JP2021128289A - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- JP2021128289A JP2021128289A JP2020023824A JP2020023824A JP2021128289A JP 2021128289 A JP2021128289 A JP 2021128289A JP 2020023824 A JP2020023824 A JP 2020023824A JP 2020023824 A JP2020023824 A JP 2020023824A JP 2021128289 A JP2021128289 A JP 2021128289A
- Authority
- JP
- Japan
- Prior art keywords
- gradation
- liquid crystal
- display device
- crystal display
- target line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 230000009466 transformation Effects 0.000 claims description 48
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 1
Images
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
特許文献1には、複数の画素がマトリクス状に並ぶ液晶表示装置において、複数の画素に与える電圧の極性を、複数の画素行ごとに反転させる構成が開示されている。
特許文献1の構成(従来構成)では、表示部全域に配される複数のデータ信号線の電位が同時に、マイナスからプラス、あるいはプラスからマイナスに変化するため、共通電極の電位(Vcom)および補助容量配線の電位に大きなリップルが生じ、表示品位が低下するという問題がある。 In the configuration of Patent Document 1 (conventional configuration), the potentials of a plurality of data signal lines arranged over the entire display unit change from negative to positive or positive to negative at the same time, so that the potential (Vcom) of the common electrode and the auxiliary There is a problem that a large ripple occurs in the potential of the capacitive wiring and the display quality deteriorates.
本発明の一態様に係る表示装置は、複数のデータ信号線、複数の走査信号線、および複数の画素を含む表示部と、前記表示部を駆動する駆動部と、制御部とを備える液晶表示装置であって、前記表示部には、それぞれが複数の画素からなる複数の行が含まれ、前記制御部は、対象行の入力階調を、階調電圧特性が線形となる線形変換階調に変換する第1工程と、前記対象行とその前行との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が閾値を超える場合には、対象行の線形変換階調の少なくとも1つを補正し、その補正結果に基づいて対象行の出力階調を生成する第2工程とを行い、前記駆動部は、対象行の出力階調に基づいて、対象行の複数の画素に電圧を供給する。 The display device according to one aspect of the present invention is a liquid crystal display including a display unit including a plurality of data signal lines, a plurality of scanning signal lines, and a plurality of pixels, a drive unit for driving the display unit, and a control unit. In the device, the display unit includes a plurality of lines each consisting of a plurality of pixels, and the control unit sets the input gradation of the target line to a linear conversion gradation in which the gradation voltage characteristic is linear. In the first step of converting to The second step of correcting at least one of the conversion gradations and generating the output gradation of the target line based on the correction result is performed, and the drive unit performs the target line based on the output gradation of the target line. Supply voltage to multiple pixels of.
本発明の一態様によれば、共通電極の電位等に生じるリップルを抑えることができ、従来構成よりも表示品位を高めることができる。 According to one aspect of the present invention, ripples generated in the potential of the common electrode and the like can be suppressed, and the display quality can be improved as compared with the conventional configuration.
図1は、本実施形態に係る液晶表示装置の構成を示す平面図である。図1に示すように、本実施形態に係る液晶表示装置3は、複数の画素を含み、映像を表示する表示部20と、表示部20を駆動する駆動部30と、プロセッサ42とメモリ44を含み、映像データを受けて駆動部30を制御する制御部40とを備える。
FIG. 1 is a plan view showing a configuration of a liquid crystal display device according to the present embodiment. As shown in FIG. 1, the liquid
図2(a)は表示部の構成を示す模式図であり、図2(b)は画素の構成を示す回路図である。表示部20には、複数のデータ信号線S0〜S10と、複数の走査信号線G1〜G4と、複数の画素PXが含まれる。画素行H1〜H3それぞれは、行方向に並ぶ複数の画素PXで構成される。
FIG. 2A is a schematic diagram showing the configuration of the display unit, and FIG. 2B is a circuit diagram showing the configuration of pixels. The
例えば、図2(b)に示すように、画素行H1の1つの画素PXは、画素電極PEを含み、画素電極PEは、トランジスタTrを介して走査信号線G1およびデータ信号線S0に接続され、補助容量配線CS1と容量Ccsを形成するとともに、共通電極COMと容量Clcを形成する。同一画素行の複数の画素は、同一の走査信号線に接続され、異なるデータ信号線に接続される。 For example, as shown in FIG. 2B, one pixel PX of the pixel row H1 includes the pixel electrode PE, and the pixel electrode PE is connected to the scanning signal line G1 and the data signal line S0 via the transistor Tr. , Auxiliary capacitance wiring CS1 and capacitance Ccs are formed, and common electrode COM and capacitance Clc are formed. A plurality of pixels in the same pixel line are connected to the same scanning signal line and are connected to different data signal lines.
