
第3実施形態に係る圧縮機11の吐出口側には、室内凝縮器12aが接続されている。当該室内凝縮器12aは、圧縮機11から吐出された高温高圧の冷媒と送風空気とを熱交換させて、送風空気を加熱する熱交換器である。
An indoor condenser 12 a is connected to the discharge port side of the compressor 11 according to the third embodiment. The indoor condenser 12 a is a heat exchanger that heats the blown air by heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air.
室内凝縮器12aは、室内空調ユニット50のケーシング51内であって、第1実施形態におけるヒータコア22と同様の位置に配置されている。室内凝縮器12aは、本開示における室内凝縮器に相当する。
The indoor condenser 12 a is disposed in the casing 51 of the indoor air conditioning unit 50 and at the same position as the heater core 22 in the first embodiment. The indoor condenser 12a corresponds to the indoor condenser in the present disclosure.
室内凝縮器12aの冷媒流出口側には、室外熱交換器12bが接続されている。当該室外熱交換器12bは、室内凝縮器12aから流出した冷媒と外気ファン30から送風された外気とを熱交換させて、冷媒の有する熱を外気に放熱させる熱交換器である。従って、室外熱交換器12bは、本開示における室外放熱器に相当する。
An outdoor heat exchanger 12 b is connected to the refrigerant outlet side of the indoor condenser 12 a. The outdoor heat exchanger 12 b is a heat exchanger that causes the refrigerant flowing out of the indoor condenser 12 a and the outside air blown from the outside air fan 30 to exchange heat, thereby radiating the heat of the refrigerant to the outside air. Therefore, the outdoor heat exchanger 12 b corresponds to the outdoor radiator in the present disclosure.
当該室外熱交換器12bは、車両ボンネット内の前方側に配置されている。室外熱交換器12bの冷媒流出口側には、モジュレータ13を介して、分岐部14aが接続されている。その他の構成は、第1実施形態と同様である。
The outdoor heat exchanger 12b is disposed on the front side in the vehicle bonnet. A branch portion 14 a is connected to the refrigerant outlet side of the outdoor heat exchanger 12 b via the modulator 13. The other configuration is the same as that of the first embodiment.
尚、室外熱交換器12bの外気流れ上流側には、図示しないシャッター機構が配置されている。当該シャッター機構は、室外熱交換器12bにて外気を流通させる外気風路を開閉するように構成されている。このため、シャッター機構が外気風路を閉塞している際には、室外熱交換器12bにて冷媒と外気との熱交換は行われない。
In addition, the shutter mechanism which is not shown in figure is arrange | positioned in the outdoor air flow upstream of the outdoor heat exchanger 12b. The said shutter mechanism is comprised so that the external air flow path which distribute | circulates external air by the outdoor heat exchanger 12b may be opened and closed. Therefore, when the shutter mechanism closes the open air passage, heat exchange between the refrigerant and the open air is not performed in the outdoor heat exchanger 12b.
次に、第3実施形態に係る車両用空調装置1の作動について説明する。第3実施形態に係る車両用空調装置1においても、第1実施形態と同様に、空調制御プログラムが実行されることによって、運転モードが切り替えられる。以下に、複数の運転モードの内、冷房モードにおける作動と、暖房モードにおける作動と、除湿暖房モードにおける作動を説明する。
Next, the operation of the vehicle air conditioner 1 according to the third embodiment will be described. Also in the vehicle air conditioner 1 according to the third embodiment, as in the first embodiment, the operation mode is switched by executing the air conditioning control program. Hereinafter, among the plurality of operation modes, the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
(a)冷房モード
第3実施形態に係る冷房モードは、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、第1実施形態と同様に、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全閉状態とする。 (A) Cooling Mode The cooling mode according to the third embodiment is an example of the cooling mode in the present disclosure. In the cooling mode, as in the first embodiment, the airconditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully closed state.
第3実施形態に係る冷房モードは、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、第1実施形態と同様に、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全閉状態とする。 (A) Cooling Mode The cooling mode according to the third embodiment is an example of the cooling mode in the present disclosure. In the cooling mode, as in the first embodiment, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→分岐部14a→冷却用膨張弁15a→室内蒸発器16→蒸発圧力調整弁17→合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the branch portion 14a → the cooling expansion valve 15a → the indoor evaporator 16 → the evaporation pressure regulating valve 17 → A vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the merging portion 14 b → the compressor 11 is configured.
更に、冷房モードでは、空調制御装置60が、室外熱交換器12bの外気風路を開くように、シャッター機構の作動を制御する。その他の制御対象機器については、第1実施形態の冷房モードと同様に制御する。
Furthermore, in the cooling mode, the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air flow path of the outdoor heat exchanger 12b. The other control target devices are controlled in the same manner as the cooling mode of the first embodiment.
従って、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された高温高圧の冷媒が、室内凝縮器12aへ流入する。冷房モードでは、エアミックスドア54が冷風バイパス通路55を全開として、室内凝縮器12a側の通風路を閉塞している。この為、室内凝縮器12aへ流入した冷媒は、殆ど送風空気へ放熱することなく、室内凝縮器12aから流出して室外熱交換器12bへ流入する。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the cooling mode, the air mix door 54 fully opens the cold air bypass passage 55 to close the air passage on the indoor condenser 12 a side. For this reason, the refrigerant which has flowed into the indoor condenser 12a flows out from the indoor condenser 12a and flows into the outdoor heat exchanger 12b with little heat being released to the blown air.
室外熱交換器12bへ流入した冷媒は、シャッター機構が室外熱交換器12bの外気風路を開いているので、外気に放熱して凝縮する。そして、室外熱交換器12bから流出した冷媒は、分岐部14aを介して、冷却用膨張弁15aへ流入して減圧される。以降の作動は、第1実施形態の冷房モードと同様である。
The refrigerant that has flowed into the outdoor heat exchanger 12b releases heat to the outside air and condenses because the shutter mechanism opens the outdoor air passage of the outdoor heat exchanger 12b. And the refrigerant which flowed out of outdoor heat exchanger 12b flows into expansion valve 15a for cooling via branching part 14a, and is pressure-reduced. The subsequent operation is the same as that of the cooling mode of the first embodiment.
従って、冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Therefore, in the cooling mode, the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
(b)暖房モード
第3実施形態に係る暖房モードは、第1実施形態と同様に、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60が、冷却用膨張弁15aを全閉状態とし、吸熱用膨張弁15bを所定の絞り開度で開く。 (B) Heating mode The heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment. In the heating mode, the airconditioning control device 60 fully closes the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree.
第3実施形態に係る暖房モードは、第1実施形態と同様に、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60が、冷却用膨張弁15aを全閉状態とし、吸熱用膨張弁15bを所定の絞り開度で開く。 (B) Heating mode The heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment. In the heating mode, the air
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→分岐部14a→吸熱用膨張弁15b→室外蒸発器18→合流部14b→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the branch portion 14a → the heat absorption expansion valve 15b → the outdoor evaporator 18 → the junction 14b → the compressor A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured.
更に、暖房モードでは、空調制御装置60が、室外熱交換器12bの外気風路を全開状態よりも小さな開度(例えば、ほとんど閉塞した状態)となるように、シャッター機構の作動を制御する。その他の制御対象機器については、第1実施形態の暖房モードと同様に制御する。
Furthermore, in the heating mode, the air conditioning control device 60 controls the operation of the shutter mechanism so that the outside air flow path of the outdoor heat exchanger 12b has an opening smaller (for example, almost closed) than in the fully open state. About other control object apparatus, it controls similarly to the heating mode of 1st Embodiment.
暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された高温高圧の冷媒が室内凝縮器12aへ流入する。暖房モードでは、エアミックスドア54が冷風バイパス通路55を閉塞して、室内凝縮器12a側の通風路を全開としている。この為、室内凝縮器12aへ流入した冷媒は、送風空気に放熱して凝縮する。これにより、送風空気が加熱されて、送風空気の温度が目標吹出温度TAOに近づく。
In the refrigeration cycle apparatus 10 in the heating mode, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the heating mode, the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant that has flowed into the indoor condenser 12a releases heat to the blown air and condenses. As a result, the blowing air is heated, and the temperature of the blowing air approaches the target blowing temperature TAO.
室内凝縮器12aから流出した冷媒は、室外熱交換器12bへ流入する。室外熱交換器12bへ流入した冷媒は、シャッター機構が室外熱交換器12bの外気風路を全開状態よりも小さな開度(例えば、ほとんど閉塞した状態)にしているので、開度に応じた放熱量で室外熱交換器12bから流出する。基本的には、通常、室外熱交換器12bでは、殆ど外気へ放熱されることはなく、後述する着霜抑制時や除霜時にて放熱される。
The refrigerant flowing out of the indoor condenser 12a flows into the outdoor heat exchanger 12b. The refrigerant flowing into the outdoor heat exchanger 12b is released according to the opening degree because the shutter mechanism makes the outside air path of the outdoor heat exchanger 12b smaller (for example, almost closed) than the fully open state. The heat is discharged from the outdoor heat exchanger 12b. Basically, in the outdoor heat exchanger 12b, the heat is hardly radiated to the outside air, and is released at the time of frost formation suppression or defrosting which will be described later.
室外熱交換器12bから流出した冷媒は、分岐部14aを介して、吸熱用膨張弁15bへ流入して減圧される。以降の作動は、第1実施形態の暖房モードと同様である。
The refrigerant that has flowed out of the outdoor heat exchanger 12b flows into the heat absorption expansion valve 15b via the branch portion 14a and is decompressed. The subsequent operation is the same as the heating mode of the first embodiment.
従って、暖房モードでは、室内凝縮器12aで加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
Therefore, in the heating mode, it is possible to heat the vehicle interior by blowing the blown air heated by the indoor condenser 12a into the vehicle interior.
(c)除湿暖房モード
第3実施形態に係る除湿暖房モードは、第1実施形態と同様に、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60が、冷却用膨張弁15a及び吸熱用膨張弁15bを所定の絞り開度で開く。 (C) Dehumidifying and Heating Mode The dehumidifying and heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment. In the dehumidifying and heating mode, the airconditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined throttle opening.
第3実施形態に係る除湿暖房モードは、第1実施形態と同様に、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60が、冷却用膨張弁15a及び吸熱用膨張弁15bを所定の絞り開度で開く。 (C) Dehumidifying and Heating Mode The dehumidifying and heating mode according to the third embodiment is an example of the heating mode in the present disclosure, as in the first embodiment. In the dehumidifying and heating mode, the air
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→分岐部14aへと流れ、分岐部14aの一方側→冷却用膨張弁15a→室内蒸発器16へ流れると共に、分岐部14aの他方側→吸熱用膨張弁15b→室外蒸発器18へ流れる。そして、室内蒸発器16から流出した冷媒及び室外蒸発器18から流出した冷媒は合流部14bにて合流した後、圧縮機11の順で流れて循環する。即ち、除湿暖房モードでは、室内蒸発器16及び室外蒸発器18に冷媒が並列に流れる蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the refrigerant flows from the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the branch part 14a, and one side of the branch part 14a It flows to the indoor evaporator 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18. The refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
そして、このサイクル構成で、空調制御装置60は、第1実施形態と同様に、出力側に接続された各種制御対象機器の作動を制御する。
Then, with this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the first embodiment.
第3実施形態における除湿暖房モードでは、室内凝縮器12aにより送風空気を加熱する作動態様については、第3実施形態に係る暖房モードと同様である。又、その他の構成に係る作動態様は、上述した第1実施形態に係る除湿暖房モードと同様である。従って、これらの点に関する再度の説明は省略する。
In the dehumidifying and heating mode in the third embodiment, the operation mode of heating the blown air by the indoor condenser 12a is the same as the heating mode in the third embodiment. Moreover, the operation aspect which concerns on another structure is the same as that of the dehumidification heating mode which concerns on 1st Embodiment mentioned above. Therefore, the repeated explanation of these points is omitted.
このように、第3実施形態に係る除湿暖房モードでは、室内蒸発器16で冷却された送風空気を、室内凝縮器12aで加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
As described above, in the dehumidifying and heating mode according to the third embodiment, the dehumidifying and heating of the vehicle interior is performed by heating the blown air cooled by the indoor evaporator 16 by the indoor condenser 12a and blowing it out into the vehicle interior. Can.
以上説明したように、第3実施形態に係る車両用空調装置1によれば、冷凍サイクル装置10が冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを切り替えることができ、車室内の快適な空調を実現することができる。
As described above, according to the vehicle air conditioner 1 according to the third embodiment, the refrigeration cycle apparatus 10 switches the refrigerant circuit to select the cooling mode, the heating mode, and the dehumidifying heating mode among the plurality of operation modes. It can be switched, and comfortable air conditioning of the vehicle interior can be realized.
