JP2021103146A - Information processing device, information processing method, control device, water treatment system, and control program - Google Patents
Information processing device, information processing method, control device, water treatment system, and control program Download PDFInfo
- Publication number
- JP2021103146A JP2021103146A JP2019235142A JP2019235142A JP2021103146A JP 2021103146 A JP2021103146 A JP 2021103146A JP 2019235142 A JP2019235142 A JP 2019235142A JP 2019235142 A JP2019235142 A JP 2019235142A JP 2021103146 A JP2021103146 A JP 2021103146A
- Authority
- JP
- Japan
- Prior art keywords
- flock
- contour
- feature information
- unit
- information processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Image Analysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
【課題】各フロックの性状が的確に反映された特徴情報を生成する。【解決手段】情報処理装置(1)は、浮遊固形物を含む液体に凝集剤を加えて撹拌することにより形成されるフロックを撮影した時系列の一連の撮影画像から、当該撮影画像に写る各フロックの輪郭を特定する輪郭特定部(101)と、前記輪郭に基づき、フロックの特徴情報を生成する特徴情報生成部(103)と、を備える。【選択図】図1PROBLEM TO BE SOLVED: To generate feature information in which the properties of each floc are accurately reflected. An information processing apparatus (1) captures a series of time-series photographed images of flocs formed by adding a coagulant to a liquid containing suspended solids and stirring the flock, and each image appears in the photographed image. A contour specifying unit (101) for specifying the contour of the flock and a feature information generating unit (103) for generating the feature information of the flock based on the contour are provided. [Selection diagram] Fig. 1
Description
本発明は、画像に写るフロックの特徴情報を生成する情報処理装置等に関する。 The present invention relates to an information processing device or the like that generates flock feature information that appears in an image.
浮遊固形物を含む液体に凝集剤等の薬品を添加して撹拌することにより、液体中の浮遊固形物を凝集させてフロックを形成して固液分離を行い、処理水を得るという技術が従来から用いられている。 Conventional technology is to obtain treated water by aggregating suspended solids in a liquid to form flocs and performing solid-liquid separation by adding a chemical such as a flocculant to a liquid containing suspended solids and stirring the liquid. It is used from.
安定的に処理水を得るためには、適正なサイズのフロックを形成することが必要である。そのため、フロックを形成する工程においては、形成中のフロックの性状を把握しながら、フロックのサイズを適正なサイズで維持するための制御を随時行うことが望ましい。 In order to obtain treated water in a stable manner, it is necessary to form flocs of an appropriate size. Therefore, in the step of forming the flocs, it is desirable to perform control for maintaining the size of the flocs at an appropriate size at any time while grasping the properties of the flocs being formed.
フロックの性状を把握するための技術が開示された文献としては、例えば下記の特許文献1が挙げられる。特許文献1には、特許文献1には、機械学習モデルを用いてフロックの撮影画像から抽出された画像特徴量から、フロックの凝集度および濃度を特徴情報として算出する技術が開示されている。 Examples of documents in which a technique for grasping the properties of flocs is disclosed include the following Patent Document 1. Patent Document 1 discloses a technique for calculating the degree of cohesion and concentration of flocs as feature information from an image feature amount extracted from a captured image of flocs using a machine learning model.
しかしながら、特許文献1の技術では、画像に写る個々のフロックを検出することはできないため、各フロックの性状が的確に反映された特徴情報を生成することが難しいという課題がある。本発明の一態様は、各フロックの性状が的確に反映された特徴情報を生成することを可能にする情報処理装置等を実現することを目的とする。 However, the technique of Patent Document 1 cannot detect individual flocks appearing in an image, so that there is a problem that it is difficult to generate feature information that accurately reflects the properties of each flock. One aspect of the present invention is to realize an information processing apparatus or the like that can generate feature information that accurately reflects the properties of each floc.
前記の課題を解決するために、本発明の一態様に係る情報処理装置は、浮遊固形物を含む液体に凝集剤を加えて撹拌することにより形成されるフロックを撮影した時系列の一連の撮影画像から、当該撮影画像に写る各フロックの輪郭を特定する輪郭特定部と、前記輪郭特定部が特定した前記輪郭に基づき、前記フロックの特徴情報を生成する特徴情報生成部と、を備える。 In order to solve the above-mentioned problems, the information processing apparatus according to one aspect of the present invention takes a series of time-series photographs of flocs formed by adding a flocculant to a liquid containing suspended solids and stirring the mixture. It includes a contour specifying unit that specifies the contour of each flock appearing in the captured image from the image, and a feature information generating unit that generates the feature information of the flock based on the contour specified by the contour specifying unit.
前記構成によれば、時系列の一連の撮影画像からフロックの輪郭を特定するので、単体の画像からフロックの輪郭を特定する場合と比べて高精度な特定が可能になる。そして、輪郭の高精度な特定が可能になることにより、各フロックの性状が的確に反映された特徴情報を生成することが可能になる。 According to the above configuration, since the flock contour is specified from a series of time-series captured images, it is possible to specify the flock contour with higher accuracy than when the flock contour is specified from a single image. Then, by enabling highly accurate identification of the contour, it becomes possible to generate feature information that accurately reflects the properties of each floc.
本発明の一態様に係る情報処理装置では、前記輪郭特定部は、一連の前記撮影画像のそれぞれについて、当該撮影画像に写る各フロックの輪郭を特定し、前記輪郭特定部が特定した輪郭で囲まれる領域のうち、一連の前記撮影画像において位置が変化しているものをフロックとして検出するフロック検出部を備え、前記特徴情報生成部は、前記フロック検出部による前記フロックの検出結果に基づいて前記特徴情報を生成してもよい。 In the information processing apparatus according to one aspect of the present invention, the contour specifying portion specifies the contour of each flock reflected in the captured image for each of the series of captured images, and is surrounded by the contour specified by the contour specifying portion. A flock detection unit that detects a region whose position has changed in the series of captured images as a flock is provided, and the feature information generation unit is based on the flock detection result by the flock detection unit. Feature information may be generated.
輪郭特定部が特定する輪郭には、フロックの背景となっている物体に付着した汚れ等の輪郭が含まれ得るが、前記構成によれば、位置が変化しているものをフロックとして検出するので、そのようなものがフロックとして検出されないようにすることができる。そして、前記構成によれば、このような的確なフロックの検出結果に基づいて特徴情報を生成するので、各フロックの性状が的確に反映された特徴情報を生成することが可能になる。 The contour specified by the contour specifying portion may include contours such as dirt adhering to the object that is the background of the flock, but according to the above configuration, the contour whose position has changed is detected as the flock. , Such things can be prevented from being detected as flocs. Then, according to the above configuration, since the feature information is generated based on such an accurate detection result of the flock, it is possible to generate the feature information that accurately reflects the properties of each flock.
本発明の一態様に係る情報処理装置では、前記輪郭特定部は、フロックが写る画像と該画像におけるフロックの輪郭との関係を機械学習することにより構築された学習済みモデルを用いて、一連の前記撮影画像のそれぞれについて、当該撮影画像に写るフロックの輪郭を特定してもよい。 In the information processing apparatus according to one aspect of the present invention, the contour specifying unit is a series of trained models constructed by machine learning the relationship between the image in which the flock is captured and the contour of the flock in the image. For each of the captured images, the outline of the flock appearing in the captured image may be specified.
フロックは不定形であり、また、複数のフロックが重なり合って撮影されることもあるため、通常の画像処理ではフロックの輪郭を特定することは難しいが、前記学習済みモデルを用いることにより、フロックの輪郭を高精度に特定することが可能になる。 Since the flock is irregular and multiple flocks may be photographed in an overlapping manner, it is difficult to identify the contour of the flock by normal image processing. However, by using the trained model, the flock can be captured. It becomes possible to specify the contour with high accuracy.
本発明の一態様に係る情報処理装置は、前記特徴情報生成部が生成した前記特徴情報を用いて、前記フロックの形成状態を判定するフロック状態判定部を備えていてもよい。特徴情報生成部が生成した特徴情報には、各フロックの性状が的確に反映され得るから、この特徴情報を用いることにより、フロックの輪郭を的確に考慮した高精度な形成状態判定が可能になる。 The information processing apparatus according to one aspect of the present invention may include a flock state determination unit that determines a flock formation state using the feature information generated by the feature information generation unit. Since the characteristics of each flock can be accurately reflected in the feature information generated by the feature information generation unit, it is possible to accurately determine the formation state by accurately considering the contour of the flock by using this feature information. ..