図3は、制御部の動作を示すフローチャートである。図4は、入力階調−電圧特性(曲線)と、線形変換階調−電圧特性(直線)とを示すグラフである。図3に示すように、図1の制御部40は、対象となる画素行(以下、対象行と表記)の入力階調を、階調電圧特性が線形となる線形変換階調に変換する第1工程(ステップSt1)と、対象行とその前行との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が閾値を超える場合には、対象行の線形変換階調の少なくとも1つを補正し、その補正結果に基づいて対象行の出力階調を生成する第2工程(ステップSt2〜St6)とを行い、出力階調を駆動部30に出力する(ステップSt7)。
FIG. 3 is a flowchart showing the operation of the control unit. FIG. 4 is a graph showing an input gradation-voltage characteristic (curve) and a linear conversion gradation-voltage characteristic (straight line). As shown in FIG. 3, the
ステップSt1では、外部から入力される映像データおよび図4の線形変換階調-電圧特性Ycに基づき、対象行の入力階調から線形変換階調(正または負の極性あり)を算出する。例えば、入力階調0に対しては線形変換階調0を算出し、入力階調255に対しては線形変換階調+255または−255を算出し、入力階調200に対しては線形変換階調+128または−128を算出する。なお、ステップSt1では、オーバーシュート等の前処理を施した入力階調を用いてもよい。
In step St1, the linear conversion gradation (with positive or negative polarity) is calculated from the input gradation of the target line based on the video data input from the outside and the linear conversion gradation-voltage characteristic Yc in FIG. For example, a
ステップSt2では、対象行とその前行とを比較し、線形変換階調の差(列方向に隣り合う2つの画素間の線形変換階調の差)の総和を算出する。 In step St2, the target row and the previous row are compared, and the total sum of the differences in the linear transformation gradations (differences in the linear transformation gradations between two adjacent pixels in the column direction) is calculated.
ステップSt3では、差の総和が閾値を超えるか否かを判定する。ステップSt3でNOであれば、ステップSt4に進み、対象行の線形変換階調を、補正することなく、図4の入力階調/出力階調-電圧特性Yaを用いて再変換することで出力階調を生成する。 In step St3, it is determined whether or not the sum of the differences exceeds the threshold value. If NO in step St3, the process proceeds to step St4, and the linear conversion gradation of the target line is output by re-conversion using the input gradation / output gradation-voltage characteristic Ya in FIG. 4 without correction. Generate gradation.
ステップSt3でYESであれば(閾値を超える場合)、ステップSt5に進み、差の総和が低減するように、対象行の線形変換階調の少なくとも1つを補正する。ここでは、階調絶対値(階調の大きさ)を変えずに極性だけを変えてもよいし、極性を変えずに階調絶対値だけを変えてもよいし、極性および階調絶対値を変えてもよい(後述)。 If YES in step St3 (when the threshold is exceeded), the process proceeds to step St5, and at least one of the linear transformation gradations of the target row is corrected so that the sum of the differences is reduced. Here, only the polarity may be changed without changing the absolute gradation value (magnitude of gradation), only the absolute gradation value may be changed without changing the polarity, and the polarity and the absolute gradation value may be changed. May be changed (described later).
ステップSt5に続くステップSt6では、補正後の対象行の線形変換階調を、図4の入力階調/出力階調-電圧特性Yaを用いて再変換することで出力階調を生成する。 In step St6 following step St5, the output gradation is generated by reconverting the linear conversion gradation of the corrected target line using the input gradation / output gradation-voltage characteristic Ya of FIG.
ステップSt7では、ステップSt4またはステップSt6で生成した出力階調を駆動部30(データ信号線を駆動するソースドライバ)に出力する。 In step St7, the output gradation generated in step St4 or step St6 is output to the drive unit 30 (source driver for driving the data signal line).