つまり、いずれの冷媒回路に切り替えても室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。
That is, since it is not necessary to flow the high-pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18 regardless of switching to any refrigerant circuit, the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
第3実施形態に係る冷凍サイクル装置10においても、暖房モードや除湿暖房モードでは、室外蒸発器18の着霜の虞がある。第3実施形態においては、室外蒸発器18の着霜による不具合を解消する為に、図7に示す構成を採用し、サイクル高圧側で放熱される熱の一部を利用して、室外蒸発器18における着霜の抑制及び除霜を実現している。
Also in the refrigeration cycle apparatus 10 according to the third embodiment, there is a possibility that the outdoor evaporator 18 may be frosted in the heating mode or the dehumidifying heating mode. In the third embodiment, in order to eliminate the problem caused by the frost formation on the outdoor evaporator 18, the configuration shown in FIG. 7 is adopted, and the outdoor evaporator is utilized by utilizing a part of the heat radiated on the cycle high pressure side. The control of frost formation and defrosting at 18 is realized.
具体的には、図7に示すように、外気ファン30による外気の送風方向Wに関して、室外熱交換器12b及び室外蒸発器18を並べて配置している。即ち、外気ファン30によって、送風方向Wへ送風された外気が室外熱交換器12b及び室外蒸発器18を通過するように配置されている。
Specifically, as shown in FIG. 7, the outdoor heat exchanger 12 b and the outdoor evaporator 18 are arranged side by side with respect to the blowing direction W of the outside air by the outside air fan 30. That is, the outside air blown in the blowing direction W by the outside air fan 30 is disposed to pass through the outdoor heat exchanger 12 b and the outdoor evaporator 18.
そして、第3実施形態に係る室外蒸発器18は、外気ファン30による外気の送風方向Wに関して、室外熱交換器12bの下流側に配置されている。
And the outdoor evaporator 18 which concerns on 3rd Embodiment is arrange | positioned in the downstream of the outdoor heat exchanger 12b regarding the ventilation direction W of the external air by the external air fan 30. As shown in FIG.
上述したように、暖房モードや除湿暖房モードでは、シャッター機構の作動を制御することによって、室外熱交換器12bにおいて、高圧冷媒の熱を外気に放熱させている。当該外気は、外気ファン30による送風方向Wへ流れ、室外蒸発器18を通過する。この時、室外蒸発器18では、吸熱用膨張弁15bによって減圧された低圧冷媒と外気との熱交換が行われる。
As described above, in the heating mode or the dehumidifying heating mode, the heat of the high-pressure refrigerant is radiated to the outside air in the outdoor heat exchanger 12b by controlling the operation of the shutter mechanism. The outside air flows in the blowing direction W by the outside air fan 30 and passes through the outdoor evaporator 18. At this time, in the outdoor evaporator 18, heat exchange is performed between the low pressure refrigerant decompressed by the heat absorption expansion valve 15b and the outside air.
これにより、第3実施形態においては、室外熱交換器12bと室外蒸発器18は、送風方向Wへ流れる外気を介して、熱的に接続されており、室外熱交換器12bで放熱される熱を室外蒸発器18に対して伝達可能に構成されている。
Thus, in the third embodiment, the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected via the outside air flowing in the blowing direction W, and the heat dissipated by the outdoor heat exchanger 12b Can be transmitted to the outdoor evaporator 18.
このように構成することで、第3実施形態に係る冷凍サイクル装置10においては、室外熱交換器12bで放熱される熱を低温側である室外蒸発器18に伝達でき、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
With such a configuration, in the refrigeration cycle apparatus 10 according to the third embodiment, the heat radiated by the outdoor heat exchanger 12 b can be transmitted to the outdoor evaporator 18 on the low temperature side, and the heat is absorbed in the outdoor evaporator 18. It is possible to suppress the progress of frost or to defrost the outdoor evaporator 18.
特に、室外熱交換器12bにおけるシャッター機構により、外気風路の開度を制御して外気に対する放熱量を調整することで、着霜判定部60c似て判定される室外蒸発器18の着霜進行状況に対応して、室外熱交換器12b側の熱を伝達することができる。
In particular, the progress of frost formation on the outdoor evaporator 18 determined similar to the frost determination unit 60c by adjusting the amount of heat release to the outside air by controlling the opening degree of the outside air passage by the shutter mechanism in the outdoor heat exchanger 12b. The heat on the outdoor heat exchanger 12 b side can be transmitted according to the situation.
例えば、室外蒸発器18の除霜が必要な場合には、シャッター機構により外気風路の開度を大きくするように制御する。これにより、送風方向Wへ流れる外気に対する室外熱交換器12bの放熱量を増加させることができ、外気を介して、室外蒸発器18に室外熱交換器12bから多くの熱が伝達できる。この為、室外蒸発器18の除霜を迅速に行うことができる。
For example, when defrosting of the outdoor evaporator 18 is required, the shutter mechanism is controlled to increase the opening degree of the outdoor air passage. Thus, the amount of heat released from the outdoor heat exchanger 12b with respect to the outside air flowing in the blowing direction W can be increased, and a large amount of heat can be transmitted from the outdoor heat exchanger 12b to the outdoor evaporator 18 via the outside air. For this reason, defrosting of the outdoor evaporator 18 can be performed rapidly.
一方、室外蒸発器18の着霜を抑制する場合には、シャッター機構により外気風路の開度を閉塞することなく、小さな開度に制御する。これにより、暖房モードにおける暖房能力を維持しながら、室外蒸発器18の着霜を抑制することができる。
On the other hand, in order to suppress frost formation of the outdoor evaporator 18, the shutter mechanism controls the opening degree of the outside air passage to a small opening degree without closing the opening degree. Thereby, frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity in the heating mode.
そして、図7に示す構成の場合、室外蒸発器18の除霜等を行う為に、室外蒸発器18に高圧冷媒を導入する必要もなく、除湿暖房モード等での運転を停止する必要もない。即ち、当該冷凍サイクル装置10によれば、簡素なサイクル構成にて、空調対象空間である車室内の快適性を維持しつつ、室外蒸発器18の着霜による不具合の発生を抑制・解消することができる。
Further, in the case of the configuration shown in FIG. 7, there is no need to introduce a high-pressure refrigerant into the outdoor evaporator 18 and there is no need to stop the operation in the dehumidifying and heating mode etc. in order to defrost the outdoor evaporator 18 or the like. . That is, according to the refrigeration cycle apparatus 10, with the simple cycle configuration, while maintaining the comfortability of the vehicle cabin which is the space to be air conditioned, to suppress / cancel the occurrence of the trouble due to the frost formation of the outdoor evaporator 18. Can.
以上説明したように、第3実施形態に係る冷凍サイクル装置10によれば、第1実施形態と同様に、回路切替制御部60bによって、分岐部14aに接続された室内蒸発器16側の冷媒回路と、室外蒸発器18側の冷媒回路とを切り替えることができる。
As described above, according to the refrigeration cycle apparatus 10 according to the third embodiment, the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b as in the first embodiment. And the refrigerant circuit on the outdoor evaporator 18 side can be switched.
当該冷凍サイクル装置10によれば、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。即ち、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モードと暖房モードと除湿暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration. The refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
そして、第3実施形態に係る冷房モードでは、室内蒸発器16にて吸熱された熱は、加熱部を構成する室外熱交換器12bにて外気に放熱される。即ち、室外蒸発器18は放熱器として機能することはなく、吸熱器として機能している。換言すると、当該冷凍サイクル装置10の冷房モードでは、室外蒸発器18へ高圧冷媒を流入させることはない。
Then, in the cooling mode according to the third embodiment, the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the outdoor heat exchanger 12 b constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
図6に示すように、第3実施形態に係る冷凍サイクル装置10は、室内凝縮器12aを備えている。従って、暖房モード等において、圧縮機11から吐出された高温高圧の冷媒と熱交換対象流体である送風空気とを直接的に熱交換させて、送風空気を加熱することができる。
As shown in FIG. 6, the refrigeration cycle apparatus 10 according to the third embodiment includes an indoor condenser 12a. Therefore, in the heating mode or the like, the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blowing air, which is the fluid for heat exchange, can be directly heat-exchanged to heat the blowing air.
又、第3実施形態の冷凍サイクル装置10は、室外熱交換器12bを備えている。従って、室内蒸発器16や室外蒸発器18にて吸熱した熱を外気に放熱させることが可能となり、冷房モード時において車室内の冷房を適切に行うことができる。
Moreover, the refrigerating cycle device 10 of the third embodiment includes the outdoor heat exchanger 12 b. Accordingly, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be dissipated to the outside air, and cooling of the vehicle interior can be appropriately performed in the cooling mode.
そして、第3実施形態では、室外熱交換器12bと室外蒸発器18が熱的に接続されており、室外熱交換器12bにおける高圧冷媒が有する熱を室外蒸発器18に伝達することができる。
And in 3rd Embodiment, the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected, and the heat which the high pressure refrigerant | coolant in the outdoor heat exchanger 12b has can be transmitted to the outdoor evaporator 18. As shown in FIG.
具体的には、図7に示すように、外気ファン30による外気の送風方向Wに関して、室外蒸発器18を、室外熱交換器12bの下流側に配置している。これにより、室外熱交換器12bで放熱される熱を、送風方向Wへ送風される外気を介して、室外蒸発器18へ伝達することができるので、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
Specifically, as shown in FIG. 7, the outdoor evaporator 18 is disposed downstream of the outdoor heat exchanger 12 b with respect to the blowing direction W of the outside air by the outside air fan 30. Thereby, the heat dissipated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 through the outside air blown in the blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed. It is also possible to defrost the outdoor evaporator 18.
(第4実施形態)
続いて、上述した各実施形態とは異なる第4実施形態について、図8を参照しつつ説明する。第4実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Fourth Embodiment
Then, 4th Embodiment different from each embodiment mentioned above is described, referring FIG. Therefrigeration cycle apparatus 10 according to the fourth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle, as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
続いて、上述した各実施形態とは異なる第4実施形態について、図8を参照しつつ説明する。第4実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Fourth Embodiment
Then, 4th Embodiment different from each embodiment mentioned above is described, referring FIG. The
図8に示すように、第4実施形態に係る車両用空調装置1は、第2実施形態における高温側水-冷媒熱交換器12、高温側熱媒体回路20等を廃止して、加熱部としての室内凝縮器12a及び室外熱交換器12bを採用している。
As shown in FIG. 8, the vehicle air conditioner 1 according to the fourth embodiment eliminates the high temperature side water-refrigerant heat exchanger 12, the high temperature side heat medium circuit 20 and the like in the second embodiment as a heating unit. The indoor condenser 12a and the outdoor heat exchanger 12b are adopted.
従って、第4実施形態においては、室内凝縮器12a及び室外熱交換器12bが本開示における加熱部として機能する。第4実施形態に係る構成は、この点を除いて、基本的に第2実施形態と同様である。
Therefore, in the fourth embodiment, the indoor condenser 12a and the outdoor heat exchanger 12b function as the heating unit in the present disclosure. The configuration according to the fourth embodiment is basically the same as the second embodiment except this point.
第4実施形態に係る圧縮機11の吐出口側には、室内凝縮器12aが接続されている。当該室内凝縮器12aは、圧縮機11から吐出された高温高圧の冷媒と送風空気とを熱交換させて、送風空気を加熱する熱交換器である。室内凝縮器12aは、第3実施形態における室内凝縮器12aと同様に配置されており、本開示における室内凝縮器に相当する。
The indoor condenser 12a is connected to the discharge port side of the compressor 11 according to the fourth embodiment. The indoor condenser 12 a is a heat exchanger that heats the blown air by heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air. The indoor condenser 12a is disposed similarly to the indoor condenser 12a in the third embodiment, and corresponds to the indoor condenser in the present disclosure.
室内凝縮器12aの冷媒流出口側には、室外熱交換器12bが接続されている。当該室外熱交換器12bは、室内凝縮器12aから流出した冷媒と外気ファン30から送風された外気とを熱交換させて、冷媒の有する熱を外気に放熱させる熱交換器である。従って、室外熱交換器12bは、本開示における室外放熱器に相当する。
An outdoor heat exchanger 12 b is connected to the refrigerant outlet side of the indoor condenser 12 a. The outdoor heat exchanger 12 b is a heat exchanger that causes the refrigerant flowing out of the indoor condenser 12 a and the outside air blown from the outside air fan 30 to exchange heat, thereby radiating the heat of the refrigerant to the outside air. Therefore, the outdoor heat exchanger 12 b corresponds to the outdoor radiator in the present disclosure.