本発明の一態様に係る情報処理装置は、前記特徴情報生成部が生成した前記特徴情報を用いて、前記フロックを除去した後の前記液体の水質を示す水質情報を生成する水質予測部を備えていてもよい。上述のように、特徴情報生成部が生成した特徴情報には、各フロックの性状が的確に反映され得るから、この特徴情報を用いることにより、フロックの輪郭を的確に考慮した高精度な水質予測が可能になる。 The information processing apparatus according to one aspect of the present invention includes a water quality prediction unit that uses the feature information generated by the feature information generation unit to generate water quality information indicating the water quality of the liquid after removing the flocs. You may be. As described above, the characteristic information generated by the feature information generation unit can accurately reflect the properties of each floc. Therefore, by using this feature information, highly accurate water quality prediction that accurately considers the contour of the flocs. Becomes possible.
本発明の一態様に係る情報処理装置では、前記特徴情報生成部は、(1)一連の前記撮影画像における前記フロックの移動態様を示す前記特徴情報、(2)前記撮影画像に含まれる各フロックのサイズの均一性を示す前記特徴情報、および(3)前記撮影画像に含まれる各フロックの形状を示す前記特徴情報、の少なくとも何れかを生成するものであってもよい。 In the information processing apparatus according to one aspect of the present invention, the feature information generation unit includes (1) the feature information indicating the movement mode of the flock in the series of captured images, and (2) each flock included in the captured image. It may generate at least one of the feature information indicating the uniformity of the size of the above and (3) the feature information indicating the shape of each floc included in the captured image.
フロックの輪郭を高精度に特定することができれば、前記の各特徴情報の何れについても信頼性の高いものを生成することができる。そして、これらの特徴情報は、フロックの性状に関連性の高いものであるから、これらの特徴情報を用いてフロックの性状を的確に把握して、浮遊固形物を含む液体の処理を適切に行うことも可能になる。 If the contour of the flock can be specified with high accuracy, it is possible to generate highly reliable information on each of the above-mentioned feature information. Since these characteristic information is highly related to the properties of flocs, the properties of flocs are accurately grasped by using these characteristic information, and liquids containing suspended solids are appropriately treated. It also becomes possible.
前記の課題を解決するために、本発明の一態様に係る情報処理方法は、1または複数の情報処理装置による情報処理方法であって、浮遊固形物を含む液体に凝集剤を加えて撹拌することにより形成されるフロックを撮影した時系列の一連の撮影画像から、当該撮影画像に写る各フロックの輪郭を特定する輪郭特定ステップと、前記輪郭特定ステップで特定した前記輪郭に基づき、前記フロックの特徴情報を生成する特徴情報生成ステップと、を含む。この情報処理方法によれば、前記情報処理装置と同様の作用効果を奏する。 In order to solve the above-mentioned problems, the information processing method according to one aspect of the present invention is an information processing method using one or more information processing devices, in which a flocculant is added to a liquid containing suspended solids and stirred. From a series of time-series captured images of the flock formed by this, the contour specifying step for specifying the contour of each flock reflected in the captured image and the contour of the flock based on the contour specified in the contour specifying step. Includes a feature information generation step to generate feature information. According to this information processing method, the same operation and effect as that of the information processing apparatus can be obtained.
前記の課題を解決するために、本発明の一態様に係る制御装置は、浮遊固形物を含む液体に凝集剤を加えて撹拌することによりフロックを形成させた後、当該液体を固液分離して処理水を得る水処理システムにおける、前記液体の撹拌および前記凝集剤の添加の少なくとも何れかを制御する制御装置であって、(1)前記情報処理装置が生成した特徴情報に基づいて前記液体の撹拌を制御する撹拌制御部と、(2)前記情報処理装置が生成した特徴情報に基づいて前記凝集剤の添加を制御する投薬制御部と、の少なくとも何れかを備えている。これにより、情報処理装置が生成したフロックの特徴情報をフロックの形成状態に影響を与える制御に反映させることができる。 In order to solve the above-mentioned problems, the control device according to one aspect of the present invention forms flocs by adding a flocculant to a liquid containing suspended solids and stirring the liquid, and then solid-liquid separates the liquid. A control device that controls at least one of stirring of the liquid and addition of the coagulant in a water treatment system for obtaining treated water. (1) The liquid is based on feature information generated by the information processing device. It is provided with at least one of a stirring control unit that controls the stirring of the above, and (2) a medication control unit that controls the addition of the flocculant based on the feature information generated by the information processing apparatus. As a result, the feature information of the flock generated by the information processing device can be reflected in the control that affects the formation state of the flock.
上記の課題を解決するために、本発明の一態様に係る水処理システムは、浮遊固形物を含む液体に凝集剤を加えて撹拌することによりフロックを形成させた後、当該液体を固液分離して処理水を得る水処理システムであって、前記情報処理装置と、前記制御装置と、を含む。これにより、フロックが適切に形成される状態を維持して、安定して処理水を得ることが可能になる。 In order to solve the above problems, the water treatment system according to one aspect of the present invention forms flocs by adding a flocculant to a liquid containing suspended solids and stirring the liquid, and then separates the liquid into solid and liquid. A water treatment system for obtaining treated water, which includes the information processing device and the control device. This makes it possible to stably obtain treated water while maintaining a state in which flocs are properly formed.
本発明の各態様に係る情報処理装置および制御装置は、コンピュータによって実現してもよく、この場合には、コンピュータを情報処理装置および制御装置が備える各部(ソフトウェア要素)として動作させることにより前記情報処理装置および前記制御装置をコンピュータにて実現させる情報処理装置の制御プログラムならびに制御装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The information processing device and the control device according to each aspect of the present invention may be realized by a computer. In this case, the information is described by operating the computer as each part (software element) included in the information processing device and the control device. A control program of an information processing device that realizes a processing device and the control device by a computer, a control program of the control device, and a computer-readable recording medium on which the control device is recorded are also included in the scope of the present invention.
本発明の一態様によれば、各フロックの性状が的確に反映された特徴情報を生成することが可能になる。 According to one aspect of the present invention, it is possible to generate feature information that accurately reflects the properties of each floc.
〔システム概要〕
本発明の一実施形態に係る水処理システム100の概要を図2に基づいて説明する。図2は、水処理システム100の構成例を示す図である。水処理システム100は、浮遊固形物を含む液体(例えば水)を固液分離して処理水を得るためのシステムである。
[System overview]
The outline of the
図2には、水処理システム100の構成要素のうち、情報処理装置1、制御装置3、撹拌槽4、撹拌装置5、薬品供給装置6、および撮影ユニット7を示している。水処理システム100には、これらの構成要素の他、液体中の固形物を沈降分離する沈降槽等の構成要素を含んでいてもよい。なお、撹拌槽4と撹拌装置5は、一体の装置(フロキュレータ)として構成されていてもよい。
FIG. 2 shows an information processing device 1, a control device 3, a stirring tank 4, a stirring device 5, a
撹拌槽4は、処理対象の液体を収容する容器である。撹拌槽4内には、撹拌装置5が設けられている。撹拌装置5は、図示しない撹拌翼およびモータ等を備えており、モータにより撹拌翼を駆動することにより、撹拌槽4内の液体を撹拌する。また、薬品供給装置6は、液体中に分散している浮遊固形物を凝集させるための薬品を撹拌槽4に供給する。この薬品は、少なくとも凝集剤を含んでいる。これにより、撹拌槽4内において、液体中に分散している浮遊固形物が凝集し、フロックFが形成される。
The stirring tank 4 is a container that houses the liquid to be processed. A stirring device 5 is provided in the stirring tank 4. The stirring device 5 includes a stirring blade and a motor (not shown), and the liquid in the stirring tank 4 is stirred by driving the stirring blade with the motor. Further, the
撮影ユニット7は、撹拌槽4内のフロックFを撮影するためのものである。撮影ユニット7は、一端が開口部72となっている筒部材71に、支持部材73、背景板74、照明装置75、および撮影装置76を配した構成である。支持部材73は、筒部材71の内部で背景板74を支持する部材であり、背景板74はフロックFを撮影する際の背景となる板状の部材である。
The photographing unit 7 is for photographing the flock F in the stirring tank 4. The photographing unit 7 has a configuration in which a support member 73, a
図示のように、撮影ユニット7は、背景板74が水面と平行になるように、かつ、背景板74が水面から所定の深さに位置するように、筒部材71の開口部72側を撹拌槽4内に沈めた状態で使用される。この状態で、照明装置75により投光しながら、撮影装置76により背景板74上のフロックFを撮影する。撹拌槽4内でフロックFが形成されるため、撮影装置76により撮影された撮影画像にはフロックFが写る。
As shown in the drawing, the photographing unit 7 agitates the opening 72 side of the
なお、フロックFの撮影方法はこの例に限られず、例えば撹拌槽4内に防水機能を備えた撮影装置を沈めて撮影する等の方法も適用可能であるが、撮影ユニット7を用いた場合、下記のような利点があるため好ましい。
(1)筒部材71が外光を遮るため、外光の影響を受けずに撮影ができる。
(2)筒部材71が水面の波動を遮るため、水面の波動の影響を受けずに撮影ができる。
(3)照明装置75および撮影装置76が液体で汚れることがなく、また、これらの装置に防水機能を持たせる必要がない。
(4)背景板74より上方のフロックのみを撮影するため、フロックの深さ方向の重なりが少なくなる。これにより、個々のフロックを検出しやすくなる。
(5)背景板74の色を、フロックの色とのコントラストが明確になるような色(例えば白色)とすることにより、フロックを検出しやすくすることができる。
(6)水面に対して傾斜した方向から投光するため、水面での反射光が撮影に与える影響を少なくすることができる。
The method of photographing the flock F is not limited to this example, and for example, a method of submerging a photographing device having a waterproof function in the stirring tank 4 for photographing can be applied, but when the photographing unit 7 is used, the photographing unit 7 is used. It is preferable because it has the following advantages.