駆動部30は、対象行の出力階調に基づいて、対象行の複数の画素PXに電圧を供給する。具体的には、対応するデータ信号線(S0〜S10)およびトランジスタTrを介して、画素PXの画素電極PEにアナログの信号電圧を書き込む。
The
〔実施例1〕
図5は、実施例1における線形変換階調の補正方法を示す表である。実施例1では、横ライン反転駆動(1行ごとに極性を反転させる駆動)をベースとする。よって、図4のステップSt1で得られる対象行(H2/H3)の線形変換階調は同一の極性である。
対象行H2については、データ信号線S0〜S3・S10に接続する画素の線形変換階調が−128であり、データ信号線S4〜S9に接続する画素の線形変換階調が−255である。対象行H2の前行H1については、データ信号線S0〜S10に接続する画素の線形変換階調が+128である。
[Example 1]
FIG. 5 is a table showing a method for correcting linear transformation gradation in the first embodiment. In the first embodiment, the horizontal line inversion drive (drive that inverts the polarity for each line) is used as a base. Therefore, the linear transformation gradations of the target rows (H2 / H3) obtained in step St1 of FIG. 4 have the same polarity.
For the target line H2, the linear conversion gradation of the pixels connected to the data signal lines S0 to S3 and S10 is −128, and the linear conversion gradation of the pixels connected to the data signal lines S4 to S9 is -255. For the previous row H1 of the target row H2, the linear conversion gradation of the pixels connected to the data signal lines S0 to S10 is +128.
この場合、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、−256×5−383×6=−3578となる。なお、この総和に応じた大きさのリップルが、共通電極COMの電位(Vcom)および補助容量配線CS2の電位に生じる。 In this case, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is -256 × 5-383 × 6 = −3578. It should be noted that a ripple having a magnitude corresponding to this sum is generated in the potential (Vcom) of the common electrode COM and the potential of the auxiliary capacitance wiring CS2.
ここでは、差の総和(−3578)が閾値(−3000)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。ここでは、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、−255から+255に補正する(すなわち、階調絶対値を変えずに極性だけを変える)。補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が−518となり、閾値(−3000)内におさまるため、対象行H2に対応する水平走査期間(書き込み期間)におけるリップルの発生を効果的に抑えることができる。 Here, since the sum of the differences (-3578) exceeds the threshold value (-3000), one or more of the linear transformation gradations of the target row H2 are corrected. Here, the linear conversion gradations (6) of the pixels connected to the data signal lines S4 to S9 are corrected from -255 to +255 (that is, only the polarity is changed without changing the absolute gradation value). After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear conversion gradations between the two adjacent pixels in the column direction is -518, which is within the threshold value (-3000). It is possible to effectively suppress the occurrence of ripples in the horizontal scanning period (writing period) corresponding to.
対象行H3については、データ信号線S0〜S3・S10に接続する画素の線形変換階調が+128であり、データ信号線S4〜S9に接続する画素の線形変換階調が+255である。対象行H3の前行H2(補正前の線形変換階調)については、データ信号線S0〜S3・S10に接続する画素の線形変換階調が−128であり、データ信号線S4〜S9に接続する画素の線形変換階調が−255である。 For the target line H3, the linear conversion gradation of the pixels connected to the data signal lines S0 to S3 and S10 is +128, and the linear conversion gradation of the pixels connected to the data signal lines S4 to S9 is +255. Regarding the previous line H2 (linear conversion gradation before correction) of the target line H3, the linear conversion gradation of the pixels connected to the data signal lines S0 to S3 and S10 is -128, and the data signal lines S4 to S9 are connected. The linear conversion gradation of the pixels to be processed is -255.
この場合、対象行H3とその前行H2との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、+256×5+510×6=+4340となる。この比較において、前行H2の補正前の線形変換階調を用いるのは、メモリの増大を抑え、かつベースである横ライン反転(一行ごとに極性反転する)駆動から大きく外れることを防ぐためである。もっともこれに限定されることはなく、対象行H3とその前行H2との比較において、前行H2の補正後の線形変換階調を用いてもよい。 In this case, in the comparison between the target row H3 and the previous row H2, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is +256 × 5 + 510 × 6 = + 4340. In this comparison, the linear conversion gradation before the correction of the previous line H2 is used in order to suppress the increase in memory and prevent the drive from being largely deviated from the base horizontal line inversion (polarity inversion for each line) drive. be. However, the present invention is not limited to this, and the corrected linear conversion gradation of the previous row H2 may be used in the comparison between the target row H3 and its preceding row H2.