当該室外熱交換器12bの外気流れ上流側には、図示しないシャッター機構が配置されている。当該シャッター機構は、第3実施形態と同様に、室外熱交換器12bにて外気を流通させる外気風路を開閉するように構成されている。
A shutter mechanism (not shown) is disposed upstream of the outdoor heat exchanger 12b from the outside air flow. As in the third embodiment, the shutter mechanism is configured to open and close the outside air flow path for circulating the outside air by the outdoor heat exchanger 12 b.
当該室外熱交換器12bの冷媒流出口側には、モジュレータ13を介して、冷却用膨張弁15aが接続されている。その他の構成は、第2実施形態と同様である。
A cooling expansion valve 15 a is connected to the refrigerant outlet side of the outdoor heat exchanger 12 b via the modulator 13. The other configuration is the same as that of the second embodiment.
次に、第4実施形態に係る車両用空調装置1の作動について説明する。第4実施形態に係る車両用空調装置1においても、第2実施形態と同様に、空調制御プログラムが実行されることによって、運転モードが切り替えられる。以下に、複数の運転モードの内、冷房モードにおける作動と、暖房モードにおける作動と、除湿暖房モードにおける作動を説明する。
Next, the operation of the vehicle air conditioner 1 according to the fourth embodiment will be described. In the vehicle air conditioner 1 according to the fourth embodiment, as in the second embodiment, the operation mode is switched by executing the air conditioning control program. Hereinafter, among the plurality of operation modes, the operation in the cooling mode, the operation in the heating mode, and the operation in the dehumidifying heating mode will be described.
(a)冷房モード
第4実施形態に係る冷房モードは、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、第2実施形態と同様に、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全開状態とする。又、三方弁16bは、バイパス流路16aを閉塞するように制御される。 (A) Cooling Mode The cooling mode according to the fourth embodiment is an example of the cooling mode in the present disclosure. In the cooling mode, as in the second embodiment, the airconditioning control device 60 opens the cooling expansion valve 15a at a predetermined throttle opening degree, and brings the heat absorption expansion valve 15b into a fully open state. Also, the three-way valve 16b is controlled to close the bypass flow passage 16a.
第4実施形態に係る冷房モードは、本開示における冷却モードの一例である。当該冷房モードでは、空調制御装置60が、第2実施形態と同様に、冷却用膨張弁15aを所定の絞り開度で開き、吸熱用膨張弁15bを全開状態とする。又、三方弁16bは、バイパス流路16aを閉塞するように制御される。 (A) Cooling Mode The cooling mode according to the fourth embodiment is an example of the cooling mode in the present disclosure. In the cooling mode, as in the second embodiment, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the cooling expansion valve 15a → the three-way valve 16b → the indoor evaporator 16 → the heat absorption expansion valve 15b → A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 → the compressor 11 is configured.
つまり、第4実施形態に係る冷房モードでは、室内蒸発器16へ冷媒を流入させ、送風空気との熱交換により送風空気を冷却することを目的とした冷媒回路に切り替えられる。
That is, in the cooling mode according to the fourth embodiment, the refrigerant is supplied to the indoor evaporator 16, and the refrigerant circuit is switched to a refrigerant circuit aiming to cool the blowing air by heat exchange with the blowing air.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を制御する。例えば、空調制御装置60は、冷風バイパス通路55を全開として室内凝縮器12a側の通風路を閉塞するように、エアミックスドア54の作動を制御する。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. For example, the air conditioning control device 60 controls the operation of the air mix door 54 so that the cold air bypass passage 55 is fully opened and the air passage on the indoor condenser 12 a side is closed.
又、空調制御装置60が、室外熱交換器12bの外気風路を開くように、シャッター機構の作動を制御する。尚、当該空調制御装置60は、その他の各種制御対象機器についても、第2実施形態と同様に、適宜その作動を制御する。
Further, the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air passage of the outdoor heat exchanger 12b. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
第4実施形態に係る冷凍サイクル装置10の冷房モードでは、圧縮機11から吐出された高温高圧の冷媒が、室内凝縮器12aへ流入する。冷房モードでは、第2実施形態と同様に、エアミックスドア54が室内凝縮器12a側の通風路を閉塞している。この為、室内凝縮器12aへ流入した冷媒は、殆ど送風空気へ放熱することなく、室内凝縮器12aから流出して室外熱交換器12bへ流入する。
In the cooling mode of the refrigeration cycle apparatus 10 according to the fourth embodiment, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the cooling mode, as in the second embodiment, the air mix door 54 blocks the air passage on the indoor condenser 12 a side. For this reason, the refrigerant which has flowed into the indoor condenser 12a flows out from the indoor condenser 12a and flows into the outdoor heat exchanger 12b with little heat being released to the blown air.
室外熱交換器12bへ流入した冷媒は、シャッター機構が室外熱交換器12bの外気風路を開いているので、外気に放熱して凝縮する。そして、室外熱交換器12bから流出した冷媒は、モジュレータ13を介して、冷却用膨張弁15aへ流入して減圧される。以降の作動は第2実施形態の冷房モードと同様である。
The refrigerant that has flowed into the outdoor heat exchanger 12b releases heat to the outside air and condenses because the shutter mechanism opens the outdoor air passage of the outdoor heat exchanger 12b. Then, the refrigerant flowing out of the outdoor heat exchanger 12 b flows into the cooling expansion valve 15 a via the modulator 13 and is decompressed. The subsequent operation is similar to that of the cooling mode of the second embodiment.
従って、冷房モードでは、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Therefore, in the cooling mode, the blowing air cooled by the indoor evaporator 16 can be blown into the vehicle compartment to perform cooling of the vehicle compartment.
(b)暖房モード
第4実施形態に係る暖房モードは、第2実施形態と同様に、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60は、冷却用膨張弁15aを全開とし、吸熱用膨張弁15bを所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを全開にするように制御される。 (B) Heating mode The heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment. In the heating mode, the airconditioning control device 60 fully opens the cooling expansion valve 15a and opens the heat absorption expansion valve 15b at a predetermined throttle opening degree. At this time, the three-way valve 16b is controlled to fully open the bypass flow passage 16a.
第4実施形態に係る暖房モードは、第2実施形態と同様に、本開示における加熱モードの一例である。当該暖房モードでは、空調制御装置60は、冷却用膨張弁15aを全開とし、吸熱用膨張弁15bを所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを全開にするように制御される。 (B) Heating mode The heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment. In the heating mode, the air
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→三方弁16b→バイパス流路16a→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、暖房モードでは、室外蒸発器18で吸熱した熱を利用して送風空気を加熱することを目的とした冷媒回路に切り替えられる。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the three-way valve 16b → the bypass flow path 16a → the heat absorption expansion valve 15b → the outdoor evaporator 18 → compression A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the machine 11 is configured. That is, in the heating mode, the refrigerant circuit is switched to a refrigerant circuit aiming to heat the blown air by using the heat absorbed by the outdoor evaporator 18.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を、暖房モードに関する制御マップを参照して制御する。尚、当該空調制御装置60は、その他の各種制御対象機器についても、第2実施形態と同様に、適宜その作動を制御する。
Then, with this cycle configuration, the air conditioning control device 60 refers to the control map related to the heating mode regarding the operation of various control target devices connected to the output side based on the target blowout temperature TAO and the detection signal of the sensor group. Control. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
第4実施形態に係る冷凍サイクル装置10の暖房モードでは、圧縮機11から吐出された高温高圧の冷媒が、室内凝縮器12aへ流入する。暖房モードでは、第2実施形態と同様に、エアミックスドア54が冷風バイパス通路55を閉塞し、室内凝縮器12a側の通風路を全開にしている。この為、室内凝縮器12aへ流入した冷媒は送風空気へ放熱し、室内蒸発器16を通過した送風空気を加熱する。
In the heating mode of the refrigeration cycle apparatus 10 according to the fourth embodiment, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the heating mode, as in the second embodiment, the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant flowing into the indoor condenser 12 a dissipates heat to the blown air, and heats the blown air which has passed through the indoor evaporator 16.
室内凝縮器12aから流出して室外熱交換器12bへ流入した冷媒は、シャッター機構が室外熱交換器12bの外気風路を所定の開度で開いているので、外気に放熱して凝縮する。そして、室外熱交換器12bから流出した冷媒は、モジュレータ13、冷却用膨張弁15a、三方弁16b、バイパス流路16aを介して、吸熱用膨張弁15bへ流入して減圧される。以降の作動は、第2実施形態の暖房モードと同様である。
The refrigerant flowing out of the indoor condenser 12a and flowing into the outdoor heat exchanger 12b is dissipated by the heat released from the outside air because the shutter mechanism opens the outdoor air flow path of the outdoor heat exchanger 12b at a predetermined opening degree. The refrigerant that has flowed out of the outdoor heat exchanger 12b flows into the heat absorption expansion valve 15b via the modulator 13, the cooling expansion valve 15a, the three-way valve 16b, and the bypass flow path 16a and is decompressed. The subsequent operation is the same as in the heating mode of the second embodiment.
従って、暖房モードでは、室外蒸発器18にて外気から吸熱した熱を利用して、室内蒸発器16を通過した送風空気を加熱して車室内へ吹き出すことができ、車室内の暖房を行うことができる。
Therefore, in the heating mode, the heat absorbed from the outside air in the outdoor evaporator 18 can be used to heat the blown air having passed through the indoor evaporator 16 and blow it out into the vehicle compartment, thereby heating the vehicle interior. Can.
(c)除湿暖房モード
第4実施形態に係る除湿暖房モードは、第2実施形態と同様に、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60は、冷却用膨張弁15a及び吸熱用膨張弁15bをそれぞれ所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを閉塞するように制御される。 (C) Dehumidifying and Heating Mode The dehumidifying and heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment. In the dehumidifying and heating mode, the airconditioning control device 60 opens the cooling expansion valve 15a and the heat absorption expansion valve 15b at a predetermined throttle opening. At this time, the three-way valve 16b is controlled to close the bypass flow passage 16a.
第4実施形態に係る除湿暖房モードは、第2実施形態と同様に、本開示における加熱モードの一例である。当該除湿暖房モードでは、空調制御装置60は、冷却用膨張弁15a及び吸熱用膨張弁15bをそれぞれ所定の絞り開度で開く。この時、三方弁16bは、バイパス流路16aを閉塞するように制御される。 (C) Dehumidifying and Heating Mode The dehumidifying and heating mode according to the fourth embodiment is an example of the heating mode in the present disclosure, as in the second embodiment. In the dehumidifying and heating mode, the air
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→室内凝縮器12a→室外熱交換器12b→モジュレータ13→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、除湿暖房モードでは、室内蒸発器16にて冷却された送風空気を、室外蒸発器18で吸熱した熱を利用して加熱することを目的とした冷媒回路に切り替えられる。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the compressor 11 → the indoor condenser 12a → the outdoor heat exchanger 12b → the modulator 13 → the cooling expansion valve 15a → the three-way valve 16b → the indoor evaporator 16 → the heat absorption expansion valve 15b A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the outdoor evaporator 18 and the compressor 11 is configured. That is, in the dehumidifying and heating mode, the blown air cooled by the indoor evaporator 16 is switched to a refrigerant circuit aiming to heat using the heat absorbed by the outdoor evaporator 18.
そして、このサイクル構成で、空調制御装置60は、目標吹出温度TAO、センサ群の検出信号に基づいて、出力側に接続された各種制御対象機器の作動を、除湿暖房モードに関する制御マップを参照して制御する。
Then, with this cycle configuration, the air conditioning control device 60 refers to the control map related to the dehumidifying and heating mode based on the target blowout temperature TAO and the detection signal of the sensor group to operate the various control target devices connected to the output side. Control.
又、空調制御装置60が、室外熱交換器12bの外気風路を冷房モード時よりも小さな開度で開くように、シャッター機構の作動を制御する。具体的なシャッター機構による外気風路の開度については、室外蒸発器18における着霜の進行度合等に応じて、制御マップを参照して定められる。尚、当該空調制御装置60は、その他の各種制御対象機器についても、第2実施形態と同様に、適宜その作動を制御する。
Further, the air conditioning control device 60 controls the operation of the shutter mechanism so as to open the outdoor air flow path of the outdoor heat exchanger 12b at an opening smaller than that in the cooling mode. The opening degree of the outdoor air flow path by the specific shutter mechanism is determined with reference to the control map according to the progress degree of frost formation in the outdoor evaporator 18 and the like. The air-conditioning control device 60 appropriately controls the operation of the other various control target devices as in the second embodiment.