(1) Since the
(2) Since the
(3) The
(4) Since only the flocs above the
(5) By setting the color of the
(6) Since the light is projected from a direction inclined with respect to the water surface, the influence of the reflected light on the water surface on the photographing can be reduced.
情報処理装置1は、撮影装置76がフロックFを撮影した時系列の一連の撮影画像に基づき、フロックFの特徴情報を生成する装置である。なお、特徴情報およびその生成方法については追って詳細に説明する。
The information processing device 1 is a device that generates feature information of the flock F based on a series of time-series captured images taken by the photographing
制御装置3は、液体の撹拌および薬剤の添加を制御する装置である。より詳細には、制御装置3は、情報処理装置1が生成する特徴情報に基づいて撹拌装置5の動作を制御して、フロックFの状態に応じた態様で撹拌を行わせる。また、制御装置3は、上記特徴情報に基づいて薬品供給装置6の動作を制御して、フロックFの状態に応じた態様で撹拌槽4に薬品を供給させる。
The control device 3 is a device that controls the stirring of the liquid and the addition of the drug. More specifically, the control device 3 controls the operation of the stirring device 5 based on the feature information generated by the information processing device 1 to cause stirring in an manner according to the state of the flock F. Further, the control device 3 controls the operation of the
なお、制御装置3は、液体の撹拌および薬剤の添加の何れかのみを制御する装置であってもよい。また、1つの制御装置3を設ける代わりに、液体の撹拌を制御する制御装置と、薬剤の添加の何れかのみを制御する制御装置との2つを設けてもよい。 The control device 3 may be a device that controls only either the stirring of the liquid or the addition of the chemical. Further, instead of providing one control device 3, a control device for controlling the agitation of the liquid and a control device for controlling only the addition of the drug may be provided.
以上のように、水処理システム100は、撹拌槽4内において、浮遊固形物を含む液体に凝集剤を加えて撹拌することによりフロックFを形成させた後、当該液体を固液分離して処理水を得るシステムである。また、撹拌槽4内で形成されたフロックFは、撮影ユニット7によって撮影され、情報処理装置1は、フロックFを撮影した時系列の一連の撮影画像に基づき、フロックFの特徴情報を生成する。そして、制御装置3は、この特徴情報に基づいて、液体の撹拌および凝集剤の添加の少なくとも何れかを制御する。
As described above, in the
このように、水処理システム100では、フロックFの特徴情報が、フロックFの形成状態に影響を与える、撹拌と投薬の制御に反映される構成となっている。したがって、フロックFが適切に形成される状態を維持して、処理対象の液体から安定して水を得ることが可能になっている。
As described above, in the
〔情報処理装置の構成〕
情報処理装置1のより詳細な構成について図1に基づいて説明する。図1は、情報処理装置1および制御装置3の要部構成の一例を示すブロック図である。なお、制御装置3の構成は後記「制御装置の構成」で説明する。
[Configuration of information processing device]
A more detailed configuration of the information processing device 1 will be described with reference to FIG. FIG. 1 is a block diagram showing an example of a main configuration of the information processing device 1 and the control device 3. The configuration of the control device 3 will be described later in "Configuration of control device".
図1に示すように、情報処理装置1は、情報処理装置1の各部を統括して制御する制御部10と、情報処理装置1が使用する各種データを記憶する記憶部11とを備えている。また、情報処理装置1は、情報処理装置1に対する入力を受け付ける入力部12と、情報処理装置1が情報を出力するための出力部13と、情報処理装置1が他の装置(例えば制御装置3)と通信するための通信部14とを備えている。
As shown in FIG. 1, the information processing device 1 includes a control unit 10 that controls and controls each unit of the information processing device 1, and a
また、制御部10には、輪郭特定部101、フロック検出部102、特徴情報生成部103、フロック状態判定部104、および水質予測部105が含まれている。そして、記憶部11には画像111と輪郭予測モデル112が記憶されている。
Further, the control unit 10 includes a
輪郭特定部101は、浮遊固形物を含む液体に凝集剤を加えて撹拌することにより形成されるフロックを撮影した時系列の一連の撮影画像から、当該撮影画像に写る各フロックの輪郭を特定する。上記液体は例えば産業排水や生活排水である。輪郭の特定には輪郭予測モデル112が用いられる。
The
フロック検出部102は、輪郭特定部101が特定した輪郭で囲まれる領域をフロックとして検出する。ただし、フロック検出部102は、輪郭特定部101が特定した輪郭で囲まれる領域の全てをフロックとして検出する必要はない。これは、輪郭特定部101が特定した輪郭には、背景板74に付着した汚れ等の輪郭が含まれ得るためである。
The
例えば、フロック検出部102は、輪郭特定部101が特定した輪郭で囲まれる領域のうち、一連の撮影画像において位置が変化しているものをフロックとして検出してもよい。これにより、輪郭特定部101が特定した輪郭に背景板74に付着した汚れ等の輪郭が含まれていた場合にも、そのようなものをフロックとして検出しないようにすることができる。
For example, the
特徴情報生成部103は、輪郭特定部101が特定した輪郭に基づき、フロックの特徴情報を生成する。本実施形態では、特徴情報生成部103が、フロック検出部102の検出結果を用いることにより、輪郭特定部101が特定した輪郭に基づいた特徴情報を生成する例を説明する。なお、特徴情報生成部103は、フロック検出部102の検出結果ではなく、輪郭特定部101による輪郭の特定結果を用いて特徴情報を生成してもよい。
The feature
フロック状態判定部104は、特徴情報生成部103が生成した特徴情報を用いてフロックの形成状態を判定する。上記特徴情報は、フロックを撮影した時系列の一連の撮影画像からの輪郭の特定結果に基づいて生成されたものであり、この特徴情報には各フロックの性状が的確に反映され得る。よって、この特徴情報を用いることにより、フロックの輪郭を的確に考慮した高精度な形成状態判定が可能になる。
The flock
水質予測部105は、特徴情報生成部103が生成した特徴情報を用いて、フロックを除去した後の液体である処理水の水質を示す水質情報を生成する。上述のように、上記特徴情報は、フロックを撮影した時系列の一連の撮影画像からの輪郭の特定結果に基づいて生成されたものであり、この特徴情報には各フロックの性状が的確に反映され得る。よって、この特徴情報を用いることにより、フロックの輪郭を的確に考慮した高精度な水質予測が可能になる。
The water
画像111は、フロックを撮影した画像である。画像111は、動画像であってもよいし、静止画像であってもよい。前者の場合、輪郭特定部101は、画像111からフレーム画像を取得して、時系列の一連の撮影画像とする。後者の場合、フロックを撮影した時系列の一連の撮影画像を画像111として格納しておけばよい。
輪郭予測モデル112は、フロックが写る画像と該画像におけるフロックの輪郭との関係を機械学習することにより構築された学習済みモデルである。上述のように、輪郭特定部101は、輪郭予測モデル112を用いて、一連の撮影画像のそれぞれについて、当該撮影画像に写るフロックの輪郭を特定する。
The
フロックは不定形であり、また、複数のフロックが重なり合って撮影されることもあるため、通常の画像処理ではフロックの輪郭を特定することは難しいが、輪郭予測モデル112を用いることにより、フロックの輪郭を高精度に特定することが可能になる。
Since the flock is irregular and multiple flocks may be photographed in an overlapping manner, it is difficult to identify the contour of the flock by normal image processing, but by using the
以上のように、情報処理装置1は、フロックを撮影した時系列の一連の撮影画像から当該撮影画像に写る各フロックの輪郭を特定する輪郭特定部101と、輪郭特定部101が特定した輪郭に基づきフロックの特徴情報を生成する特徴情報生成部103とを備える。この構成によれば、時系列の一連の撮影画像からフロックの輪郭を特定するので、単体の画像からフロックの輪郭を特定する場合と比べて高精度な特定が可能になる。そして、輪郭の高精度な特定が可能になることにより、各フロックの性状が的確に反映された特徴情報を生成することも可能になる。
As described above, the information processing apparatus 1 has a
〔制御装置の構成〕
制御装置3のより詳細な構成について図1に基づいて説明する。図1に示すように、制御装置3は、制御装置3の各部を統括して制御する制御部30と、制御装置3が使用する各種データを記憶する記憶部31とを備えている。また、制御装置3は、制御装置3に対する入力を受け付ける入力部32と、制御装置3が情報を出力するための出力部33と、制御装置3が他の装置(例えば情報処理装置1)と通信するための通信部34とを備えている。また、制御部30には、特徴情報取得部301と、撹拌制御部302と、投薬制御部303とが含まれている。なお、撹拌制御部302と投薬制御部303の何れかを省略してもよい。
[Control device configuration]
A more detailed configuration of the control device 3 will be described with reference to FIG. As shown in FIG. 1, the control device 3 includes a