ここでは、差の総和(+4340)が閾値(−3000〜+3000)を超えるため、対象行H3の線形変換階調の1つ以上を補正する。ここでは、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、+255から−255に補正する(すなわち、階調絶対値を変えずに極性だけを変える)。補正後においては、対象行H3および前行H2につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が−1780となり、閾値(−3000)内におさまるため、対象行H3に対応する水平走査期間(書き込み期間)におけるリップルの発生を効果的に抑えることができる。 Here, since the total difference (+4340) exceeds the threshold value (−3000 to +3000), one or more of the linear transformation gradations of the target row H3 are corrected. Here, the linear conversion gradations (6 pieces) of the pixels connected to the data signal lines S4 to S9 are corrected from +255 to -255 (that is, only the polarity is changed without changing the absolute gradation value). After the correction, for the target row H3 and the previous row H2, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is -1780, which is within the threshold value (-3000). It is possible to effectively suppress the occurrence of ripples in the horizontal scanning period (writing period) corresponding to.
図6は、実施例1の効果を示す模式図である。補正前では、共通電極の電位Vcom等に生じる大きなリップルに起因して、図6(a)のような、高輝度領域(例えば、白領域)両側のグレーゾーンが暗くなる現象が生じるが、補正後では、リップルが抑えられることで、図6(b)のように、高輝度領域の両側のグレーゾーンが暗くなる現象がほぼ解消される。 FIG. 6 is a schematic view showing the effect of the first embodiment. Before the correction, the gray zones on both sides of the high-luminance region (for example, the white region) become dark as shown in FIG. 6A due to the large ripple generated in the potential Vcom of the common electrode. Later, by suppressing the ripple, the phenomenon that the gray zones on both sides of the high-luminance region become dark as shown in FIG. 6B is almost eliminated.
図7は、実施例1における線形変換階調の別の補正方法を示す表である。図7では、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、−256×5−383×6=−3578となる。ここでは、差の総和(−3578)が閾値(−3000)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。具体的には、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、−255から−230に補正し(すなわち、極性を変えずに階調絶対値だけを変える)、データ信号線S0〜S3・S10に接続する画素の線形変換階調(5個)を、−128から−118に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 FIG. 7 is a table showing another correction method of the linear transformation gradation in the first embodiment. In FIG. 7, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is -256 × 5-383 × 6 = −3578. .. Here, since the sum of the differences (-3578) exceeds the threshold value (-3000), one or more of the linear transformation gradations of the target row H2 are corrected. Specifically, the linear conversion gradation (6 pieces) of the pixels connected to the data signal lines S4 to S9 is corrected from -255 to -230 (that is, only the absolute gradation value is changed without changing the polarity). , The linear conversion gradation (five) of the pixels connected to the data signal lines S0 to S3 and S10 is corrected from -128 to -118 (that is, only the absolute gradation value is changed without changing the polarity).
補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が−3378となり、補正前よりも小さくなるため、対象行H2に対応する水平走査期間(書き込み期間)におけるリップルの発生を抑えることができる。 After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is -3378, which is smaller than that before the correction, and therefore corresponds to the target row H2. It is possible to suppress the occurrence of ripples during the horizontal scanning period (writing period).
また、対象行H3とその前行H2との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、+256×5+510×6=+4340となる。ここでは、差の総和(+4340)が閾値(−3000〜+3000)を超えるため、対象行H3の線形変換階調の1つ以上を補正する。具体的には、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、+255から+230に補正し(すなわち、極性を変えずに階調絶対値だけを変える)、データ信号線S0〜S3・S10に接続する画素の線形変換階調(5個)を、+128から+118に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 Further, in the comparison between the target row H3 and the previous row H2, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is +256 × 5 + 510 × 6 = + 4340. Here, since the total difference (+4340) exceeds the threshold value (−3000 to +3000), one or more of the linear transformation gradations of the target row H3 are corrected. Specifically, the linear conversion gradation (6 pieces) of the pixels connected to the data signal lines S4 to S9 is corrected from +255 to +230 (that is, only the absolute gradation value is changed without changing the polarity), and the data. The linear conversion gradation (five) of the pixels connected to the signal lines S0 to S3 and S10 is corrected from +128 to +118 (that is, only the absolute gradation value is changed without changing the polarity).
補正後においては、対象行H3および前行H2につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が+3940となり、補正前よりも小さくなるため、対象行H3に対応する水平走査期間(書き込み期間)におけるリップルの発生を抑えることができる。 After the correction, the sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is +3940 for the target row H3 and the previous row H2, which is smaller than that before the correction, and therefore corresponds to the target row H3. It is possible to suppress the occurrence of ripple during the horizontal scanning period (writing period).