第4実施形態に係る冷凍サイクル装置10の除湿暖房モードでは、圧縮機11から吐出された高温高圧の冷媒が、室内凝縮器12aへ流入する。除湿暖房モードでは、第2実施形態と同様に、エアミックスドア54が冷風バイパス通路55を閉塞し、室内凝縮器12a側の通風路を全開にしている。この為、室内凝縮器12aへ流入した冷媒は、送風空気へ放熱し、室内蒸発器16にて冷却された送風空気を加熱する。
In the dehumidifying and heating mode of the refrigeration cycle apparatus 10 according to the fourth embodiment, the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12a. In the dehumidifying and heating mode, as in the second embodiment, the air mix door 54 closes the cold air bypass passage 55, and the air passage on the indoor condenser 12a side is fully opened. Therefore, the refrigerant flowing into the indoor condenser 12 a dissipates heat to the blown air, and heats the blown air cooled by the indoor evaporator 16.
室内凝縮器12aから流出して室外熱交換器12bへ流入した冷媒は、シャッター機構が室外熱交換器12bの外気風路を所定の開度で開いているので、外気に放熱して凝縮する。そして、室外熱交換器12bから流出した冷媒は、モジュレータ13を介して、冷却用膨張弁15aへ流入して減圧される。以降の作動は、第2実施形態の除湿暖房モードと同様である。
The refrigerant flowing out of the indoor condenser 12a and flowing into the outdoor heat exchanger 12b is dissipated by the heat released from the outside air because the shutter mechanism opens the outdoor air flow path of the outdoor heat exchanger 12b at a predetermined opening degree. Then, the refrigerant flowing out of the outdoor heat exchanger 12 b flows into the cooling expansion valve 15 a via the modulator 13 and is decompressed. The subsequent operation is the same as in the dehumidifying and heating mode of the second embodiment.
従って、除湿暖房モードでは、室外蒸発器18にて外気から吸熱した熱を利用して、室内蒸発器16にて冷却された送風空気を加熱して車室内へ吹き出すことができ、車室内の除湿暖房を行うことができる。
Therefore, in the dehumidifying and heating mode, the air absorbed by the indoor evaporator 16 can be heated and blown out into the vehicle compartment using the heat absorbed from the outside air by the outdoor evaporator 18, and the vehicle interior can be dehumidified. It can do heating.
このように、第4実施形態に係る車両用空調装置1によれば、室内蒸発器16及び室外蒸発器18が直列に接続された構成であっても、冷凍サイクル装置10が冷媒回路を切り替えることによって、複数の運転モードの内、冷房モード、暖房モード、除湿暖房モードを切り替えることができ、車室内の快適な空調を実現することができる。
As described above, according to the vehicle air conditioner 1 according to the fourth embodiment, the refrigeration cycle apparatus 10 switches the refrigerant circuit even if the indoor evaporator 16 and the outdoor evaporator 18 are connected in series. Thus, the cooling mode, the heating mode, and the dehumidifying heating mode can be switched among the plurality of operation modes, and comfortable air conditioning of the vehicle interior can be realized.
つまり、いずれの冷媒回路に切り替えても室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。
That is, since it is not necessary to flow the high-pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18 regardless of switching to any refrigerant circuit, the refrigerant circuit can be switched with a simple configuration without causing complication of the cycle configuration. .
第4実施形態に係る冷凍サイクル装置10においても、暖房モードや除湿暖房モードでは、室外蒸発器18の着霜の虞がある。第4実施形態においては、室外蒸発器18の着霜による不具合を解消する為に、図9に示す構成を採用し、サイクル高圧側で放熱される熱の一部を利用して、室外蒸発器18における着霜の抑制及び除霜を実現している。
Also in the refrigeration cycle apparatus 10 according to the fourth embodiment, in the heating mode or the dehumidifying heating mode, there is a possibility that the outdoor evaporator 18 may be frosted. In the fourth embodiment, in order to eliminate the problem caused by the frost formation on the outdoor evaporator 18, the configuration shown in FIG. 9 is adopted, and an outdoor evaporator is utilized by utilizing a part of the heat radiated on the cycle high pressure side. The control of frost formation and defrosting at 18 is realized.
具体的には、室外蒸発器18の熱交換部は、熱伝導性を有する複数の伝熱フィン31によって、室外熱交換器12bの熱交換部に対して接続されている。各伝熱フィン31は、室外熱交換器12b又は室外蒸発器18の一部の構成部品(例えば、熱交換フィン)を共通化することによって構成されており、本開示における伝熱部材に相当する。
Specifically, the heat exchange portion of the outdoor evaporator 18 is connected to the heat exchange portion of the outdoor heat exchanger 12 b by a plurality of heat transfer fins 31 having thermal conductivity. Each heat transfer fin 31 is configured by sharing a part of the outdoor heat exchanger 12 b or a part of the outdoor evaporator 18 (for example, a heat exchange fin), and corresponds to the heat transfer member in the present disclosure. .
即ち、室外熱交換器12bと室外蒸発器18は、複数の伝熱フィン31によって熱的に接続されており、室外熱交換器12bで放熱される熱を室外蒸発器18に対して伝達可能に構成されている。
That is, the outdoor heat exchanger 12b and the outdoor evaporator 18 are thermally connected by a plurality of heat transfer fins 31, and the heat radiated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 It is configured.
このように構成することで、当該冷凍サイクル装置10においては、室外熱交換器12bで放熱される熱を低温側である室外蒸発器18に伝達できる。この結果、当該冷凍サイクル装置10によれば、暖房モードや除湿暖房モードを実行している場合に、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
With this configuration, in the refrigeration cycle apparatus 10, the heat radiated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 on the low temperature side. As a result, according to the refrigeration cycle apparatus 10, when the heating mode or the dehumidifying heating mode is executed, the progress of frost formation in the outdoor evaporator 18 is suppressed, or the outdoor evaporator 18 is defrosted. can do.
尚、室外熱交換器12bにおけるシャッター機構の作動を制御することで、室外熱交換器12bの放熱量を調整し、室外蒸発器18に伝達される熱量を加減することもできる。シャッター機構により外気風路の開度を大きくすることで、室外蒸発器18に伝達される熱量を増やせば、室外蒸発器18の除霜を迅速に行うことができる。
By controlling the operation of the shutter mechanism in the outdoor heat exchanger 12b, the amount of heat released from the outdoor heat exchanger 12b can be adjusted, and the amount of heat transferred to the outdoor evaporator 18 can be adjusted. By increasing the amount of heat transferred to the outdoor evaporator 18 by enlarging the opening degree of the outdoor air passage by the shutter mechanism, it is possible to rapidly defrost the outdoor evaporator 18.
又、室外蒸発器18の着霜を抑制する場合には、シャッター機構により外気風路の開度を小さく絞り、室外蒸発器18に伝達される熱量を制限すればよい。これにより、室内凝縮器12aによる送風空気の加熱能力をできるだけ維持しながら、室外蒸発器18の着霜を抑制することができる。
In order to suppress frost formation on the outdoor evaporator 18, the opening degree of the outdoor air passage may be narrowed by the shutter mechanism to limit the amount of heat transferred to the outdoor evaporator 18. Thereby, frost formation of the outdoor evaporator 18 can be suppressed while maintaining the heating capacity of the blowing air by the indoor condenser 12a as much as possible.
そして、図9に示す構成の場合、室外蒸発器18の除霜等を行う為に、室外蒸発器18に高圧冷媒を導入する必要もなく、暖房モード等での運転を停止する必要もない。即ち、当該冷凍サイクル装置10によれば、簡素なサイクル構成にて、空調対象空間である車室内の快適性を維持しつつ、室外蒸発器18の着霜による不具合の発生を抑制・解消することができる。
Further, in the case of the configuration shown in FIG. 9, it is not necessary to introduce a high pressure refrigerant into the outdoor evaporator 18 and to stop the operation in the heating mode or the like in order to defrost the outdoor evaporator 18 or the like. That is, according to the refrigeration cycle apparatus 10, with the simple cycle configuration, while maintaining the comfortability of the vehicle cabin which is the space to be air conditioned, to suppress / cancel the occurrence of the trouble due to the frost formation of the outdoor evaporator 18. Can.
以上説明したように、第4実施形態に係る冷凍サイクル装置10は、第2実施形態と同様に、室内蒸発器16及び室外蒸発器18を直列に接続した構成であっても、回路切替制御部60bによって、室内蒸発器16にて送風空気との熱交換を主とする冷媒回路と、室外蒸発器18にて外気から吸熱した熱を用いて、送風空気を加熱することを主とする冷媒回路とを切り替えることができる。
As described above, the refrigeration cycle apparatus 10 according to the fourth embodiment has the circuit switching control unit even when the indoor evaporator 16 and the outdoor evaporator 18 are connected in series as in the second embodiment. A refrigerant circuit mainly composed of a refrigerant circuit mainly performing heat exchange with the blown air in the indoor evaporator 16 by 60b, and a refrigerant circuit mainly composed of heating the blown air using heat absorbed from the outside air by the outdoor evaporator 18 And can be switched.
当該冷凍サイクル装置10によれば、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。即ち、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モードと、暖房モードと、除湿暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration. The refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
そして、第4実施形態に係る冷房モードでは、室内蒸発器16にて吸熱された熱は、加熱部を構成する室外熱交換器12bにて外気に放熱される。即ち、室外蒸発器18は放熱器として機能することはなく、吸熱器として機能している。換言すると、当該冷凍サイクル装置10の冷房モードでは、室外蒸発器18へ高圧冷媒を流入させることはない。
Then, in the cooling mode according to the fourth embodiment, the heat absorbed by the indoor evaporator 16 is dissipated to the outside air by the outdoor heat exchanger 12 b constituting the heating unit. That is, the outdoor evaporator 18 does not function as a radiator but functions as a heat absorber. In other words, in the cooling mode of the refrigeration cycle apparatus 10, the high-pressure refrigerant does not flow into the outdoor evaporator 18.
図8に示すように、第4実施形態に係る冷凍サイクル装置10は、室内凝縮器12aを備えている為、圧縮機11から吐出された高温高圧の冷媒と熱交換対象流体である送風空気とを直接的に熱交換させて、送風空気を加熱することができる。
As shown in FIG. 8, since the refrigeration cycle apparatus 10 according to the fourth embodiment includes the indoor condenser 12 a, the high-temperature and high-pressure refrigerant discharged from the compressor 11 and the blown air that is the fluid to be heat exchanged. Directly exchange heat to heat the blast air.
又、当該冷凍サイクル装置10は、室外熱交換器12bを備えている為、室内蒸発器16や室外蒸発器18にて吸熱した熱を外気に放熱させることが可能となり、冷房モード時において車室内の冷房を適切に行うことができる。
Further, since the refrigeration cycle apparatus 10 includes the outdoor heat exchanger 12b, the heat absorbed by the indoor evaporator 16 and the outdoor evaporator 18 can be released to the outside air, and the vehicle interior can be in the cooling mode. Cooling can be performed properly.
そして、第4実施形態では、室外熱交換器12bと室外蒸発器18が複数の伝熱フィン31によって熱的に接続されており、室外熱交換器12bにおける高圧冷媒が有する熱を室外蒸発器18に伝達することができる。
In the fourth embodiment, the outdoor heat exchanger 12 b and the outdoor evaporator 18 are thermally connected by the plurality of heat transfer fins 31, and the heat possessed by the high-pressure refrigerant in the outdoor heat exchanger 12 b is transmitted to the outdoor evaporator 18. Can be transmitted to
これにより、室外熱交換器12bで放熱される熱を、送風方向Wへ送風される外気を介して、室外蒸発器18へ伝達することができるので、室外蒸発器18における着霜の進行を抑制したり、室外蒸発器18の除霜を行ったりすることができる。
Thereby, the heat dissipated by the outdoor heat exchanger 12b can be transmitted to the outdoor evaporator 18 through the outside air blown in the blowing direction W, so the progress of frost formation in the outdoor evaporator 18 is suppressed. It is also possible to defrost the outdoor evaporator 18.