特徴情報取得部301は、情報処理装置1が生成した特徴情報を取得する。特徴情報は、例えば通信部34を介した通信により取得してもよいし、制御装置3のユーザが入力部32を介して入力したものを取得してもよい。
The feature
撹拌制御部302は、特徴情報取得部301が取得した特徴情報に基づいて、液体の撹拌を制御する。より詳細には、撹拌制御部302は、上記特徴情報に基づいて撹拌装置5の動作を制御することにより、フロックの状態に応じた態様で撹拌を行わせる。なお、特徴情報に応じた制御内容は予め定めておけばよい。例えば、撹拌制御部302は、上記特徴情報が、フロックのサイズが過小であることを示している場合に、撹拌装置5の撹拌速度を低下させてもよい。
The
投薬制御部303は、特徴情報取得部301が取得した特徴情報に基づいて、凝集剤の添加を制御する。より詳細には、投薬制御部303は、上記特徴情報に基づいて薬品供給装置6の動作を制御することにより、フロックの状態に応じた態様で撹拌槽4に薬品を供給させる。なお、特徴情報に応じた制御内容は予め定めておけばよい。例えば、投薬制御部303は、上記特徴情報が、フロックのサイズが過大であることを示している場合や、フロックの粘度が高いことを示している場合に、投薬量をより少なくしてもよい。
The
なお、投薬量等の調整を作業者が手動で行う水処理システムの場合、投薬制御部303は、作業者が行うべき調整の内容を出力部33に出力させる等して通知することにより、作業者を介して投薬の制御を行ってもよい。撹拌の制御についても同様である。
In the case of a water treatment system in which the operator manually adjusts the dosage and the like, the
以上のように、制御装置3は、情報処理装置1が生成した特徴情報に基づいて液体の撹拌を制御する撹拌制御部302と、上記特徴情報に基づいて凝集剤の添加を制御する投薬制御部303とを備えている。よって、フロックの特徴情報を、フロックの形成状態に影響を与える制御に反映させることができ、これにより、フロックが適切に形成される状態を維持して、処理対象の液体から安定して水を得ることが可能になる。
As described above, the control device 3 includes a stirring
〔輪郭の特定とフロックの検出の例〕
輪郭の特定とフロックの検出の例を図3に基づいて説明する。図3は、フロックを撮影した画像からのフロックの輪郭の特定例を示す図である。なお、図3では、輪郭特定部101が特定した輪郭は破線で示している。
[Example of contour identification and flock detection]
An example of contour identification and flock detection will be described with reference to FIG. FIG. 3 is a diagram showing a specific example of the contour of the flock from the captured image of the flock. In FIG. 3, the contour specified by the
より詳細には、図3には、画像111a、111b、および111cが示されており、これらの撮影時刻はそれぞれt1、t2、t3である。なお、t1<t2<t3であり、時刻t1からt2までの時間と、時刻t2からt3までの時間は同じである。この時間は、画像間で対応するフロックを特定できる程度の時間とすればよく、例えば0.1秒程度としてもよい。
More specifically, FIG. 3 shows
画像111aからフロックの検出を行う場合、フロック検出部102は、まず、輪郭線で囲まれた領域a1〜a9をフロックの候補として検出する。次に、フロック検出部102は、領域a1〜a9の中に位置が変化しないものが含まれているか判定し、含まれていれば、それを候補から除外する。
When detecting flock from the
例えば、フロック検出部102は、画像111aと画像111bとで位置が同じで面積の差が所定範囲内のものを、候補から除外してもよい。図3の例では、画像111aの領域a1は、画像111bにおける領域b1と位置およびサイズが同じであるから除外される。一方、フロック検出部102は、領域a5のように画像111bでは検出されなかった候補や、位置が変化した候補は除外せず、それらの領域をフロックとして検出する。
For example, the
また、液体の処理時には、複数のフロックが集まって、フロックの凝集部が形成されることがある。例えば、図3の画像111aには、領域a2〜a4の3つの領域から成る凝集部A1、および、領域a6〜a9の4つの領域から成る凝集部A2が含まれている。凝集部に含まれるフロックの輪郭の検出は、凝集部以外におけるフロックの輪郭の検出と比べて難易度が高く、輪郭の検出漏れも発生しやすい。このため、凝集部に含まれるフロックについては、以下のような処理により検出するようにしてもよい。
In addition, when processing a liquid, a plurality of flocs may gather to form an agglomerated portion of the flocs. For example, the
まず、フロック検出部102は、画像111aから凝集部を検出する。例えば、フロック検出部102は、隣接する複数の領域の集まりを凝集部として特定してもよい。続いて、フロック検出部102は、その凝集部に含まれる各領域をフロックとして検出することの妥当性を確認する。
First, the
妥当性の確認において、まず、フロック検出部102は、時系列順で画像111aの後続の画像である画像111bから、画像111aで検出した凝集部A1に対応する凝集部B1を検出する。対応する凝集部B1は、位置やサイズ等に基づいて検出すればよい。同様に、フロック検出部102は、凝集部A2に対応する凝集部B2を検出する。
In confirming the validity, first, the
そして、フロック検出部102は、凝集部A1とB1に含まれる領域の数を比較すると共に、凝集部A2とB2に含まれる領域の数を比較する。ここで、領域の数が同じであるか、または画像111a側の凝集部に含まれる領域の数が多ければ、画像111a側の凝集部内の輪郭の特定結果は妥当と考えられるから、フロック検出部102は、画像111a側の当該凝集部に含まれる各領域をフロックとして検出すればよい。
Then, the
例えば、凝集部A2には、領域a6〜a9の4つの領域が含まれているのに対し、凝集部A2に対応する凝集部B2に含まれる領域は領域b7〜b9の3つである。よって、フロック検出部102は、凝集部A2については、当該凝集部A2に含まれる領域a6〜a9をフロックとして検出する。
For example, the agglomerated portion A2 includes four regions a6 to a9, while the agglomerated portion B2 corresponding to the agglomerated portion A2 contains three regions b7 to b9. Therefore, the
一方、凝集部A1に含まれる領域の数は凝集部B1よりも少なくなっており、凝集部A1内で輪郭の検出漏れが発生している可能性がある。そこで、フロック検出部102は、領域数がより少ない凝集部A1について、当該凝集部A1に含まれる領域を分割することで領域数を増やしてもよい。
On the other hand, the number of regions included in the agglomerated portion A1 is smaller than that of the agglomerated portion B1, and there is a possibility that contour detection omission has occurred in the agglomerated portion A1. Therefore, the
何れの領域を分割するかについては、領域の位置関係、形状、およびサイズ等に基づいて決定すればよい。例えば、フロック検出部102は、図3の凝集部A1に含まれる領域のうち、円を2つ接続したような形状の領域a3を、当該二円の接続部分から上部と下部に2分割して、領域b4およびb5にそれぞれ対応する領域を設定し、これらをフロックとして検出してもよい。
Which region is to be divided may be determined based on the positional relationship, shape, size, etc. of the region. For example, the
以上の処理により、フロック検出部102は、画像111aから検出した領域a1〜a9のうち、a2、a3の上部、a3の下部、およびa4〜a9をフロックとして検出することができる。また、フロック検出部102は、画像111bと画像111cとについて同様の処理を行うことにより、画像111bからフロックを検出することができる。
By the above processing, the
なお、時系列の一連の画像のうち3つ以上を用いてフロックを検出してもよい。これにより、フロックの検出精度をさらに高めることができる。例えば、図3の例では、互いに対応する凝集部A1、B1、C1のうち、凝集部A1に含まれる領域の数が、他の2つの凝集部と異なっている。具体的には、凝集部B1およびC1には各4つの領域が含まれているのに対し、凝集部A1に含まれている領域は3つである。この場合、凝集部A1における輪郭の特定結果に誤りがあると考えられるため、フロック検出部102は、凝集部B1およびC1と同様の領域が形成されるように、凝集部A1に含まれる領域を分割してもよい。
Flock may be detected using three or more of a series of time-series images. As a result, the flock detection accuracy can be further improved. For example, in the example of FIG. 3, the number of regions included in the agglomerated portion A1 among the agglomerated portions A1, B1 and C1 corresponding to each other is different from that of the other two agglomerated portions. Specifically, the agglomerated portions B1 and C1 each include four regions, whereas the agglomerated portion A1 contains three regions. In this case, since it is considered that the result of specifying the contour in the agglomerated portion A1 is incorrect, the
また、フロック検出部102は、凝集部に含まれる領域をフロックの検出対象外としてもよい。この場合、フロック検出部102は、他の領域と隣接していない独立した領域をフロックとして検出する。例えば、図3の画像111aでは他の領域と隣接していない独立した領域は領域a1とa5の2つであり、このうち領域a1は位置が変化していないので、フロック検出部102は、領域a5のみをフロックとして検出する。他のフロックから独立したフロックは他のフロックの影響を受けずに移動するから、この構成によれば、フロックの移動速度や移動パターンをより正確に特定することができる。
Further, the
〔輪郭予測モデルについて〕
輪郭予測モデル112は、図3に破線で示したような輪郭を特定できるように機械学習して構築すればよい。この機械学習には、フロックが写る画像に対し、該画像におけるフロックの輪郭を示す情報を正解データとして対応付けた教師データを用いればよい。正解データとする輪郭については、少なくとも部分的には人が上記画像を目視して設定したものであることが好ましい。これにより、人の感覚に近い輪郭検出が可能になる。