図8は、実施例1における線形変換階調のさらなる別の補正方法を示す表である。図7では、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、−256×5−383×6=−3578となる。ここでは、差の総和(−3578)が閾値(−3000)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。具体的には、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、−255から+255に補正し(すなわち、階調絶対値を変えずに極性だけを変える)、データ信号線S0〜S3・S10に接続する画素の線形変換階調(5個)を、−128から−118に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 FIG. 8 is a table showing still another correction method of the linear transformation gradation in the first embodiment. In FIG. 7, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is -256 × 5-383 × 6 = −3578. .. Here, since the sum of the differences (-3578) exceeds the threshold value (-3000), one or more of the linear transformation gradations of the target row H2 are corrected. Specifically, the linear conversion gradation (6 pieces) of the pixels connected to the data signal lines S4 to S9 is corrected from -255 to +255 (that is, only the polarity is changed without changing the absolute gradation value). The linear conversion gradation (five) of the pixels connected to the data signal lines S0 to S3 and S10 is corrected from -128 to -118 (that is, only the absolute gradation value is changed without changing the polarity).
補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が−468となり、閾値内におさまるため、対象行H2に対応する水平走査期間(書き込み期間)におけるリップルの発生を効果的に抑えることができる。 After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear conversion gradations between the two adjacent pixels in the column direction is -468, which is within the threshold value. The occurrence of ripple during the scanning period (writing period) can be effectively suppressed.
また、対象行H3とその前行H2との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、+256×5+510×6=+4340となる。ここでは、差の総和(+4340)が閾値(−3000〜+3000)を超えるため、対象行H3の線形変換階調の1つ以上を補正する。具体的には、データ信号線S4〜S9に接続する画素の線形変換階調(6個)を、+255から−246に補正し(すなわち、極性および階調絶対値を変える)、データ信号線S0〜S3・S10に接続する画素の線形変換階調(5個)を、+128から+138に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 Further, in the comparison between the target row H3 and the previous row H2, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is +256 × 5 + 510 × 6 = + 4340. Here, since the total difference (+4340) exceeds the threshold value (−3000 to +3000), one or more of the linear transformation gradations of the target row H3 are corrected. Specifically, the linear conversion gradation (6 pieces) of the pixels connected to the data signal lines S4 to S9 is corrected from +255 to -246 (that is, the polarity and the absolute gradation value are changed), and the data signal line S0 The linear conversion gradations (5) of the pixels connected to ~ S3 and S10 are corrected from +128 to +138 (that is, only the absolute gradation value is changed without changing the polarity).
補正後においては、対象行H3および前行H2につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が−1672となり、閾値内におさまるため、対象行H3に対応する水平走査期間(書き込み期間)におけるリップルの発生を効果的に抑えることができる。 After the correction, for the target row H3 and the previous row H2, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is -1672, which is within the threshold value. The occurrence of ripple during the scanning period (writing period) can be effectively suppressed.
〔実施例2〕
図9(a)は実施例2における線形変換階調の補正方法を示す表であり、図9(b)は実施例2における線形変換階調の別の補正方法を示す表であり、図9(c)は実施例2における線形変換階調のさらに別の補正方法を示す表である。実施例2では、縦ライン反転駆動(1列ごとに極性を反転させる駆動)をベースとする。よって、図4のステップSt1で得られる対象行(H2)の線形変換階調は2つの極性をもつ。
[Example 2]
FIG. 9A is a table showing a correction method of the linear conversion gradation in the second embodiment, and FIG. 9B is a table showing another correction method of the linear conversion gradation in the second embodiment. (C) is a table showing still another correction method of the linear transformation gradation in the second embodiment. In the second embodiment, the vertical line inversion drive (drive that inverts the polarity for each row) is used as a base. Therefore, the linear transformation gradation of the target row (H2) obtained in step St1 of FIG. 4 has two polarities.
対象行H2については、データ信号線S0・S2・S4・S6・S8・S10に接続する画素の線形変換階調が−128であり、データ信号線S1・S3・S5・S7・S9に接続する画素の線形変換階調が+255である。対象行H2の前行H1については、データ信号線S0・S2・S4・S6・S8・S10に接続する画素の線形変換階調が−128であり、データ信号線S1・S3・S5・S7・S9に接続する画素の線形変換階調が+128である。 For the target line H2, the linear conversion gradation of the pixels connected to the data signal lines S0, S2, S4, S6, S8, and S10 is -128, and the data signal lines S1, S3, S5, S7, and S9 are connected. The linear conversion gradation of the pixels is +255. For the previous line H1 of the target line H2, the linear conversion gradation of the pixels connected to the data signal lines S0, S2, S4, S6, S8, S10 is -128, and the data signal lines S1, S3, S5, S7, and so on. The linear conversion gradation of the pixels connected to S9 is +128.