(第5実施形態)
次に、上述した各実施形態とは異なる第5実施形態について、図10を参照しつつ説明する。第5実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Fifth Embodiment
Next, a fifth embodiment different from the above-described embodiments will be described with reference to FIG. Therefrigeration cycle apparatus 10 according to the fifth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
次に、上述した各実施形態とは異なる第5実施形態について、図10を参照しつつ説明する。第5実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Fifth Embodiment
Next, a fifth embodiment different from the above-described embodiments will be described with reference to FIG. The
図10に示すように、第5実施形態に係る冷凍サイクル装置10は、第1実施形態に対して、内部熱交換器19を追加して構成されている。具体的には、内部熱交換器19は、高圧側冷媒通路を流通する冷媒と低圧側冷媒通路を流通する冷媒とを熱交換させる熱交換器である。当該内部熱交換器19は、本開示における内部熱交換器に相当する。
As shown in FIG. 10, the refrigeration cycle apparatus 10 according to the fifth embodiment is configured by adding an internal heat exchanger 19 to the first embodiment. Specifically, the internal heat exchanger 19 is a heat exchanger that exchanges heat between the refrigerant flowing in the high pressure side refrigerant passage and the refrigerant flowing in the low pressure side refrigerant passage. The internal heat exchanger 19 corresponds to the internal heat exchanger in the present disclosure.
第5実施形態において、高圧側冷媒通路を流通する冷媒は、高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒である。低圧側冷媒通路を流通する冷媒は、室外蒸発器18から流出し、合流部14bの冷媒流出口から流出した低圧冷媒であり、圧縮機11の吸入口から吸入される低圧冷媒である。
In the fifth embodiment, the refrigerant flowing through the high pressure side refrigerant passage is the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The refrigerant flowing through the low pressure side refrigerant passage is a low pressure refrigerant which flows out of the outdoor evaporator 18 and which flows out of the refrigerant outlet of the merging portion 14 b and is a low pressure refrigerant drawn from the suction port of the compressor 11.
次に、第5実施形態に係る車両用空調装置1の作動について説明する。第5実施形態に係る車両用空調装置1においても、第1実施形態と同様に、空調制御プログラムが実行されることで運転モードが切り替えられる。以下、各運転モードの作動を説明する。
Next, the operation of the vehicle air conditioner 1 according to the fifth embodiment will be described. In the vehicle air conditioner 1 according to the fifth embodiment, as in the first embodiment, the operation mode is switched by executing the air conditioning control program. The operation of each operation mode will be described below.
(a)冷房モード
第5実施形態に係る冷房モードは、本開示における冷却モードに相当する。当該冷房モードでは、空調制御装置60が、第1実施形態の冷房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (A) Cooling Mode The cooling mode according to the fifth embodiment corresponds to the cooling mode in the present disclosure. In the cooling mode, the airconditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b as in the cooling mode of the first embodiment.
第5実施形態に係る冷房モードは、本開示における冷却モードに相当する。当該冷房モードでは、空調制御装置60が、第1実施形態の冷房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (A) Cooling Mode The cooling mode according to the fifth embodiment corresponds to the cooling mode in the present disclosure. In the cooling mode, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→内部熱交換器19の高圧側冷媒通路→分岐部14a→冷却用膨張弁15a→室内蒸発器16→蒸発圧力調整弁17→合流部14b→内部熱交換器19の低圧側冷媒通路→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → high pressure side refrigerant passage of the internal heat exchanger 19 → branch portion 14a → cooling expansion valve 15a → room A vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 16 → the evaporation pressure adjusting valve 17 → the merging portion 14b → the low pressure side refrigerant passage of the internal heat exchanger 19 → the compressor 11 is configured.
そして、このサイクル構成で、空調制御装置60は、第1実施形態の冷房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。従って、冷房モードでは、実質的に第1実施形態と同様に、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the cooling mode of the first embodiment. Accordingly, in the cooling mode, cooling of the vehicle interior can be performed by blowing out the blowing air cooled by the indoor evaporator 16 into the vehicle interior substantially as in the first embodiment.
(b)暖房モード
第5実施形態に係る暖房モードは、本開示における加熱モードに相当する。当該暖房モードでは、空調制御装置60が、第1実施形態の暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (B) Heating mode The heating mode according to the fifth embodiment corresponds to the heating mode in the present disclosure. In the heating mode, the airconditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b, as in the heating mode of the first embodiment.
第5実施形態に係る暖房モードは、本開示における加熱モードに相当する。当該暖房モードでは、空調制御装置60が、第1実施形態の暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (B) Heating mode The heating mode according to the fifth embodiment corresponds to the heating mode in the present disclosure. In the heating mode, the air
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→内部熱交換器19の高圧側冷媒通路→分岐部14a→吸熱用膨張弁15b→室外蒸発器18→合流部14b→内部熱交換器19の低圧側冷媒通路→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → high pressure side refrigerant passage of the internal heat exchanger 19 → branching portion 14a → heat absorption expansion valve 15b → outside A vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 → the merging portion 14b → the low pressure side refrigerant passage of the internal heat exchanger 19 → the compressor 11 is configured.
そして、このサイクル構成で、空調制御装置60は、第1実施形態の暖房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。これにより、第1実施形態の暖房モードと同様に、室外蒸発器18にて外気から吸熱された熱を用いて、ヒータコア22にて送風空気を加熱することができ、車室内の暖房を行うことができる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the heating mode of the first embodiment. Thus, as in the heating mode of the first embodiment, the air absorbed by the outdoor evaporator 18 can be heated by the heater core 22 using the heat absorbed from the outside air, thereby heating the vehicle interior. Can.
(c)除湿暖房モード
第5実施形態に係る除湿暖房モードは、本開示における加熱モードの一例に相当する。当該除湿暖房モードでは、空調制御装置60が、第1実施形態の除湿暖房モードと同様に冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (C) Dehumidifying and heating mode The dehumidifying and heating mode according to the fifth embodiment corresponds to an example of the heating mode in the present disclosure. In the dehumidifying and heating mode, the airconditioning control device 60 controls the opening degree of the cooling expansion valve 15a and the heat absorbing expansion valve 15b as in the dehumidifying and heating mode of the first embodiment.
第5実施形態に係る除湿暖房モードは、本開示における加熱モードの一例に相当する。当該除湿暖房モードでは、空調制御装置60が、第1実施形態の除湿暖房モードと同様に冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度を制御する。 (C) Dehumidifying and heating mode The dehumidifying and heating mode according to the fifth embodiment corresponds to an example of the heating mode in the present disclosure. In the dehumidifying and heating mode, the air
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→分岐部14aまで流れ、分岐部14aの一方側→冷却用膨張弁15a→室内蒸発器16へ流れると共に、分岐部14aの他方側→吸熱用膨張弁15b→室外蒸発器18へ流れる。そして、室内蒸発器16から流出した冷媒及び室外蒸発器18から流出した冷媒は合流部14bにて合流した後、圧縮機11の順で流れて循環する。即ち、除湿暖房モードでは、室内蒸発器16及び室外蒸発器18に冷媒が並列に流れる蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the refrigerant flows from the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → branch portion 14a, and one side of the branch portion 14a → cooling expansion valve 15a → indoor evaporation It flows to the vessel 16 and flows from the other side of the branch portion 14 a to the heat absorption expansion valve 15 b to the outdoor evaporator 18. The refrigerant flowing out of the indoor evaporator 16 and the refrigerant flowing out of the outdoor evaporator 18 merge at the merging portion 14b, and then flow and circulate in the order of the compressor 11. That is, in the dehumidifying and heating mode, a vapor compression type refrigeration cycle in which the refrigerant flows in parallel to the indoor evaporator 16 and the outdoor evaporator 18 is configured.
そして、このサイクル構成で、空調制御装置60は、第1実施形態の除湿暖房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。これにより、第1実施形態の除湿暖房モードと同様に、室内蒸発器16で冷却された送風空気を、室外蒸発器18にて外気から吸熱された熱を用いて、ヒータコア22にて加熱することができ、車室内の除湿暖房を行うことができる。
Then, with this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the first embodiment. Thus, as in the dehumidifying and heating mode of the first embodiment, the blown air cooled by the indoor evaporator 16 is heated by the heater core 22 using the heat absorbed from the outside air by the outdoor evaporator 18. It is possible to carry out dehumidifying and heating of the passenger compartment.
ここで、高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒は、内部熱交換器19の高圧側冷媒通路へ流入する。内部熱交換器19の高圧側冷媒通路へ流入した高圧冷媒は、内部熱交換器19の低圧側冷媒通路を流通する低圧冷媒と熱交換して、エンタルピを低下させる。
Here, the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12 flows into the high pressure side refrigerant passage of the internal heat exchanger 19. The high pressure refrigerant flowing into the high pressure side refrigerant passage of the internal heat exchanger 19 exchanges heat with the low pressure refrigerant flowing in the low pressure side refrigerant passage of the internal heat exchanger 19 to lower the enthalpy.
内部熱交換器19の高圧側冷媒通路から流出した高圧冷媒は、分岐部14aを介して、吸熱用膨張弁15bへ流入して減圧され、室外蒸発器18へ流入する。室外蒸発器18へ流入した冷媒は、外気ファン30から送風された熱源流体である外気から吸熱して蒸発する。室外蒸発器18から流出した冷媒は、合流部14bを介して、内部熱交換器19の低圧側冷媒通路へ流入する。
The high pressure refrigerant flowing out of the high pressure side refrigerant passage of the internal heat exchanger 19 flows into the heat absorption expansion valve 15b via the branch portion 14a, is decompressed, and flows into the outdoor evaporator 18. The refrigerant flowing into the outdoor evaporator 18 absorbs heat from the outside air, which is a heat source fluid blown from the outside air fan 30, and evaporates. The refrigerant that has flowed out of the outdoor evaporator 18 flows into the low pressure side refrigerant passage of the internal heat exchanger 19 via the merging portion 14b.
内部熱交換器19の低圧側冷媒通路へ流入した低圧冷媒は、内部熱交換器19の高圧側冷媒通路を流通する高圧冷媒と熱交換して、エンタルピを上昇させる。内部熱交換器19の低圧側冷媒通路から流出した低圧冷媒は、圧縮機11へ吸入されて再び圧縮される。
The low pressure refrigerant flowing into the low pressure side refrigerant passage of the internal heat exchanger 19 exchanges heat with the high pressure refrigerant flowing through the high pressure side refrigerant passage of the internal heat exchanger 19 to raise the enthalpy. The low pressure refrigerant flowing out of the low pressure side refrigerant passage of the internal heat exchanger 19 is sucked into the compressor 11 and compressed again.
従って、当該冷凍サイクル装置10によれば、内部熱交換器19によって、室内蒸発器16及び室外蒸発器18へ流入する冷媒のエンタルピを低下させることができる。これにより、蒸発器として機能する熱交換器における冷媒の冷却能力を増大させて、冷凍サイクル装置10の成績係数(COP)を向上させることができる。
Therefore, according to the refrigeration cycle apparatus 10, the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced by the internal heat exchanger 19. Thereby, the cooling capacity of the refrigerant in the heat exchanger which functions as an evaporator can be increased, and the coefficient of performance (COP) of the refrigeration cycle apparatus 10 can be improved.
尚、第5実施形態においても、暖房モードや除湿暖房モードにおいては、室外蒸発器18が着霜する虞がある。従って、高温側ラジエータ23にて放熱された熱を、室外蒸発器18に伝達する構成が採用されている。例えば、図3に示す構成と、図5に示す構成の何れかを採用しても良い。
Also in the heating mode or the dehumidifying and heating mode, the outdoor evaporator 18 may be frosted also in the fifth embodiment. Therefore, a configuration is adopted in which the heat radiated by the high temperature side radiator 23 is transmitted to the outdoor evaporator 18. For example, either the configuration shown in FIG. 3 or the configuration shown in FIG. 5 may be employed.
図3及び図5の構成を組み合わせて、外気ファン30による送風方向Wに関して、室外蒸発器18が高温側ラジエータ23の下流側となるように配置すると同時に、室外蒸発器18及び高温側ラジエータ23を複数の伝熱フィン31にて熱的に接続した構成としてもよい。
By combining the configurations shown in FIGS. 3 and 5, the outdoor evaporator 18 is disposed downstream of the high temperature side radiator 23 with respect to the blowing direction W by the outside air fan 30, and at the same time the outdoor evaporator 18 and the high temperature side radiator 23 are It may be configured to be thermally connected by a plurality of heat transfer fins 31.
以上説明したように、第5実施形態に係る冷凍サイクル装置10によれば、第1実施形態と同様に、回路切替制御部60bによって、分岐部14aに接続された室内蒸発器16側の冷媒回路と、室外蒸発器18側の冷媒回路とを切り替えることができる。
As described above, according to the refrigeration cycle apparatus 10 according to the fifth embodiment, the refrigerant circuit on the indoor evaporator 16 side connected to the branch unit 14a by the circuit switching control unit 60b as in the first embodiment. And the refrigerant circuit on the outdoor evaporator 18 side can be switched.