[About contour prediction model]
The
学習のアルゴリズムとしては、画像を入力として、フロックの輪郭を示す情報を出力可能な学習済みモデルを構築できるようなものであれば、任意のアルゴリズムを適用可能である。例えば、輪郭予測モデル112は、畳み込みニューラルネットワーク等の学習済みモデルであってもよい。
As the learning algorithm, any algorithm can be applied as long as it can construct a trained model that can output information showing the outline of the flock by inputting an image. For example, the
〔生成する特徴情報の例〕
特徴情報生成部103は、(1)一連の撮影画像におけるフロックの移動態様を示す特徴情報、(2)撮影画像に含まれる各フロックのサイズの均一性を示す特徴情報、および(3)撮影画像に含まれる各フロックの形状を示す特徴情報の少なくとも何れかを生成してもよい。
[Example of feature information to be generated]
The feature
フロックの輪郭を高精度に特定することができれば、上記の各特徴情報の何れについても信頼性の高いものを生成することができる。そして、これらの特徴情報は、フロックの性状に関連性の高いものであるから、これらの特徴情報を用いてフロックの性状を的確に把握して、液体の処理を適切に行うことも可能になる。 If the contour of the flock can be specified with high accuracy, it is possible to generate highly reliable information on each of the above-mentioned feature information. Since these characteristic information is highly related to the properties of the flocs, it is possible to accurately grasp the properties of the flocs by using these characteristic information and appropriately process the liquid. ..
上記(1)の特徴情報は、例えばフロックの平均移動速度を示すものであってもよい。この場合、特徴情報生成部103は、一連の撮影画像のそれぞれからフロック検出部102が検出した各フロックの移動量と移動時間から平均移動速度を算出し、これを特徴情報とすればよい。なお、移動量は、連続する撮影画像間におけるフロックの位置の変化から算出すればよい。また、連続する撮影画像の撮影時刻の差を移動時間とすればよい。
The feature information in (1) above may indicate, for example, the average moving speed of flocs. In this case, the feature
また、上記(1)の特徴情報は、例えばフロックの移動パターンを示すものであってもよい。移動パターンは、例えば、「直進」「ランダム」等のような類型を予め設定しておき、その何れに該当するかを示す情報を特徴情報としてもよい。また、何れの類型に該当するかは、撮影画像間におけるフロックの移動方向に基づいて特定すればよい。例えば、一連の撮影画像(3つ以上)におけるフロックの位置を、当該撮影画像平面における座標で表して、撮影画像間のフロックの移動方向を示すベクトルを算出することができる。 Further, the feature information in (1) above may indicate, for example, a flock movement pattern. As the movement pattern, for example, a type such as "straight ahead" or "random" may be set in advance, and information indicating which of these types corresponds may be used as feature information. Further, which type is applicable may be specified based on the moving direction of the flock between the captured images. For example, the position of the flock in a series of captured images (three or more) can be represented by the coordinates in the captured image plane, and a vector indicating the moving direction of the flock between the captured images can be calculated.
特徴情報生成部103は、このようなベクトルを各フロックについて算出し、方向が同一または類似したベクトルのフロックが、全フロックに対して所定割合以上存在する場合に「直進」の類型に該当することを示す特徴情報を生成してもよい。一方、特徴情報生成部103は、この類型に該当しない場合には「ランダム」の類型に該当することを示す特徴情報を生成してもよい。
The feature
なお、上記(1)の特徴情報は、フロックの移動態様、言い換えればフロックの時系列変化を示す情報であればよく、上述の各例に限られない。例えば、特徴情報生成部103は、フロックの振動、回転、または移動の軌跡等を示す特徴情報を、上記(1)の特徴情報としてもよい。
The feature information in (1) above may be any information indicating the movement mode of the flock, in other words, the time-series change of the flock, and is not limited to each of the above examples. For example, the feature
上記(2)の特徴情報については、例えばフロックの面積の標準偏差であってもよい。また、例えば、フロックのサイズの均一性を、「均一」「不均一」等のように予め類型化しておき、何れの類型に該当するかを示す情報を特徴情報としてもよい。何れの類型に該当するかは、フロックの面積の標準偏差等に基づいて判定すればよい。 The feature information in (2) above may be, for example, the standard deviation of the area of the flocs. Further, for example, the uniformity of the size of the flocs may be categorized in advance such as "uniform" and "non-uniform", and the information indicating which type corresponds to the characteristic information may be used as the feature information. Which type is applicable may be determined based on the standard deviation of the area of the flocs and the like.
上記(3)の特徴情報については、例えば「円形」「不定形」等のような、フロックの形状の類型を予め設定しておき、その何れに該当するかを示す情報を特徴情報としてもよい。例えば、特徴情報生成部103は、各フロックの輪郭の形状を解析することにより、各フロックが「円形」に該当するかを判定してもよい。そして、特徴情報生成部103は、「円形」に該当するフロックが、全フロックに対して所定割合以上存在する場合に「円形」の類型に該当することを示す特徴情報を生成してもよい。一方、特徴情報生成部103は、この類型に該当しない場合には「不定形」の類型に該当することを示す特徴情報を生成してもよい。
Regarding the feature information of (3) above, a type of flock shape such as "circular" or "indeterminate form" may be set in advance, and information indicating which of them corresponds may be used as the feature information. .. For example, the feature
なお、特徴情報生成部103が生成する特徴情報は、フロックの性状あるいは当該フロックから得られる処理水の水質と関連性のある情報であればよく、上記の各例に限られない。例えば、特徴情報生成部103は、フロックのサイズを示す特徴情報(例えばフロックの平均面積)を生成してもよいし、撮影画像におけるフロックの分布態様(例えば均一に分布/不均一に分布)を示す情報を生成してもよい。
The feature information generated by the feature
また、例えば、特徴情報生成部103は、フロックの成長態様を示す特徴情報を生成してもよい。この場合、特徴情報生成部103は、所定時間空けて撮影された複数の撮影画像のそれぞれからのフロックの検出結果に基づいて特徴情報を生成する。例えば、特徴情報生成部103は、フロックの平均面積の増加速度などを上記特徴情報としてもよい。なお、上記所定時間は、フロックの成長が観察できる程度の時間とする。
Further, for example, the feature
以上のような特徴情報は、水質予測部105による水質の予測と、フロック状態判定部104におけるフロックの形成状態の判定に用いられる他、通信部14を介して制御装置3に送信されて、撹拌や投薬の制御に用いられる。
The above-mentioned feature information is used for predicting the water quality by the water
〔水質の予測方法の例〕
水質予測部105による水質の予測方法の例を図4に基づいて説明する。図4は、特徴情報から水質を予測するための水質予測情報の一例を示す図である。図4に示す水質予測情報は、複数種類の特徴情報と、固液分離後の処理水の水質を示す水質情報とが対応付けられたテーブル形式の情報である。具体的には、「移動速度」、「移動パターン」、「大きさ」、および「分布」の4種類の特徴情報の組み合わせに対して、1つの水質情報が対応付けられている。
[Example of water quality prediction method]
An example of a water quality prediction method by the water
「移動速度」は、各フロックがどの程度の速さで移動しているかを示す特徴情報である。図4の例では、「移動速度」を、「速い」と「遅い」の2段階で表している。「速い」と「遅い」は、例えばフロックの平均移動速度を基準として区分すればよい。 "Movement speed" is characteristic information indicating how fast each flock is moving. In the example of FIG. 4, the "moving speed" is represented by two stages of "fast" and "slow". "Fast" and "slow" may be classified based on, for example, the average moving speed of flock.