図9(a)では、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、127×5=+635となる。ここでは、差の総和(+635)が閾値(+500)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。具体的には、データ信号線S1に接続する画素の線形変換階調を、+255から−255に補正する(すなわち、階調絶対値を変えずに極性だけを変える)。 In FIG. 9A, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is 127 × 5 = + 635. Here, since the sum of the differences (+635) exceeds the threshold value (+500), one or more of the linear transformation gradations of the target row H2 are corrected. Specifically, the linear conversion gradation of the pixel connected to the data signal line S1 is corrected from +255 to -255 (that is, only the polarity is changed without changing the absolute gradation value).
補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が+125となり、閾値内におさまるため、対象行H2に対応する水平走査期間におけるリップルの発生を効果的に抑えることができる。 After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is +125, which is within the threshold value. The occurrence of ripples during the period can be effectively suppressed.
図9(b)では、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、127×5=+635となる。ここでは、差の総和(+635)が閾値(+500)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。具体的には、データ信号線S1・S3・S5・S7・S9に接続する画素の線形変換階調を、+255から+230に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 In FIG. 9B, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is 127 × 5 = + 635. Here, since the sum of the differences (+635) exceeds the threshold value (+500), one or more of the linear transformation gradations of the target row H2 are corrected. Specifically, the linear conversion gradation of the pixels connected to the data signal lines S1, S3, S5, S7, and S9 is corrected from +255 to +230 (that is, only the absolute gradation value is changed without changing the polarity). ..
補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が+510となり、補正前よりも小さくなるため、対象行H2に対応する水平走査期間におけるリップルの発生を抑えることができる。 After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is +510, which is smaller than that before the correction, and therefore corresponds to the target row H2. The occurrence of ripple during the horizontal scanning period can be suppressed.
図9(c)では、対象行H2とその前行H1との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が、127×5=+635となる。ここでは、差の総和(+635)が閾値(+500)を超えるため、対象行H2の線形変換階調の1つ以上を補正する。具体的には、データ信号線S1に接続する画素の線形変換階調を、+255から−255に補正し(すなわち、階調絶対値を変えずに極性だけを変える)、データ信号線S3・S5・S7・S9に接続する画素の線形変換階調を、+255から+240に補正する(すなわち、極性を変えずに階調絶対値だけを変える)。 In FIG. 9C, in the comparison between the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two pixels adjacent to each other in the column direction is 127 × 5 = + 635. Here, since the sum of the differences (+635) exceeds the threshold value (+500), one or more of the linear transformation gradations of the target row H2 are corrected. Specifically, the linear conversion gradation of the pixel connected to the data signal line S1 is corrected from +255 to -255 (that is, only the polarity is changed without changing the absolute gradation value), and the data signal lines S3 and S5. -Correct the linear conversion gradation of the pixels connected to S7 and S9 from +255 to +240 (that is, change only the absolute gradation value without changing the polarity).
補正後においては、対象行H2および前行H1につき、列方向に隣り合う2つの画素間の線形変換階調の差の総和が+65となり、閾値内におさまるため、対象行H2に対応する水平走査期間におけるリップルの発生を効果的に抑えることができる。 After the correction, for the target row H2 and the previous row H1, the total sum of the differences in the linear transformation gradations between the two adjacent pixels in the column direction is +65, which is within the threshold value. The occurrence of ripples during the period can be effectively suppressed.
上述の各実施形態は、例示および説明を目的とするものであり、限定を目的とするものではない。これら例示および説明に基づけば、多くの変形形態が可能になることが、当業者には明らかである。液晶表示装置3を備えるテレビジョン受像機も本実施形態に含まれる。
Each of the above embodiments is for purposes of illustration and description, not for limitation. Based on these examples and explanations, it will be apparent to those skilled in the art that many variants are possible. A television receiver including the liquid
〔まとめ〕
〔態様1〕
複数のデータ信号線、複数の走査信号線、および複数の画素を含む表示部と、前記表示部を駆動する駆動部と、制御部とを備える液晶表示装置であって、
前記表示部には、それぞれが複数の画素からなる複数の行が含まれ、
前記制御部は、対象行の入力階調を、階調電圧特性が線形となる線形変換階調に変換する第1工程と、前記対象行とその前行との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が閾値を超える場合には、対象行の線形変換階調の少なくとも1つを補正し、その補正結果に基づいて対象行の出力階調を生成する第2工程とを行い、
前記駆動部は、対象行の出力階調に基づいて、対象行の複数の画素に電圧を供給する液晶表示装置。
〔summary〕
[Aspect 1]
A liquid crystal display device including a display unit including a plurality of data signal lines, a plurality of scanning signal lines, and a plurality of pixels, a drive unit for driving the display unit, and a control unit.