当該冷凍サイクル装置10によれば、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。即ち、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モードと暖房モードと除湿暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration. The refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode, the heating mode, and the dehumidifying and heating mode without causing complication of the cycle configuration.
又、第5実施形態に係る冷凍サイクル装置10は、内部熱交換器19を備えている為、室内蒸発器16及び室外蒸発器18へ流入する冷媒のエンタルピを低下させることができる。従って、当該冷凍サイクル装置10は、蒸発器として機能する熱交換器における冷媒の冷却能力を増大させて、冷凍サイクル装置10の成績係数(COP)を向上させることができる。
Further, since the refrigeration cycle apparatus 10 according to the fifth embodiment includes the internal heat exchanger 19, the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced. Therefore, the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
(第6実施形態)
続いて、上述した各実施形態とは異なる第6実施形態について、図11を参照しつつ説明する。第6実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Sixth Embodiment
Subsequently, a sixth embodiment different from the above-described embodiments will be described with reference to FIG. Therefrigeration cycle apparatus 10 according to the sixth embodiment is applied to the air conditioner 1 for a vehicle mounted on an electric vehicle as in the above-described embodiment, and is a blown air blown into a vehicle compartment which is a space to be air conditioned. Perform the function of adjusting the temperature of the
続いて、上述した各実施形態とは異なる第6実施形態について、図11を参照しつつ説明する。第6実施形態に係る冷凍サイクル装置10は、上述した実施形態と同様に、電気自動車に搭載される車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気の温度を調整する機能を果たす。 Sixth Embodiment
Subsequently, a sixth embodiment different from the above-described embodiments will be described with reference to FIG. The
第6実施形態に係る冷凍サイクル装置10は、第2実施形態に対して、内部熱交換器19を追加して構成されている。内部熱交換器19は、高圧側冷媒通路を流通する冷媒と低圧側冷媒通路を流通する冷媒とを熱交換させる熱交換器である。そして、当該内部熱交換器19は、本開示における内部熱交換器に相当する。
The refrigeration cycle apparatus 10 according to the sixth embodiment is configured by adding an internal heat exchanger 19 to the second embodiment. The internal heat exchanger 19 is a heat exchanger that exchanges heat between the refrigerant flowing in the high pressure side refrigerant passage and the refrigerant flowing in the low pressure side refrigerant passage. And the said internal heat exchanger 19 is corresponded to the internal heat exchanger in this indication.
第6実施形態において、高圧側冷媒通路を流通する冷媒は高温側水-冷媒熱交換器12の冷媒通路から流出した高圧冷媒である。低圧側冷媒通路を流通する冷媒は室外蒸発器18から流出した低圧冷媒であり、圧縮機11の吸入口から吸入される低圧冷媒である。
In the sixth embodiment, the refrigerant flowing through the high pressure side refrigerant passage is the high pressure refrigerant flowing out of the refrigerant passage of the high temperature side water-refrigerant heat exchanger 12. The refrigerant flowing through the low pressure side refrigerant passage is a low pressure refrigerant flowing out of the outdoor evaporator 18 and is a low pressure refrigerant sucked from the suction port of the compressor 11.
次に、第6実施形態に係る車両用空調装置1の作動について説明する。第6実施形態に係る車両用空調装置1においても、第2実施形態と同様に運転モードが切り替えられる。以下、各運転モードの作動を説明する。
Next, the operation of the vehicle air conditioner 1 according to the sixth embodiment will be described. Also in the vehicle air conditioner 1 according to the sixth embodiment, the operation mode is switched as in the second embodiment. The operation of each operation mode will be described below.
(a)冷房モード
第6実施形態に係る冷房モードは、本開示における冷却モードに相当する。当該冷房モードでは、空調制御装置60が、第2実施形態の冷房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (A) Cooling Mode The cooling mode according to the sixth embodiment corresponds to the cooling mode in the present disclosure. In the cooling mode, the airconditioning control device 60 controls the opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b and the operation of the three-way valve 16b, as in the cooling mode of the second embodiment.
第6実施形態に係る冷房モードは、本開示における冷却モードに相当する。当該冷房モードでは、空調制御装置60が、第2実施形態の冷房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (A) Cooling Mode The cooling mode according to the sixth embodiment corresponds to the cooling mode in the present disclosure. In the cooling mode, the air
従って、冷房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→内部熱交換器19の高圧側冷媒通路→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→内部熱交換器19の低圧側冷媒通路→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Accordingly, in the refrigeration cycle apparatus 10 in the cooling mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → high pressure side refrigerant passage of the internal heat exchanger 19 → cooling expansion valve 15a → three-way valve 16b → indoor A vapor compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 16 → the heat absorption expansion valve 15b → the outdoor evaporator 18 → the low pressure side refrigerant passage of the internal heat exchanger 19 → the compressor 11 is configured.
そして、このサイクル構成で、空調制御装置60は、第2実施形態の冷房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。従って、冷房モードでは、実質的に第2実施形態と同様に、室内蒸発器16にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
Then, with this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the cooling mode of the second embodiment. Accordingly, in the cooling mode, cooling of the vehicle interior can be performed by blowing out the blowing air cooled by the indoor evaporator 16 into the vehicle interior substantially as in the second embodiment.
(b)暖房モード
第6実施形態に係る暖房モードは、本開示における加熱モードに相当する。当該暖房モードでは、空調制御装置60が、第2実施形態の暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (B) Heating mode The heating mode according to the sixth embodiment corresponds to the heating mode in the present disclosure. In the heating mode, the airconditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorption expansion valve 15b and the operation of the three-way valve 16b, as in the heating mode of the second embodiment.
第6実施形態に係る暖房モードは、本開示における加熱モードに相当する。当該暖房モードでは、空調制御装置60が、第2実施形態の暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (B) Heating mode The heating mode according to the sixth embodiment corresponds to the heating mode in the present disclosure. In the heating mode, the air
従って、暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→三方弁16b→バイパス流路16a→吸熱用膨張弁15b→室外蒸発器18→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → three-way valve 16 b → bypass flow path 16 a → heat absorption expansion valve 15 b → outdoor evaporator 18 → compressor A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 11 is configured.
そして、このサイクル構成で、空調制御装置60は、第2実施形態の暖房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。従って、暖房モードでは、実質的に第2実施形態と同様に、室外蒸発器18で吸熱された熱を用いて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
And with this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the heating mode of the second embodiment. Therefore, in the heating mode, the vehicle interior is heated by blowing out the blowing air heated using the heat absorbed by the outdoor evaporator 18 into the vehicle compartment substantially as in the second embodiment. it can.
(c)除湿暖房モード
第6実施形態に係る除湿暖房モードは、本開示における加熱モードの一例に相当する。当該除湿暖房モードにおいては、空調制御装置60が、第2実施形態の除湿暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (C) Dehumidifying and heating mode The dehumidifying and heating mode according to the sixth embodiment corresponds to an example of the heating mode in the present disclosure. In the dehumidifying and heating mode, the airconditioning control device 60 controls the throttle opening degree of the cooling expansion valve 15a and the heat absorbing expansion valve 15b and the operation of the three-way valve 16b as in the dehumidifying and heating mode of the second embodiment.
第6実施形態に係る除湿暖房モードは、本開示における加熱モードの一例に相当する。当該除湿暖房モードにおいては、空調制御装置60が、第2実施形態の除湿暖房モードと同様に、冷却用膨張弁15a及び吸熱用膨張弁15bの絞り開度、三方弁16bの作動を制御する。 (C) Dehumidifying and heating mode The dehumidifying and heating mode according to the sixth embodiment corresponds to an example of the heating mode in the present disclosure. In the dehumidifying and heating mode, the air
従って、除湿暖房モードの冷凍サイクル装置10では、圧縮機11→高温側水-冷媒熱交換器12→モジュレータ13→内部熱交換器19の高圧側冷媒通路→冷却用膨張弁15a→三方弁16b→室内蒸発器16→吸熱用膨張弁15b→室外蒸発器18→内部熱交換器19の低圧側冷媒通路→圧縮機11の順で冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
Therefore, in the refrigeration cycle apparatus 10 in the dehumidifying heating mode, the compressor 11 → high temperature side water-refrigerant heat exchanger 12 → modulator 13 → high pressure side refrigerant passage of the internal heat exchanger 19 → cooling expansion valve 15a → three-way valve 16b → A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the indoor evaporator 16 → the heat absorption expansion valve 15b → the outdoor evaporator 18 → the low pressure side refrigerant passage of the internal heat exchanger 19 → the compressor 11 is configured.
そして、このサイクル構成で、空調制御装置60は、第2実施形態の除湿暖房モードと同様に、出力側に接続された各種制御対象機器の作動を制御する。これにより、第2実施形態の除湿暖房モードと同様に、室内蒸発器16で冷却された送風空気を、室外蒸発器18にて外気から吸熱された熱を用いて加熱することができ、車室内の除湿暖房を行うことができる。
Then, in this cycle configuration, the air conditioning control device 60 controls the operation of various control target devices connected to the output side, as in the dehumidifying and heating mode of the second embodiment. As a result, as in the dehumidifying and heating mode of the second embodiment, the blown air cooled by the indoor evaporator 16 can be heated using the heat absorbed from the outside air by the outdoor evaporator 18, and the vehicle interior It is possible to perform dehumidifying and heating.
又、第6実施形態においても、内部熱交換器19の高圧側冷媒通路へ流入した高圧冷媒と、内部熱交換器19の低圧側冷媒通路を流通する低圧冷媒とを熱交換させて、室内蒸発器16及び室外蒸発器18へ流入する冷媒のエンタルピを低下させることができる。これにより、当該冷凍サイクル装置10は、蒸発器として機能する熱交換器における冷媒の冷却能力を増大させて、冷凍サイクル装置10の成績係数(COP)を向上させることができる。
Also in the sixth embodiment, heat is exchanged between the high pressure refrigerant flowing into the high pressure side refrigerant passage of the internal heat exchanger 19 and the low pressure refrigerant flowing through the low pressure side refrigerant passage of the internal heat exchanger 19 to evaporate the room. It is possible to reduce the enthalpy of the refrigerant flowing into the vessel 16 and the outdoor evaporator 18. Thus, the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
尚、第6実施形態においても、暖房モードや除湿暖房モードにて、室外蒸発器18が着霜する虞がある。従って、高温側ラジエータ23にて放熱された熱を、室外蒸発器18に伝達する構成が採用されている。例えば、図3に示す構成、図5に示す構成、上述した図3及び図5を組み合わせた構成の何れかを採用しても良い。
Also in the sixth embodiment, the outdoor evaporator 18 may be frosted in the heating mode or the dehumidifying / heating mode. Therefore, a configuration is adopted in which the heat radiated by the high temperature side radiator 23 is transmitted to the outdoor evaporator 18. For example, any of the configuration shown in FIG. 3, the configuration shown in FIG. 5, or the configuration combining FIG. 3 and FIG. 5 described above may be adopted.
以上説明したように、第6実施形態に係る冷凍サイクル装置10によれば、第2実施形態と同様に、室内蒸発器16及び室外蒸発器18を直列に接続した構成であっても、回路切替制御部60bによって、室内蒸発器16にて送風空気との熱交換を主とする冷媒回路と、室外蒸発器18にて外気から吸熱した熱を用いて、送風空気を加熱することを主とする冷媒回路とを切り替えることができる。
As described above, according to the refrigeration cycle apparatus 10 according to the sixth embodiment, as in the second embodiment, even when the indoor evaporator 16 and the outdoor evaporator 18 are connected in series, circuit switching is performed. The control unit 60b mainly heats the blown air using the refrigerant circuit mainly making heat exchange with the blown air in the indoor evaporator 16 and the heat absorbed from the outside air by the outdoor evaporator 18 The refrigerant circuit can be switched.
当該冷凍サイクル装置10によれば、何れの冷媒回路に切り替えた場合であっても、室内蒸発器16及び室外蒸発器18へ高圧冷媒を流入させる必要がないので、サイクル構成の複雑化を招くことなく簡素な構成で冷媒回路を切り替えることができる。即ち、当該冷凍サイクル装置10は、サイクル構成の複雑化を招くことなく、冷房モードと除湿暖房モードを含む複数の運転モードを実現することができる。
According to the refrigeration cycle apparatus 10, even when switching to any of the refrigerant circuits, it is not necessary to flow the high pressure refrigerant into the indoor evaporator 16 and the outdoor evaporator 18, resulting in complication of the cycle configuration. The refrigerant circuit can be switched with a simple configuration. That is, the refrigeration cycle apparatus 10 can realize a plurality of operation modes including the cooling mode and the dehumidifying and heating mode without causing the complication of the cycle configuration.