「移動パターン」は、フロックがどのように移動しているかを示す特徴情報である。「直進」と「ランダム」は、上述のように、各フロックの移動方向を示すベクトルに基づいて区分可能である。 The "movement pattern" is characteristic information indicating how the flock is moving. As described above, "straight ahead" and "random" can be classified based on a vector indicating the moving direction of each flock.
「大きさ」は、フロックのサイズを示す特徴情報である。図4の例では、「大きさ」を、「大」と「小」の2段階で表している。「大」と「小」は、例えばフロックの平均面積を基準として区分すればよい。 "Size" is characteristic information indicating the size of the flock. In the example of FIG. 4, "size" is represented by two stages of "large" and "small". "Large" and "small" may be classified based on, for example, the average area of flocs.
「分布」は、撮影画像におけるフロックの分布態様を示す特徴情報である。図4の例では、「分布」を、「均一」と「不均一」の2段階で表している。「均一」と「不均一」は、例えば撮影画像を複数の領域に区分したときの各領域におけるフロックの密度の標準偏差等を基準として区分すればよい。 "Distribution" is characteristic information indicating a distribution mode of flock in a photographed image. In the example of FIG. 4, the "distribution" is represented by two stages of "uniform" and "non-uniform". “Uniform” and “non-uniform” may be classified based on, for example, the standard deviation of the flock density in each region when the captured image is divided into a plurality of regions.
水質情報は、上記の各特徴情報の組み合わせで表される性状を有するフロックが形成された液体から、固液分離により当該フロックを除去した後の処理水の水質を示している。図4の例では、水質情報は、「良好」または「悪い」の何れかである。「良好」と「悪い」は、例えば、各特徴情報の組み合わせで表される性状を有するフロックが形成された液体から得た処理水の濁度等を基準として区分してもよいし、当該処理水の様子を人が観察して判断した判断結果に基づいて区分してもよい。また、各特徴情報の組み合わせで表される性状を有するフロックが形成された液体から得られる処理水の水質が経験的に分かっている場合には、そのような経験に基づいて水質情報を設定しておいてもよい。 The water quality information indicates the water quality of the treated water after removing the flocs by solid-liquid separation from the liquid on which the flocs having the properties represented by the combination of the above characteristic information are formed. In the example of FIG. 4, the water quality information is either "good" or "bad". "Good" and "bad" may be classified based on, for example, the turbidity of the treated water obtained from the liquid in which the flocs having the properties represented by the combination of each characteristic information are formed, or the treatment. The state of water may be classified based on the judgment result judged by observing the state of water. In addition, if the water quality of the treated water obtained from the liquid in which the flocs having the properties represented by the combination of each characteristic information is formed is empirically known, the water quality information is set based on such experience. You may leave it.
水質予測部105が図4の水質予測情報を用いて水質を予測する場合、特徴情報生成部103は、上記の各特徴情報を生成する。そして、水質予測部105は、水質予測情報において、生成された上記特徴情報の組み合わせに対応付けられている水質情報を特定する。特定された水質情報が示す水質が水質予測部105の予測結果である。
When the water
水質の予測結果の利用方法は特に限定されず、例えば、水質予測部105は、水質情報を出力部13に出力させてもよいし、通信部14を介して制御装置3に送信してもよい。後者の場合、制御装置3の撹拌制御部302は、受信した水質情報に応じた撹拌の制御を行ってもよい。例えば、受信した水質情報が「悪い」水質となることを示すものであった場合、撹拌制御部302は、撹拌速度を変更してもよい。撹拌速度をどのように変更するかは、特徴情報取得部301が取得した各種特徴情報に基づいて決定すればよい。同様に、受信した水質情報が「悪い」水質となることを示すものであった場合、投薬制御部303は、投薬量や投薬速度、あるいは投入する薬品の種類を変更してもよい。
The method of using the water quality prediction result is not particularly limited. For example, the water
〔フロックの形成状態の判定方法の例〕
フロック状態判定部104は、上述した水質予測部105による水質の予測と同様にして、フロックの形成状態を判定することができる。すなわち、複数種類の特徴情報とフロックの形成状態とが対応付けられた形成状態判定情報を予め用意しておいてもよい。これにより、フロック状態判定部104は、上記形成状態判定情報を用いて、特徴情報生成部103が生成した特徴情報から、フロックの形成状態を判定することができる。
[Example of method for determining flock formation state]
The flock
フロックの形成状態は、例えば「良好」、「悪い」等の区分で表してもよい。この区分は、例えば、各特徴情報の組み合わせで表される性状を有するフロックの平均沈降速度等のフロックの処理性に関連した特性値を基準としたものであってもよいし、当該フロックの様子を人が観察して判断した判断結果に基づいて区分してもよい。 The flock formation state may be represented by, for example, "good", "bad" or the like. This classification may be based on a characteristic value related to the processability of the floc, such as the average sedimentation speed of the floc having a property represented by a combination of each characteristic information, or the state of the floc. May be classified based on the judgment result that a person observes and judges.
また、フロックの形成状態が悪い場合については、具体的な対処法を特定しやすいように、「凝集剤過剰」、「凝集剤不足」、「撹拌速度過剰」、および「撹拌速度不足」等にさらに区分してもよい。この場合、各区分には、その区分に該当する形成状態のフロックに特徴的な特量を対応付けておけばよい。例えば、凝集剤が過剰であるときのフロックは、移動速度が遅く、分布が不均一となることが多いことが経験的に分かっていれば、「凝集剤過剰」に対して、「移動速度」が遅いおよび「分布」が不均一との特徴情報を対応付けておいてもよい。 In addition, when the flock formation state is poor, "excessive aggregating agent", "insufficient aggregating agent", "excessive agitation rate", "insufficient agitation rate", etc. are used so that a specific countermeasure can be easily specified. It may be further divided. In this case, each division may be associated with a special quantity characteristic of the flock in the formed state corresponding to the division. For example, if it is empirically known that flocs when the coagulant is excessive have a slow moving speed and the distribution is often uneven, the "moving speed" is opposed to the "coagulant excess". The characteristic information that the speed is slow and the "distribution" is non-uniform may be associated.