The display unit includes a plurality of lines, each of which is composed of a plurality of pixels.
The control unit is adjacent to each other in the column direction in the first step of converting the input gradation of the target row into a linear conversion gradation in which the gradation voltage characteristic is linear, and in the comparison between the target row and the previous row. When the sum of the differences between the linear transformation gradations between the two pixels exceeds the threshold value, at least one of the linear transformation gradations of the target row is corrected, and the output gradation of the target row is generated based on the correction result. Perform the second step and
The drive unit is a liquid crystal display device that supplies a voltage to a plurality of pixels of the target line based on the output gradation of the target line.
〔態様2〕
前記第1工程で得られる対象行の線形変換階調は、正または負の極性を有する、例えば態様1に記載の液晶表示装置。
[Aspect 2]
The liquid crystal display device according to, for example, the first aspect, wherein the linear transformation gradation of the target line obtained in the first step has a positive or negative polarity.
〔態様3〕
対象行の線形変換階調の補正後においては、線形変換階調の差の総和が前記閾値を超えない、例えば態様1または2に記載の液晶表示装置。
[Aspect 3]
The liquid crystal display device according to, for example,
〔態様4〕
対象行の複数の画素が同一の走査信号線に接続され、
対象行の複数の画素が異なるデータ信号線に接続される、例えば態様1〜3のいずれか1つに記載の液晶表示装置。
[Aspect 4]
Multiple pixels in the target line are connected to the same scanning signal line,
The liquid crystal display device according to any one of
〔態様5〕
前記制御部は、前記第2工程において、対象行の線形変換階調の少なくとも1つの極性を変えるが、その階調絶対値は変えない、例えば態様2に記載の液晶表示装置。
[Aspect 5]
The liquid crystal display device according to, for example, the second aspect, wherein the control unit changes at least one polarity of the linear conversion gradation of the target line in the second step, but does not change the absolute value of the gradation.
〔態様6〕
前記制御部は、前記第2工程において、対象行の線形変換階調の少なくとも1つの階調絶対値は変えるが、その極性は変えない、例えば態様2に記載の液晶表示装置。
[Aspect 6]
The liquid crystal display device according to, for example, the second aspect, wherein the control unit changes at least one gradation absolute value of the linear transformation gradation of the target line in the second step, but does not change its polarity.
〔態様7〕
前記制御部は、前記第2工程において、対象行の線形変換階調の少なくとも1つの極性および階調絶対値を変える、例えば態様2に記載の液晶表示装置。
[Aspect 7]
The liquid crystal display device according to, for example, the second aspect, wherein the control unit changes at least one polarity and an absolute gradation value of the linear transformation gradation of the target line in the second step.
〔態様8〕
前記第1工程で得られる対象行の線形変換階調が同一の極性である、例えば態様2に記載の液晶表示装置。
[Aspect 8]
The liquid crystal display device according to, for example, the second aspect, wherein the linear transformation gradation of the target line obtained in the first step has the same polarity.
〔態様9〕
前記表示部は、前記複数の行に共通する共通電極を備える、例えば態様1〜7のいずれか1つに記載の液晶表示装置。
[Aspect 9]
The liquid crystal display device according to, for example, any one of
〔態様10〕
前記表示部は、前記複数の行に共通する補助容量配線を備える、例えば態様1〜7のいずれか1つに記載の液晶表示装置。
[Aspect 10]
The liquid crystal display device according to, for example, any one of
3 液晶表示装置
20 表示部
30 駆動部
40 制御部
G1〜G4 走査信号線
CS1〜CS4 補助容量配線
S0〜S10 データ信号線
H2・H3 対象行
3
Claims (10)
前記表示部には、それぞれが複数の画素からなる複数の行が含まれ、
前記制御部は、対象行の入力階調を、階調電圧特性が線形となる線形変換階調に変換する第1工程と、前記対象行とその前行との比較において、列方向に隣り合う2つの画素間の線形変換階調の差の総和が閾値を超える場合には、対象行の線形変換階調の少なくとも1つを補正し、その補正結果に基づいて対象行の出力階調を生成する第2工程とを行い、
前記駆動部は、対象行の出力階調に基づいて、対象行の複数の画素に電圧を供給する液晶表示装置。 A liquid crystal display device including a display unit including a plurality of data signal lines, a plurality of scanning signal lines, and a plurality of pixels, a drive unit for driving the display unit, and a control unit.