又、第6実施形態に係る冷凍サイクル装置10は、内部熱交換器19を備えている為、室内蒸発器16及び室外蒸発器18へ流入する冷媒のエンタルピを低下させることができる。従って、当該冷凍サイクル装置10は、蒸発器として機能する熱交換器における冷媒の冷却能力を増大させて、冷凍サイクル装置10の成績係数(COP)を向上させることができる。
Further, since the refrigeration cycle apparatus 10 according to the sixth embodiment includes the internal heat exchanger 19, the enthalpy of the refrigerant flowing into the indoor evaporator 16 and the outdoor evaporator 18 can be reduced. Therefore, the refrigeration cycle apparatus 10 can improve the coefficient of performance (COP) of the refrigeration cycle apparatus 10 by increasing the cooling capacity of the refrigerant in the heat exchanger that functions as an evaporator.
(他の実施形態)
以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。 (Other embodiments)
Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments. That is, various improvements and modifications are possible without departing from the scope of the present disclosure. For example, the above-described embodiments may be combined as appropriate, or various modifications of the above-described embodiments may be made.
以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。 (Other embodiments)
Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments. That is, various improvements and modifications are possible without departing from the scope of the present disclosure. For example, the above-described embodiments may be combined as appropriate, or various modifications of the above-described embodiments may be made.
(1)上述した実施形態においては、室外蒸発器18と、モジュレータ13とを別体に配置した構成であったが、この構成に限定されるものではない。例えば、図12に示すように、室外蒸発器18における熱交換部の側部に対して、モジュレータ13を一体的に配置した構成としてもよい。
(1) In the embodiment described above, the outdoor evaporator 18 and the modulator 13 are separately provided, but the present invention is not limited to this configuration. For example, as shown in FIG. 12, the modulator 13 may be integrally disposed on the side of the heat exchange unit in the outdoor evaporator 18.
この時、室外蒸発器18とモジュレータ13との間には、断熱部材36を配置して、モジュレータ13と室外蒸発器18の間における断熱を図ることが望ましい。このように構成することで、既存のモジュレータ一体型の熱交換器を利用して、本開示における冷凍サイクル装置10の構成の一部を製造することが可能となる。
At this time, it is desirable to dispose a heat insulating member 36 between the outdoor evaporator 18 and the modulator 13 to achieve thermal insulation between the modulator 13 and the outdoor evaporator 18. With such a configuration, it is possible to manufacture a part of the configuration of the refrigeration cycle apparatus 10 according to the present disclosure using the existing modulator-integrated heat exchanger.
(2)又、上述した第5実施形態、第6実施形態においては、本開示における加熱部を冷媒熱交換器12及び高温側熱媒体回路20等で構成した場合について説明したが、この態様に限定されるものではない。即ち、第3実施形態、第4実施形態のように、本開示における加熱部を室内凝縮器12a及び室外熱交換器12bによって構成した場合においても、内部熱交換器19を配置することも可能である。
(2) Also, in the fifth and sixth embodiments described above, the heating unit in the present disclosure is configured with the refrigerant heat exchanger 12 and the high temperature side heat medium circuit 20 etc. It is not limited. That is, as in the third and fourth embodiments, even when the heating unit in the present disclosure is configured by the indoor condenser 12a and the outdoor heat exchanger 12b, the internal heat exchanger 19 can be disposed is there.
(3)そして、上述した実施形態におけるサイクル構成と、室外蒸発器18に対して高圧冷媒による熱を導入する構成との組み合わせは適宜変更することができる。
(3) The combination of the cycle configuration in the above-described embodiment and the configuration for introducing heat from the high-pressure refrigerant to the outdoor evaporator 18 can be changed as appropriate.
具体的には、高温側ラジエータ23で放熱された熱を伝達する構成としては、第1実施形態においては、図3に示す複数の伝熱フィン31を用いた構成を採用し、第2実施形態では、図5に示す外気ファン30により送風される外気を用いた構成を採用している。
Specifically, as the configuration for transmitting the heat radiated by the high temperature side radiator 23, in the first embodiment, a configuration using a plurality of heat transfer fins 31 shown in FIG. 3 is adopted, and the second embodiment In this case, the configuration using the outside air blown by the outside air fan 30 shown in FIG. 5 is employed.
しかしながら、高温側ラジエータ23で放熱された熱を伝達する構成の組み合わせは、この組み合わせに限定されるものではない。即ち、第1実施形態に係るサイクル構成に対して、図5に示す構成を採用しても良いし、第2実施形態に係るサイクル構成に対して、図3に示す構成を採用しても良い。
However, the combination of the configuration for transmitting the heat radiated by the high temperature side radiator 23 is not limited to this combination. That is, the configuration shown in FIG. 5 may be adopted for the cycle configuration according to the first embodiment, and the configuration shown in FIG. 3 may be adopted for the cycle configuration according to the second embodiment. .
(4)同様に、室外熱交換器12bにて放熱された熱を伝達する構成と、サイクル構成との組み合わせについても適宜変更することができる。具体的には、第3実施形態においては、図7に示す外気ファン30により送風される外気を用いた構成を採用し、第4実施形態においては、図9に示す複数の伝熱フィン31を用いた構成としている。この点、第3実施形態に係るサイクル構成に対して、図9に示す構成を採用しても良いし、第4実施形態に係るサイクル構成に対して、図7に示す構成を採用しても良い。
(4) Similarly, the combination of the configuration for transmitting the heat radiated by the outdoor heat exchanger 12b and the cycle configuration can be appropriately changed. Specifically, in the third embodiment, a configuration using the outside air blown by the outside air fan 30 shown in FIG. 7 is adopted, and in the fourth embodiment, the plurality of heat transfer fins 31 shown in FIG. It is considered to be the configuration used. In this respect, the configuration shown in FIG. 9 may be adopted to the cycle configuration according to the third embodiment, or even if the configuration shown in FIG. 7 is adopted to the cycle configuration according to the fourth embodiment. good.
(5)そして、上述した実施形態においては、外気を介して熱を伝達させて、室外蒸発器18の着霜の抑制や除霜を行う際に、室外蒸発器18が外気の空気流れに関して、室外熱交換器12b又は高温側ラジエータ23の下流側に位置していればよい。
(5) And, in the embodiment described above, when heat is transmitted through the outside air to suppress frost formation or defrosting of the outdoor evaporator 18, the outdoor evaporator 18 relates to the air flow of the outside air, It may be located downstream of the outdoor heat exchanger 12 b or the high temperature side radiator 23.
即ち、通常時には、室外熱交換器12b又は高温側ラジエータ23の上流側に室内蒸発器16が位置するように送風し、着霜の抑制や除霜を行う際には、外気ファン30による送風方向を逆にするように構成してもよい。この場合における送風方向の逆転は、外気ファン30(例えば、軸流ファン)における羽根車の回転を逆方向にしてもよいし、複数台の送風機によって実現してもよい。
That is, at the time of normal operation, air is blown so that the indoor evaporator 16 is positioned on the upstream side of the outdoor heat exchanger 12 b or the high temperature side radiator 23, and frost formation is suppressed or defrosted. May be configured to be reversed. In this case, the reverse of the blowing direction may be achieved by reversing the rotation of the impeller in the outside air fan 30 (for example, an axial fan) or may be realized by a plurality of fans.
(6)又、上述した各実施形態においては、冷凍サイクル装置10にて低圧冷媒が導入される熱交換器として、冷却用吸熱器である室内蒸発器16と加熱用吸熱器である室外蒸発器18とを備える構成を挙げていたが、この態様に限定されるものではない。例えば、冷却用の熱媒体を冷却する為のチラーや、当該電気自動車の後部座席に対する空調に用いられるリアエバポレータを、上述した室内蒸発器16及び室外蒸発器18に対して並列に接続した構成とすることも可能である。
(6) Moreover, in each embodiment mentioned above, the indoor evaporator 16 which is a heat sink for cooling, and the outdoor evaporator which is a heat sink for heating as a heat exchanger with which a low pressure refrigerant is introduce | transduced by the refrigerating-cycle apparatus 10 And 18 have been described, but the present invention is not limited to this aspect. For example, a chiller for cooling the heat medium for cooling, and a rear evaporator used for air conditioning of the rear seat of the electric vehicle are connected in parallel to the indoor evaporator 16 and the outdoor evaporator 18 described above It is also possible.
(7)そして、上述した第2、4、6実施形態においては、暖房モード時に室内蒸発器16における熱交換(即ち、送風空気の冷却)を抑制する為に、バイパス流路16a及び三方弁16bを配置して、室内蒸発器16を迂回させて冷媒を流す構成であったが、この態様に限定されるものではない。
(7) In the second, fourth, and sixth embodiments described above, the bypass flow passage 16a and the three-way valve 16b are used to suppress heat exchange (that is, cooling of the blowing air) in the indoor evaporator 16 in the heating mode. In the configuration, the indoor evaporator 16 is bypassed to flow the refrigerant, but the invention is not limited to this aspect.
室内蒸発器16における熱交換を防止することができればよく、送風空気の流路を切り替えて、送風空気が室内蒸発器16を迂回するように構成しても良い。具体的には、送風機52と室内蒸発器16の間に開閉可能なシャッター装置を配置すると共に、ケーシング51にて室内蒸発器16を迂回するバイパス流路を形成しても良い。
As long as heat exchange in theindoor evaporator 16 can be prevented, the flow path of the blown air may be switched so that the blown air bypasses the indoor evaporator 16. Specifically, a shutter device that can be opened and closed can be disposed between the blower 52 and the indoor evaporator 16, and the casing 51 can form a bypass flow passage that bypasses the indoor evaporator 16.
As long as heat exchange in the
Claims (14)
- 冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部(12、12a、12b、20)と、
前記加熱部から流出した高圧冷媒の流れを分岐する分岐部(14a)と、
前記分岐部における一方の冷媒流出口から流出した冷媒を減圧させる冷却用減圧部(15a)と、
前記冷却用減圧部にて減圧された冷媒を前記熱交換対象流体と熱交換させて蒸発させる冷却用吸熱器(16)と、
前記分岐部における他方の冷媒流出口から流出した冷媒を減圧させる加熱用減圧部(15b)と、
前記加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器(18)と、
前記冷却用吸熱器へ冷媒を流入させる冷媒回路と、前記加熱用吸熱器へ冷媒を流入させる冷媒回路とを切り替える回路切替部(60b)と、を有し、
前記回路切替部は、前記熱交換対象流体を冷却する冷却モードでは、前記冷却用吸熱器にて冷媒を熱交換させる冷媒回路に切り替え、前記熱交換対象流体を加熱する加熱モードでは、前記加熱用吸熱器にて冷媒を熱交換させる冷媒回路に切り替える冷凍サイクル装置。 A compressor (11) that compresses and discharges a refrigerant;
A heating unit (12, 12a, 12b, 20) that heats a fluid to be heat-exchanged by using heat of the refrigerant discharged from the compressor as a heat source;
A branch portion (14a) for branching the flow of the high pressure refrigerant flowing out of the heating portion;
A cooling pressure reducing portion (15a) for reducing the pressure of the refrigerant flowing out from one of the refrigerant outlets in the branch portion;
A cooling heat absorber (16) which causes the refrigerant decompressed by the cooling decompression unit to exchange heat with the heat exchange target fluid and evaporate the refrigerant;
A heating pressure reducing portion (15b) for reducing the pressure of the refrigerant flowing out from the other refrigerant outlet in the branch portion;
A heat absorber (18) for heating the refrigerant reduced in pressure by the heating pressure reducing portion by heat exchange with the outside air as a heat source fluid;
It has a refrigerant circuit which makes a refrigerant flow into the heat sink for cooling, and a circuit switching part (60b) which switches a refrigerant circuit which makes a refrigerant flow into the heat absorption sink.