フロックの形成状態の判定結果の利用方法は特に限定されず、例えば、フロック状態判定部104は、フロックの形成状態を示す情報を出力部13に出力させてもよいし、通信部14を介して制御装置3に送信してもよい。後者の場合、制御装置3の撹拌制御部302は、受信した情報に応じた撹拌の制御を行ってもよい。例えば、受信した情報がフロックの形成状態が「悪い」ことを示すものであった場合、撹拌制御部302は、撹拌速度を変更してもよい。撹拌速度をどのように変更するかは、特徴情報取得部301が取得した各種特徴情報に基づいて決定すればよい。同様に、受信した情報がフロックの形成状態が「悪い」ことを示すものであった場合、投薬制御部303は、投薬量や投薬速度、あるいは投入する薬品の種類を変更してもよい。
The method of using the flock formation state determination result is not particularly limited. For example, the flock
〔水質の予測方法およびフロックの形成状態の判定方法の他の例〕
特徴情報生成部103が生成する特徴情報と水質情報との関係をモデル化した予測モデルを構築しておけば、水質予測部105は、当該予測モデルを用いて水質情報を導出することができる。例えば、フロックの平均移動速度、平均面積、および密度と、固液分離後の処理水の濁度との関係をモデル化した予測モデルを用いてもよい。
[Other examples of water quality prediction method and floc formation state determination method]
If a prediction model that models the relationship between the feature information generated by the feature
この場合、水質予測部105は、特徴情報生成部103が生成するフロックの平均移動速度、平均面積、および密度を予測モデルに入力することにより、処理水の濁度の予測値を算出することができ、この値を水質情報として出力することができる。
In this case, the water
同様に、特徴情報生成部103が生成する特徴情報とフロックの形成状態との関係をモデル化した判定モデルを構築しておけば、フロック状態判定部104は、当該判定モデルを用いてフロックの形成状態を判定することができる。なお、以上のような判定モデルと予測モデルは、何れも機械学習により構築することが可能である。
Similarly, if a determination model that models the relationship between the feature information generated by the feature
〔処理の流れ〕
情報処理装置1が実行する処理(情報処理方法)の流れを図5に基づいて説明する。図5は、情報処理装置1が実行する処理の一例を示すフローチャートである。なお、図5の処理の開始前に撮影ユニット7を用いてフロックが形成された液体の撮影が行われ、撮影された時系列の一連の画像が、情報処理装置1の記憶部11に画像111として記憶されているものとする。
[Processing flow]
The flow of the process (information processing method) executed by the information processing apparatus 1 will be described with reference to FIG. FIG. 5 is a flowchart showing an example of processing executed by the information processing device 1. Before the start of the process of FIG. 5, the imaging unit 7 is used to photograph the liquid in which the flocs are formed, and a series of captured time-series images are stored in the
S1(輪郭特定ステップ)では、輪郭特定部101が、画像111から、当該画像111に写る各フロックの輪郭を特定する。具体的には、輪郭特定部101は、時系列の一連の画像111のそれぞれを輪郭予測モデル112に入力し、輪郭予測モデル112が出力するデータから各フロックの輪郭を特定する。
In S1 (contour specifying step), the
S2では、フロック検出部102が、S1の特定結果に基づいて画像111に写るフロックを検出する。この際、フロック検出部102は、S1で特定された輪郭で囲まれる領域のうち、一連の画像111において位置が変化しているものをフロックとして検出してもよい。また、フロック検出部102は、他の領域から独立しており、凝集部を構成していない領域のみをフロックとして検出してもよい。
In S2, the
S3(特徴情報生成ステップ)では、特徴情報生成部103が、S2の検出結果に基づき、特徴情報を生成する。なお、上記のとおり、S2の検出はS1で特定された輪郭に基づいて行われるから、S3ではS1で特定された輪郭に基づいて特徴情報を生成しているともいえる。
In S3 (feature information generation step), the feature
S4では、フロック状態判定部104が、S3で生成された特徴情報を用いて、フロックの形成状態を判定する。フロックの形成状態の判定方法は上述したとおりであり、ここでは説明を繰り返さない。
In S4, the flock
S5では、水質予測部105が、S3で生成された特徴情報を用いて、フロックを除去した後の処理水の水質を示す水質情報を生成する。水質情報の生成方法は上述したとおりであり、ここでは説明を繰り返さない。なお、S5の処理はS4の処理よりも先に行ってもよいし、これらの処理を並行で行ってもよい。
In S5, the water
以上の処理により、時系列の一連の画像111に写るフロックについて、その特徴情報と、形成状態を示す情報と、水質情報とが生成される。図示していないが、これらの情報の一部または全部を制御装置3に送信してもよく、これにより、これらの情報に応じた、撹拌および投薬の制御を制御装置3に実行させることができる。なお、以上の処理は、所定時間毎に行うことが好ましい。これにより、水処理システム100における水処理を安定して継続させることが可能になる。
By the above processing, the characteristic information, the information indicating the formation state, and the water quality information of the flocs appearing in the series of time-
〔輪郭検出の他の例〕
上述の例では、一連の撮影画像のそれぞれを輪郭予測モデル112に入力して輪郭を特定しているが、複数の撮影画像を一括して輪郭予測モデル112に入力することにより輪郭を特定してもよい。この場合、輪郭予測モデル112としては、複数の撮影画像に対し、それらの撮影画像から特定すべき輪郭を示す正解データを対応付けた教師データを用いて構築されたものを使用すればよい。同様に、動画像を輪郭予測モデル112に入力して輪郭を特定する構成とすることも可能である。これらの構成を採用した場合も、上述の例と同様に、フロックの時系列変化を加味した高精度な輪郭の特定が可能である。
[Other examples of contour detection]
In the above example, each of the series of captured images is input to the
〔システム構成の他の例〕
上記実施形態では、情報処理装置1と制御装置3とをそれぞれ独立した装置とした例を説明したが、これらを1つの装置にまとめてもよい。また、これらの各装置が実行する処理の一部を、これらの装置とは別の他の情報処理装置に実行させてもよい。例えば、輪郭予測モデル112を用いた輪郭の特定をクラウドサーバに行わせてもよい。この場合、輪郭特定部101は、当該クラウドサーバに画像111を送信して、当該クラウドサーバから輪郭の特定結果を受信することにより、画像111に写る各フロックの輪郭を特定する。このように、上記各実施形態で説明した各処理の実行主体は適宜変更することができ、本発明に係る水処理システム100は、様々なシステム構成で実現することが可能である。
[Other examples of system configuration]
In the above embodiment, the example in which the information processing device 1 and the control device 3 are independent devices has been described, but these may be combined into one device. Further, a part of the processing executed by each of these devices may be executed by another information processing device other than these devices. For example, the cloud server may be made to specify the contour using the
〔ソフトウェアによる実現例〕
情報処理装置1および制御装置3の制御ブロック(特に制御部10および制御部30に含まれる各部)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The control blocks (particularly, each unit included in the control unit 10 and the control unit 30) of the information processing device 1 and the control device 3 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. However, it may be realized by software.
後者の場合、情報処理装置1および制御装置3は、各機能を実現するソフトウェアである制御プログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記制御プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記制御プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記制御プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記制御プログラムは、該制御プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記制御プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the information processing device 1 and the control device 3 include a computer that executes an instruction of a control program, which is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the control program. Then, in the computer, the processor reads the control program from the recording medium and executes it, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a "non-temporary tangible medium", for example, a ROM (Read Only Memory) or the like, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) or the like for expanding the control program may be further provided. Further, the control program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the control program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the control program is embodied by electronic transmission.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1 情報処理装置
101 輪郭特定部
103 特徴情報生成部
104 フロック状態判定部
105 水質予測部
112 輪郭予測モデル
3 制御装置
100 水処理システム
1
Claims (10)
前記輪郭特定部が特定した前記輪郭に基づき、前記フロックの特徴情報を生成する特徴情報生成部と、を備える、情報処理装置。 From a series of time-series captured images of flocs formed by adding a flocculant to a liquid containing suspended solids and stirring, a contour specifying part that identifies the contour of each floc reflected in the captured image, and
An information processing device including a feature information generation unit that generates feature information of the flock based on the contour specified by the contour specifying unit.
前記輪郭特定部が特定した輪郭で囲まれる領域のうち、一連の前記撮影画像において位置が変化しているものをフロックとして検出するフロック検出部を備え、
前記特徴情報生成部は、前記フロック検出部による前記フロックの検出結果に基づいて前記特徴情報を生成する、請求項1に記載の情報処理装置。 The contour specifying unit identifies the contour of each flock reflected in the captured image for each of the series of captured images.
It is provided with a flock detection unit that detects as a flock a region in which the position of the contour specifying portion is changed in the series of captured images among the regions surrounded by the specified contour.
The information processing device according to claim 1, wherein the feature information generation unit generates the feature information based on the detection result of the flock by the flock detection unit.
(1)一連の前記撮影画像における前記フロックの移動態様を示す前記特徴情報、
(2)前記撮影画像に含まれる各フロックのサイズの均一性を示す前記特徴情報、および
(3)前記撮影画像に含まれる各フロックの形状を示す前記特徴情報、
の少なくとも何れかを生成する、請求項1から5の何れか1項に記載の情報処理装置。 The feature information generation unit
(1) The feature information indicating the movement mode of the flock in the series of captured images.
(2) The feature information indicating the uniformity of the size of each flock included in the photographed image, and (3) the feature information indicating the shape of each flock included in the photographed image.
The information processing apparatus according to any one of claims 1 to 5, which generates at least one of the above.
浮遊固形物を含む液体に凝集剤を加えて撹拌することにより形成されるフロックを撮影した時系列の一連の撮影画像から、当該撮影画像に写る各フロックの輪郭を特定する輪郭特定ステップと、
前記輪郭特定ステップで特定した前記輪郭に基づき、前記フロックの特徴情報を生成する特徴情報生成ステップと、を含む、情報処理方法。 An information processing method using one or more information processing devices.
From a series of time-series captured images of flocs formed by adding a flocculant to a liquid containing suspended solids and stirring, a contour specifying step for identifying the contour of each floc reflected in the captured image, and
An information processing method including a feature information generation step of generating feature information of the flock based on the contour specified in the contour specifying step.
(1)請求項1から5の何れか1項に記載の情報処理装置が生成した特徴情報に基づいて、前記液体の撹拌を制御する撹拌制御部と、
(2)請求項1から5の何れか1項に記載の情報処理装置が生成した特徴情報に基づいて、前記凝集剤の添加を制御する投薬制御部と、の少なくとも何れかを備えた制御装置。 After forming flocs by adding a flocculant to a liquid containing suspended solids and stirring the liquid, stirring the liquid and adding the flocculant in a water treatment system for solid-liquid separation of the liquid to obtain treated water. A control device that controls at least one of
(1) A stirring control unit that controls stirring of the liquid based on the feature information generated by the information processing apparatus according to any one of claims 1 to 5.
(2) A control device including at least one of a medication control unit that controls the addition of the flocculant based on the feature information generated by the information processing device according to any one of claims 1 to 5. ..