The display unit includes a plurality of lines, each of which is composed of a plurality of pixels.
The control unit is adjacent to each other in the column direction in the first step of converting the input gradation of the target row into a linear conversion gradation in which the gradation voltage characteristic is linear, and in the comparison between the target row and the previous row. When the sum of the differences between the linear transformation gradations between the two pixels exceeds the threshold value, at least one of the linear transformation gradations of the target row is corrected, and the output gradation of the target row is generated based on the correction result. Perform the second step and
The drive unit is a liquid crystal display device that supplies a voltage to a plurality of pixels of the target line based on the output gradation of the target line.
対象行の複数の画素が異なるデータ信号線に接続される請求項1〜3のいずれか1項に記載の液晶表示装置。 Multiple pixels in the target line are connected to the same scanning signal line,
The liquid crystal display device according to any one of claims 1 to 3, wherein a plurality of pixels of the target line are connected to different data signal lines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020023824A JP2021128289A (en) | 2020-02-14 | 2020-02-14 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020023824A JP2021128289A (en) | 2020-02-14 | 2020-02-14 | Liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021128289A true JP2021128289A (en) | 2021-09-02 |
Family
ID=77488494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020023824A Pending JP2021128289A (en) | 2020-02-14 | 2020-02-14 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021128289A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006243267A (en) * | 2005-03-02 | 2006-09-14 | Sharp Corp | Liquid crystal display device |
JP2009180825A (en) * | 2008-01-29 | 2009-08-13 | Panasonic Corp | Polarity control circuit and liquid crystal display device using the same |
JP2009230136A (en) * | 2008-03-18 | 2009-10-08 | Chi Mei Optoelectronics Corp | Liquid crystal display and method of driving the same |
US20180096662A1 (en) * | 2016-09-30 | 2018-04-05 | Lg Display Co., Ltd. | Liquid crystal display device and driving method thereof |
-
2020
- 2020-02-14 JP JP2020023824A patent/JP2021128289A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006243267A (en) * | 2005-03-02 | 2006-09-14 | Sharp Corp | Liquid crystal display device |
JP2009180825A (en) * | 2008-01-29 | 2009-08-13 | Panasonic Corp | Polarity control circuit and liquid crystal display device using the same |
JP2009230136A (en) * | 2008-03-18 | 2009-10-08 | Chi Mei Optoelectronics Corp | Liquid crystal display and method of driving the same |
US20180096662A1 (en) * | 2016-09-30 | 2018-04-05 | Lg Display Co., Ltd. | Liquid crystal display device and driving method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5173342B2 (en) | Display device | |
US9916803B2 (en) | Display device, method for controlling display device, and method for driving display device | |
KR100915234B1 (en) | Driving apparatus of liquid crystal display for varying limits selecting gray voltages and method thereof | |
CN102737600B (en) | Display device | |
WO2010087051A1 (en) | Display device and display device driving method | |
WO2010073775A1 (en) | Display device and display device drive method | |
US10089943B2 (en) | Liquid crystal display panel driving method, timing controller and liquid crystal display apparatus | |
JP2005156661A (en) | Liquid crystal display and drive circuit, and driving method thereof | |
JP2007025684A (en) | Display device and method for correcting video signal | |
CN113380209A (en) | Display device and display method thereof | |
US8711078B2 (en) | Liquid crystal display and method of driving the same | |
JP4986536B2 (en) | Liquid crystal display device and video signal correction method | |
WO2013031867A1 (en) | Display device and drive method for same | |
JP2007156474A (en) | Liquid crystal display and modifying method of image signal thereof | |
JP4910499B2 (en) | Display driver, electro-optical device, electronic apparatus, and driving method | |
US20060125749A1 (en) | Display device and driving method thereof | |
WO2009133906A1 (en) | Video signal line drive circuit and liquid crystal display device | |
JP2021128289A (en) | Liquid crystal display device | |
WO2016171069A1 (en) | Display control device, liquid crystal display device, display control program, and recording medium | |
KR20120089081A (en) | Liquid crystal display, device and method of modifying image signal | |
KR102552303B1 (en) | Display device and driving mathod thereof | |
WO2017033596A1 (en) | Image correction device, liquid crystal display device, and image correction method | |
KR20070080043A (en) | Display device | |
KR20090016212A (en) | Signal processing apparatus, liquid crystal display including the same, and driving method of liquid crystal display | |
WO2007052421A1 (en) | Display device, data signal drive line drive circuit, and display device drive method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230724 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230808 |