The circuit switching unit switches to a refrigerant circuit that causes the refrigerant to perform heat exchange with the cooling heat absorber in a cooling mode for cooling the heat exchange target fluid, and for the heating in a heating mode in which the heat exchange target fluid is heated. A refrigeration cycle device that switches to a refrigerant circuit that exchanges heat with refrigerant using a heat absorber. - 冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒の有する熱を熱源として、熱交換対象流体を加熱する加熱部(12、12a、12b、20)と、
前記加熱部から流出した冷媒を減圧させる冷却用減圧部(15a)と、
前記冷却用減圧部にて減圧された冷媒と前記熱交換対象流体とを熱交換させて蒸発させる冷却用吸熱器(16)と、
前記冷却用吸熱器から流入した冷媒を減圧させる加熱用減圧部(15b)と、
前記加熱用減圧部にて減圧された冷媒を、熱源流体としての外気と熱交換させて蒸発させる加熱用吸熱器(18)と、
前記冷却用吸熱器にて冷媒を熱交換させる冷媒回路と、前記加熱用吸熱器にて冷媒を熱交換させる冷媒回路とを切り替える回路切替部(60b)と、を有し、
前記回路切替部は、前記熱交換対象流体を冷却する冷却モードでは、前記冷却用吸熱器にて冷媒を熱交換させる冷媒回路に切り替え、前記熱交換対象流体を加熱する加熱モードでは、前記加熱用吸熱器にて冷媒を熱交換させる冷媒回路に切り替える冷凍サイクル装置。 A compressor (11) that compresses and discharges a refrigerant;
A heating unit (12, 12a, 12b, 20) that heats a fluid to be heat-exchanged by using heat of the refrigerant discharged from the compressor as a heat source;
A cooling decompression unit (15a) for decompressing the refrigerant flowing out of the heating unit;
A heat sink (16) for heat exchange between the refrigerant reduced in pressure by the cooling pressure reduction unit and the heat exchange target fluid;
A heating pressure reducing section (15b) for reducing the pressure of the refrigerant flowing from the cooling heat absorber;
A heat absorber (18) for heating the refrigerant reduced in pressure by the heating pressure reducing portion by heat exchange with the outside air as a heat source fluid;
It has a refrigerant circuit which heat-exchanges a refrigerant with the heat sink for cooling, and a circuit switching part (60b) which changes over to a refrigerant circuit which heat-exchanges a refrigerant with the heat absorption heater.
The circuit switching unit switches to a refrigerant circuit that causes the refrigerant to perform heat exchange with the cooling heat absorber in a cooling mode for cooling the heat exchange target fluid, and for the heating in a heating mode in which the heat exchange target fluid is heated. A refrigeration cycle device that switches to a refrigerant circuit that exchanges heat with refrigerant using a heat absorber. - 前記冷却モードにおいて、前記冷却用吸熱器で吸熱された熱は、前記加熱部にて外気へ放熱される請求項1又は2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the heat absorbed by the cooling heat absorber in the cooling mode is dissipated to the outside air by the heating unit.
- 前記加熱部は、高温側熱媒体回路(20)を循環する高温側熱媒体に対して、前記圧縮機から吐出された冷媒の有する熱を放熱させて前記高温側熱媒体を加熱する高温側水-冷媒熱交換器(12)を有し、
前記高温側熱媒体回路には、前記水-冷媒熱交換器にて加熱された前記高温側熱媒体を熱源として前記送風空気を加熱するヒータコア(22)が配置されている請求項1ないし3の何れか1つに記載の冷凍サイクル装置。 The heating unit radiates the heat of the refrigerant discharged from the compressor to the high temperature side heat medium circulating the high temperature side heat medium circuit (20), and heats the high temperature side heat medium by the high temperature side water -With a refrigerant heat exchanger (12)
The heater core (22) for heating the blowing air using the high temperature side heat medium heated by the water-refrigerant heat exchanger as a heat source is disposed in the high temperature side heat medium circuit. The refrigeration cycle apparatus according to any one. - 前記高温側熱媒体回路には、前記高温側熱媒体の有する熱を外気に放熱させる高温側ラジエータ(23)が配置されている請求項4に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 4, wherein a high temperature side radiator (23) for dissipating the heat of the high temperature side heat medium to the outside air is disposed in the high temperature side heat medium circuit.
- 前記高温側ラジエータを流通する前記高温側熱媒体の有する熱を、前記加熱用吸熱器に対して伝達可能に構成されている請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein the heat of the high temperature side heat medium flowing through the high temperature side radiator can be transmitted to the heating heat absorber.
- 前記加熱用吸熱器は、当該加熱用吸熱器を流通する冷媒と前記高温側ラジエータを流通する前記高温側熱媒体との間で伝熱可能に構成された伝熱部材(31)によって、前記高温側ラジエータに対して接続されている請求項6に記載の冷凍サイクル装置。 The heating heat absorber is a high temperature heat transfer member (31) configured to be able to transfer heat between the refrigerant flowing through the heating heat absorber and the high temperature side heat medium flowing through the high temperature side radiator. The refrigeration cycle apparatus according to claim 6, connected to the side radiator.
- 前記加熱用吸熱器は、当該加熱用吸熱器及び前記高温側ラジエータを通過する外気の流れ方向(W)に関して、前記高温側ラジエータの下流側に配置されている請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6, wherein the heating heat absorber is disposed downstream of the high temperature radiator with respect to the flow direction (W) of the outside air passing through the heating heat absorber and the high temperature radiator. .
- 前記加熱部は、前記圧縮機から吐出された冷媒の有する熱を前記熱交換対象流体へ放熱させて前記熱交換対象流体を加熱する室内凝縮器(12a)を有している請求項1ないし3の何れか1つに記載の冷凍サイクル装置。 The heating unit includes an indoor condenser (12a) for radiating heat of the refrigerant discharged from the compressor to the heat exchange fluid to heat the heat exchange fluid. The refrigeration cycle apparatus according to any one of the above.
- 前記加熱部は、前記圧縮機から吐出された冷媒の有する熱を外気に放熱させる室外放熱器(12b)を有している請求項9に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 9, wherein the heating unit includes an outdoor radiator (12b) which radiates the heat of the refrigerant discharged from the compressor to the outside air.
- 前記室外放熱器を流通する冷媒の有する熱を、前記加熱用吸熱器に対して伝達可能に構成されている請求項10に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 10, wherein the heat of the refrigerant flowing through the outdoor radiator can be transmitted to the heating heat absorber.
- 前記加熱用吸熱器は、当該加熱用吸熱器を流通する冷媒と前記室外放熱器を流通する前記冷媒との間で伝熱可能に構成された伝熱部材(31)によって、前記高温側ラジエータに対して接続されている請求項11に記載の冷凍サイクル装置。 The heat absorber for heat is provided on the high temperature side radiator by a heat transfer member (31) configured to be able to transfer heat between the refrigerant flowing through the heat absorber for heating and the refrigerant flowing through the outdoor radiator. The refrigeration cycle apparatus according to claim 11, which is connected to one another.
- 前記加熱用吸熱器は、当該加熱用吸熱器及び前記室外放熱器を通過する外気の流れ方向(W)に関して、前記室外放熱器の下流側に配置されている請求項11に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 11, wherein the heating heat absorber is disposed downstream of the outdoor radiator with respect to the flow direction (W) of the outside air passing through the heating heat absorber and the outdoor radiator. .
- 前記加熱部から流出した高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換させる内部熱交換器(19)を有する請求項1ないし13の何れか1つに記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to any one of claims 1 to 13, further comprising an internal heat exchanger (19) that exchanges heat between the high pressure refrigerant flowing out of the heating unit and the low pressure refrigerant drawn into the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880054763.0A CN111033148A (en) | 2017-09-28 | 2018-08-27 | Refrigeration cycle device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017187648A JP2019060580A (en) | 2017-09-28 | 2017-09-28 | Refrigeration cycle device |
JP2017-187648 | 2017-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019065039A1 true WO2019065039A1 (en) | 2019-04-04 |
Family
ID=65901712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031580 WO2019065039A1 (en) | 2017-09-28 | 2018-08-27 | Refrigeration cycle device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019060580A (en) |
CN (1) | CN111033148A (en) |
WO (1) | WO2019065039A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210291626A1 (en) * | 2018-12-26 | 2021-09-23 | Denso Corporation | Refrigeration cycle device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7392296B2 (en) * | 2019-06-10 | 2023-12-06 | 株式会社デンソー | Refrigeration cycle equipment |
JP7307022B2 (en) * | 2020-03-27 | 2023-07-11 | トヨタ自動車株式会社 | Thermal management device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005289152A (en) * | 2004-03-31 | 2005-10-20 | Calsonic Kansei Corp | Air-conditioning control device |
JP2009063230A (en) * | 2007-09-06 | 2009-03-26 | Denso Corp | Refrigerating cycle device and air conditioning device for vehicle |
JP2010078258A (en) * | 2008-09-26 | 2010-04-08 | Denso Corp | Refrigerating cycle device |
JP2010266118A (en) * | 2009-05-14 | 2010-11-25 | Orion Mach Co Ltd | Temperature regulation apparatus |
JP2013023210A (en) * | 2011-07-21 | 2013-02-04 | Hyundai Motor Co Ltd | Vehicular heat pump system, and method of controlling the same |
WO2016059791A1 (en) * | 2014-10-17 | 2016-04-21 | パナソニックIpマネジメント株式会社 | Air conditioning device for vehicle |
JP2017159814A (en) * | 2016-03-10 | 2017-09-14 | 株式会社デンソー | Air conditioner |
WO2017154602A1 (en) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | Refrigeration cycle device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3736847B2 (en) * | 2002-12-06 | 2006-01-18 | 松下電器産業株式会社 | Air conditioning apparatus and air conditioning method |
FR2976653B1 (en) * | 2011-06-16 | 2018-05-25 | Valeo Systemes Thermiques | REFRIGERANT FLUID CIRCUIT AND METHOD OF CONTROLLING SUCH CIRCUIT. |
WO2014136450A1 (en) * | 2013-03-06 | 2014-09-12 | パナソニック株式会社 | Vehicle air conditioning device |
JP6493370B2 (en) * | 2016-01-25 | 2019-04-03 | 株式会社デンソー | Heat pump system |
-
2017
- 2017-09-28 JP JP2017187648A patent/JP2019060580A/en active Pending
-
2018
- 2018-08-27 CN CN201880054763.0A patent/CN111033148A/en active Pending
- 2018-08-27 WO PCT/JP2018/031580 patent/WO2019065039A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005289152A (en) * | 2004-03-31 | 2005-10-20 | Calsonic Kansei Corp | Air-conditioning control device |
JP2009063230A (en) * | 2007-09-06 | 2009-03-26 | Denso Corp | Refrigerating cycle device and air conditioning device for vehicle |
JP2010078258A (en) * | 2008-09-26 | 2010-04-08 | Denso Corp | Refrigerating cycle device |
JP2010266118A (en) * | 2009-05-14 | 2010-11-25 | Orion Mach Co Ltd | Temperature regulation apparatus |
JP2013023210A (en) * | 2011-07-21 | 2013-02-04 | Hyundai Motor Co Ltd | Vehicular heat pump system, and method of controlling the same |
WO2016059791A1 (en) * | 2014-10-17 | 2016-04-21 | パナソニックIpマネジメント株式会社 | Air conditioning device for vehicle |
WO2017154602A1 (en) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | Refrigeration cycle device |
JP2017159814A (en) * | 2016-03-10 | 2017-09-14 | 株式会社デンソー | Air conditioner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210291626A1 (en) * | 2018-12-26 | 2021-09-23 | Denso Corporation | Refrigeration cycle device |
US11897316B2 (en) * | 2018-12-26 | 2024-02-13 | Denso Corporation | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP2019060580A (en) | 2019-04-18 |
CN111033148A (en) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6794964B2 (en) | Refrigeration cycle equipment | |
JP6189098B2 (en) | Heat pump air conditioning system for vehicles | |
CN110997369B (en) | Refrigeration cycle device | |
JPWO2017217099A1 (en) | Refrigeration cycle equipment | |
CN110799365B (en) | Air conditioner | |
WO2016203903A1 (en) | Air conditioner for vehicle | |
JP2011140291A (en) | Air conditioner for vehicle | |
JP2016011760A (en) | Refrigeration cycle equipment | |
WO2017022512A1 (en) | Air conditioning device for vehicle | |
WO2022181110A1 (en) | Air conditioning device | |
WO2013145537A1 (en) | Air conditioner device for vehicle | |
JP7163799B2 (en) | refrigeration cycle equipment | |
CN113423596A (en) | Refrigeration cycle device | |
JP2018091536A (en) | Refrigeration cycle device | |
WO2019031221A1 (en) | Refrigeration cycle device | |
JP6922856B2 (en) | Refrigeration cycle equipment | |
CN112440665A (en) | Air conditioner for vehicle | |
JP2019217947A (en) | Air conditioner | |
WO2019065039A1 (en) | Refrigeration cycle device | |
WO2020250763A1 (en) | Refrigeration cycle device | |
JP6375796B2 (en) | Refrigeration cycle equipment | |
WO2022163712A1 (en) | Temperature control system | |
JP7468237B2 (en) | Refrigeration Cycle Equipment | |
JP2016053435A (en) | Air conditioner | |
WO2023042588A1 (en) | Refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18862803 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18862803 Country of ref document: EP Kind code of ref document: A1 |