請求項1から6の何れか1項に記載の情報処理装置と、
前記情報処理装置が生成した特徴情報に基づいて、前記液体の撹拌および前記凝集剤の添加の少なくとも何れかを制御する制御装置と、を含む水処理システム。 A water treatment system in which a floc is formed by adding a flocculant to a liquid containing suspended solids and stirring the liquid, and then the liquid is solid-liquid separated to obtain treated water.
The information processing device according to any one of claims 1 to 6.
A water treatment system including a control device that controls at least one of stirring of the liquid and addition of the flocculant based on the feature information generated by the information processing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019235142A JP7341881B2 (en) | 2019-12-25 | 2019-12-25 | Information processing device, information processing method, control device, water treatment system, and control program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019235142A JP7341881B2 (en) | 2019-12-25 | 2019-12-25 | Information processing device, information processing method, control device, water treatment system, and control program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021103146A true JP2021103146A (en) | 2021-07-15 |
JP7341881B2 JP7341881B2 (en) | 2023-09-11 |
Family
ID=76755151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019235142A Active JP7341881B2 (en) | 2019-12-25 | 2019-12-25 | Information processing device, information processing method, control device, water treatment system, and control program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7341881B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114663684A (en) * | 2022-04-08 | 2022-06-24 | 陕西誉锦源实业有限公司 | Method, system and operation equipment for real-time intelligent analysis of flocculation reaction |
JP7255770B1 (en) * | 2021-11-30 | 2023-04-14 | Jfeスチール株式会社 | Apparatus and method for measuring granular objects, method for detecting abnormality, and method for manufacturing iron granules |
WO2023100696A1 (en) * | 2021-11-30 | 2023-06-08 | Jfeスチール株式会社 | Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron |
JP2023081640A (en) * | 2021-12-01 | 2023-06-13 | 株式会社クボタ | Information processing device, driving assistance method, driving assistance program, and control system |
WO2023199599A1 (en) * | 2022-04-11 | 2023-10-19 | 株式会社 東芝 | Sludge state display and notification system, and sludge state display and notification method |
CN117929375A (en) * | 2024-03-21 | 2024-04-26 | 武汉奥恒胜科技有限公司 | Water quality detection method and water quality detector based on image processing |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4654139A (en) * | 1984-06-08 | 1987-03-31 | Hitachi, Ltd. | Flocculation basin in water treatment process |
DE10115179A1 (en) * | 2001-03-27 | 2002-10-10 | Clausthaler Umwelttechnikinsti | Method and measuring arrangement for the automatic determination of the concentration factor of conditioned sewage sludge |
KR20040079665A (en) * | 2003-03-10 | 2004-09-16 | 주식회사 루프시스템 | System for Measuring Floc of Water Purification Plant and Method for Controlling Water Purification Plant Using the Same |
CN104122178A (en) * | 2013-04-26 | 2014-10-29 | 济南大学 | Monitoring method for floc dynamic image by ultraviolet detection |
WO2017168054A1 (en) * | 2016-04-01 | 2017-10-05 | Kemira Oyj | A method and system for optimization of coagulation and/or flocculation in a water treatment process |
JP2017201335A (en) * | 2011-08-29 | 2017-11-09 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
JP2019027212A (en) * | 2017-08-02 | 2019-02-21 | 株式会社日立製作所 | Maintenance management support device for water service and maintenance management support system for water service |
JP2019055406A (en) * | 2019-01-07 | 2019-04-11 | 株式会社東芝 | Coagulation sediment control device, coagulation sediment control method, and computer program |
JP2019192017A (en) * | 2018-04-26 | 2019-10-31 | 清水建設株式会社 | Contaminant assessment device, learning device, contaminant assessment method, and learning method |
-
2019
- 2019-12-25 JP JP2019235142A patent/JP7341881B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4654139A (en) * | 1984-06-08 | 1987-03-31 | Hitachi, Ltd. | Flocculation basin in water treatment process |
DE10115179A1 (en) * | 2001-03-27 | 2002-10-10 | Clausthaler Umwelttechnikinsti | Method and measuring arrangement for the automatic determination of the concentration factor of conditioned sewage sludge |
KR20040079665A (en) * | 2003-03-10 | 2004-09-16 | 주식회사 루프시스템 | System for Measuring Floc of Water Purification Plant and Method for Controlling Water Purification Plant Using the Same |
JP2017201335A (en) * | 2011-08-29 | 2017-11-09 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
CN104122178A (en) * | 2013-04-26 | 2014-10-29 | 济南大学 | Monitoring method for floc dynamic image by ultraviolet detection |
WO2017168054A1 (en) * | 2016-04-01 | 2017-10-05 | Kemira Oyj | A method and system for optimization of coagulation and/or flocculation in a water treatment process |
JP2019027212A (en) * | 2017-08-02 | 2019-02-21 | 株式会社日立製作所 | Maintenance management support device for water service and maintenance management support system for water service |
JP2019192017A (en) * | 2018-04-26 | 2019-10-31 | 清水建設株式会社 | Contaminant assessment device, learning device, contaminant assessment method, and learning method |
JP2019055406A (en) * | 2019-01-07 | 2019-04-11 | 株式会社東芝 | Coagulation sediment control device, coagulation sediment control method, and computer program |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7255770B1 (en) * | 2021-11-30 | 2023-04-14 | Jfeスチール株式会社 | Apparatus and method for measuring granular objects, method for detecting abnormality, and method for manufacturing iron granules |
WO2023100696A1 (en) * | 2021-11-30 | 2023-06-08 | Jfeスチール株式会社 | Apparatus and method for measuring granular objects, abnormality detection method, and method for producing granular iron |
JP2023081640A (en) * | 2021-12-01 | 2023-06-13 | 株式会社クボタ | Information processing device, driving assistance method, driving assistance program, and control system |
JP7580365B2 (en) | 2021-12-01 | 2024-11-11 | 株式会社クボタ | Information processing device, driving assistance method, driving assistance program, and control system |
CN114663684A (en) * | 2022-04-08 | 2022-06-24 | 陕西誉锦源实业有限公司 | Method, system and operation equipment for real-time intelligent analysis of flocculation reaction |
WO2023199599A1 (en) * | 2022-04-11 | 2023-10-19 | 株式会社 東芝 | Sludge state display and notification system, and sludge state display and notification method |
CN117929375A (en) * | 2024-03-21 | 2024-04-26 | 武汉奥恒胜科技有限公司 | Water quality detection method and water quality detector based on image processing |
CN117929375B (en) * | 2024-03-21 | 2024-06-04 | 武汉奥恒胜科技有限公司 | Water quality detection method and water quality detector based on image processing |
Also Published As
Publication number | Publication date |
---|---|
JP7341881B2 (en) | 2023-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021103146A (en) | Information processing device, information processing method, control device, water treatment system, and control program | |
US10776911B2 (en) | Information processing apparatus, identification system, setting method, and program | |
JP7588200B2 (en) | Information processing device, water treatment system, water treatment method and program | |
JP7300380B2 (en) | Threshold update device, learning device, control device, threshold update method, and control program | |
CN108764278A (en) | A kind of the self study industrial intelligent detecting system and method for view-based access control model | |
JP4238983B2 (en) | Flocculant injection control method and control apparatus therefor | |
Bischoff et al. | Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images | |
JPS6345000A (en) | Device for flocculating sludge of water treatment | |
US11756190B2 (en) | Cell image evaluation device, method, and program | |
US11727273B2 (en) | System improvement for deep neural networks | |
KR20230063933A (en) | Light resettable vision machine device and product test method thereof | |
CN114193647A (en) | Rubber plasticator control method and device based on image processing | |
JP2019162602A (en) | Diluted sludge imaging system, flocculant addition amount control system, sludge thickening system and diluted sludge imaging method | |
JP7507034B2 (en) | Information processing device, water treatment system, information processing method and program | |
CN114037704B (en) | Feeding system, control method and control device thereof, and storage medium | |
JP7580365B2 (en) | Information processing device, driving assistance method, driving assistance program, and control system | |
JP2023163696A (en) | Floc state control device, sludge treatment facility, sludge flocculation facility, sludge concentration facility, floc state control method, and program | |
JPH08309399A (en) | Sludge flocculation device | |
CN115439407A (en) | Aggregate particle size detection method, device and system and engineering machinery | |
JP7586790B2 (en) | Method for checking operation of specimen characteristic discriminating device, and specimen characteristic discriminating device | |
US20240023812A1 (en) | Photographing system that enables efficient medical examination, photographing control method, and storage medium | |
JP7704595B2 (en) | Floc state control device, sludge treatment facility, floc state control method, and program | |
CN118307108B (en) | Dosing control method and device in water treatment process, medium and electronic equipment | |
KR102696911B1 (en) | Apparatus and method for detecting foreign material and defect of flat display panel | |
JP2024083901A (en) | Floc state control device, sludge treatment equipment, sludge flocculation equipment, sludge concentration equipment, floc state control method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7341881 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |